Academic staff



Contact details

Université de Nantes 2 rue de la Houssinière 44322 Nantes FRANCE

0251125654 (n° interne : 455654)

Taught academic discipline(s)

  • Remote sensing, Ecology

Research topics

  • I'm part of the team Remote Sensing & Benthic Ecology, with a focus on:
    • Marine optics & ocean color remote sensing,
    • Coastal ecology: Aquaculture & Harmful Algal Blooms (HABs)

Activities / Resume

27. Zoffoli et al. (2021). Decadal increase in the ecological status of a North-Atlantic intertidal seagrass meadow observed with multi-mission satellite time-series. Ecol. Ind. 130: 108033

26. Harmel et al. (2021). Two-term Reynolds–McCormick phase function parameterization better describes light scattering by microalgae and mineral hydrosols. Opt. Let. 46:1860-1863.

25. Gernez et al. (2021). Editorial: Remote Sensing for Aquaculture.  Front. Mar. Sci. 7:1258

24. Palmer et al. (2021). Pacific oyster (Crassostrea gigas) growth modelling and indicators for offshore aquaculture in Europe under climate change uncertainty. Aquaculture 532: 736116

23. Zoffoli et al. (2020). Sentinel-2 remote sensing of Zostera noltei-dominated intertidal seagrass meadows. Remote Sens. Environ. 251: 112020

22. Méléder et al. (2020). Mapping the intertidal microphytobenthos Gross Primary Production. Part I: coupling multispectral remote sensing and physical modelling. Front. Mar. Sci. 7: 520

21. Barillé et al. (2020). Biological, socio-economic, and administrative opportunities and challenges to moving aquaculture offshore for small French oyster-farming companies. Aquaculture 735045

20. Palmer et al. (2020). Remote sensing-driven pacific oyster (Crassostrea gigas) growth modeling to inform offshore aquaculture site selection. Front. Mar. Sci. 6:802

19. Savelli et al. (2019). Impact of chronic and massive resuspension mechanisms on the microphytobenthos dynamics in a temperate intertidal mudflat. J. Geophys. Res. Biogeosci.

18. Stramski et al.(2019). Inherent optical properties and particle characteristics of the sea-surface microlayer. Prog. Oceano. 176:102117

17. Thomas et al. (2018). Oysters as sentinels of climate variability and climate change in coastal ecosystems. Environ. Res. Let. 13: 104009

16. Pernet et al. (2018) Determination of risk factors for herpesvirus outbreak in oysters using a broad-scale spatial epidemiology framework. Sci. Rep. 8: 10869

15. Larnicol et al. (2018). Using high-resolution airborne data to evaluate MERIS atmospheric correction and intra-pixel variability in nearshore turbid waters. Remote sens. 10: 274

14. Echappé et al. (2018). Satellite remote sensing reveals a positive impact of living oyster reefs on microalgal biofilm development. Biogeosci. 15: 905–918

13. Gernez et al. (2017). Shellfish aquaculture from space: potential of Sentinel2 to monitor tide-driven changes in turbidity, chlorophyll concentration and oyster physiological response at the scale of an oyster farm, Front. Mar. Sci 4: 137

12. Novoa et al. (2017). Atmospheric corrections and multi-conditional algorithm for multi-sensor remote sensing of suspended particulate matter in low-to-high turbidity levels coastal waters, Remote Sens. 9

11. Doxaran et al. (2016). Improved correction methods for field measurements of particulate light backscattering in turbid waters, Optics Exp. 24: 3615-3637

10. Le Bris et al. (2016). Hyperspectral remote sensing of wild oyster reefs, Est. Coast. Shelf Sci. 172: 1-12

9. Thomas et al. (2016). Global change and climate-driven invasion of the Pacific oyster (Crassostrea gigas) along European coasts: a bioenergetics modelling approach, J. Biogeography  43: 568-579

8. Gernez et al. (2015). Toward Sentinel-2 high resolution remote sensing of suspended particulate matter in very turbid waters: SPOT4 (Take5) experiment in the Loire and Gironde estuaries, Remote Sens. 7: 9507-9528

7. Gernez et al. (2014). Remote sensing of suspended particulate matter in turbid oyster farming ecosystems, J. Geophys. Res. Oceans, 119

6. Gernez et al. (2014). Within-day variability of particulate organic carbon and remote-sensing reflectance during a bloom of Phaeocystis antarctica in the Ross Sea, Antarctica. Int. J. Remote Sens. 35: 464-477

5. Brito et al. (2013). Seasonality of microphytobenthos revealed by remote-sensing in a South European estuary, Cont. Shelf Res. 66: 83-91 

4. Dickey et al. (2012). Introduction to the special section on recent advances in the study of optical variability in the near-surface and upper ocean, J. Geophys. Res. 117, C00H20

3. Gernez et al. (2011). Vertical changes in the probability distribution of downward irradiance within the near-surface ocean under sunny conditions, J. Geophys. Res. 116, C00H07

2. Gernez et al. (2011). Diel cycles of the particulate beam attenuation coefficient under varying trophic conditions in the NW Mediterranean Sea: observations and modeling. Limnol. Oceanogr. 56: 17-36

1. Gernez & Antoine (2009). Field characterization of wave-induced underwater light field fluctuations. J. Geophys. Res. 114, C06025

top of page