
 1 

 

 

 

 

 

 

 

 

Reliability-based analysis and design of foundations resting on a spatially 

random soil 
 

Abdul-Hamid Soubra
1
 and Dalia S. Youssef Abdel Massih

2
 

 
1
 Professor, University of Nantes, GeM, UMR CNRS 6183, Bd. de l’université, BP 152, 44603 Saint-

Nazaire cedex, France. E-mail: Abed.Soubra@univ-nantes.fr 
2
 PhD Student, University of Nantes & Lebanese University, BP 11-5147, Beirut, Lebanon. E-mail: 

Dalia.Youssef@univ-nantes.fr  
 

ABSTRACT: This paper presents the effect of the spatial variability of the soil shear 

strength parameters on the reliability analysis and design of a vertically loaded 

shallow strip footing against bearing failure. The deterministic model used is based 

on the upper-bound method of limit analysis. The Hasofer-Lind reliability index 

based on the most critical probabilistic failure surface is calculated for the assessment 

of the footing reliability. The random fields used in the analysis are the soil shear 

strength parameters. Normal and non-normal anisotropic random fields with or 

without cross correlation are considered. The two random fields are averaged along 

the potential slip lines of the failure mechanism. It was found that the assumption of 

negative cross correlation, soil heterogeneity and anisotropy regarding the 

autocorrelation distance gives a higher reliability index than the hypothesis of no 

cross correlation, homogeneous and isotropic soil respectively. These assumptions 

merely allow the reliability to be more accurately estimated and thus lead to an 

economic design. The failure probability was found more sensitive to the variability 

of the angle of internal friction than the cohesion. For design, an iterative procedure is 

performed to determine the breadth of the footing for a target failure probability.   
 

INTRODUCTION 
 

Several authors have investigated the reliability-based analysis of foundations 

against bearing failure. Some authors have modelled the uncertainties of the different 

parameters as random variables (e.g. Low and Phoon, 2002) without introducing the 

spatial variability of the soil parameters. Others (Cherubini 2000) have considered the 

effect of the soil spatial variability (i.e. soil heterogeneity) by using a simplified 

approach. Later on, several authors (Griffiths et al. 2002; Fenton and Griffiths 2003 

and Popescu et al. 2005 among others) have modelled the uncertain soil parameters 

more rigorously as random processes and have examined the effect of the spatial 

variability of these parameters on the ultimate bearing capacity by using finite 

elements codes. However, most of these studies (except that of Fenton and Griffiths 

2003) consider only a single random process in their analysis and require high 

computation time due to the use of Monte Carlo simulations.  
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In this paper, the effect of the soil spatial variability on the reliability analysis and 

design of a vertically loaded strip foundation is presented. Two random processes 

concerning the soil cohesion and angle of internal friction are used in the analysis. 

The two random fields are assumed to be anisotropic with different values of vertical 

and horizontal autocorrelation distances. The punching mode of the ultimate limit 

state is analysed. A limit analysis model based on the non-symmetrical multiblock 

failure mechanism presented by Soubra (1999) is used here. This model is rigorous 

and has the advantage of being more efficient than the commonly used finite element 

approach which requires much more computation time. In this model, the random 

fields are averaged along the different potential slip lines of the failure mechanism. 

After a brief description of the basic concepts of spatial averaging, reliability index 

and failure probability, the probabilistic model and the corresponding numerical 

results are presented and discussed. 
 

BASIC RELIABILITY CONCEPTS  
 

Spatial averaging of a random field 

The average value of a random field ( )yxZ ,  over a domain A is given by : 

( )∫=
A

A dXXZ
A

Z ..
1

            (1) 

If the random field is averaged over a one-dimensional domain as for the slip lines of 

the failure mechanism used in this paper (cf. Figure 1), the domain A will correspond 

to the distance L of the segment along which a local average of the random field is 

defined. By averaging the random field over two arbitrary situated segments iL  and 

jL , two variables representing two local averages are found accordingly to equation 

(1) and a correlation may exist between these variables. This correlation is calculated 

by averaging the correlation between the random variables at all points on both 

segments. It is given by (Knabe et al. 1998): 

( ) ( )∫ ∫=
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where u is the distance that separates any two points of the two segments iL  and jL .  

 

Reliability index and failure probability 

The Hasofer-Lind reliability index is defined by: 
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in which x is a random variable, µ  and σ  are the mean and standard deviation of x, 

( )x µ σ−  is the vector the n centred and reduced random variables, R is the 

correlation matrix and F is the failure region. The minimisation of (3) is performed 

subject to the constraint ( ) 0≤xG  where the limit state surface ( ) 0=xG , separates 

the n dimensional domain of random variables into two regions: a failure region F 
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represented by ( ) 0≤xG  and a safe region given by ( ) 0>xG . An intuitive 

interpretation of the reliability index was suggested in Low and Tang (1997) where 

the concept of an expanding ellipse led to a simple method of computing the Hasofer-

Lind reliability index in the original space of the random variables for both normal 

and non-normal variables with or without correlation. The method of computation of 

the reliability index using the concept of an expanding ellipse suggested by Low and 

Tang (1997) is used in this paper. From the Hasofer-Lind reliability index HLβ , one 

can approximate the failure probability by using the First Order Reliability Method 

FORM as follows: 

( )HLfP β−Φ≈             (4) 

where ( )⋅Φ  is the cumulative distribution function of a standard normal variable.  
 

RELIABILITY ANALYSIS OF A STRIP FOUNDATION ON A SPATIALLY 

RANDOM SOIL MEDIUM 
 

In this paper, the effect of the spatial variability of the soil shear strength 

parameters on the reliability analysis and design of a strip foundation subjected to a 

central vertical load is presented. The cohesion c and the angle of internal friction ϕ  

are considered as random fields. A deterministic model based on the upper-bound 

method of limit analysis is used to study the punching failure mode of the ultimate 

limit state. Due to the soil heterogeneity, the non-symmetrical multiblock failure 

mechanism presented by Soubra (1999) is adopted (cf. Figure 1).  
 

Failure mechanism 

The present failure mechanism is composed of a sequence of n triangular rigid 

wedges. It is described by n2  angular parameters ( ) ( )[ ]nini ii ....,,1,...,,1 == βα . iV  

and 1, +iiV  are respectively the velocity of block i  and the inter-block velocity between 

blocks i  and 1+i . The first wedge ABC is translating as a rigid body with a 

downward velocity 1V  inclined at an angle 1oϕ  to the discontinuity line AC. Note that 

the foundation is assumed to move with the same velocity as that of the first block 

(i.e. 1V ). The wedge i  is assumed to move with a velocity iV  inclined at oiϕ  to line 

id  (cf. Figure 1) where oiϕ  is the average value of the random field of the angle of 

internal friction along the line id . The inter-block velocity 1, +iiV  is inclined at riϕ  to 

line il  where riϕ  is the average value of the random field of the angle of internal 

friction along the segment il . As for the angle of internal friction, the random field of 

the cohesion is averaged along each line of the mechanism; oic  is the average value 

along the line id  and ric  is the average value along the line il . The calculation of 

ultimate bearing capacity of the footing is performed by equating the total rate at 

which work is done by the foundation load, the soil weight in motion and the ground 

surface surcharge to the total rate of energy dissipation along the lines of velocity 

discontinuities of the failure mechanism.  
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FIG. 1. Non-symmetrical multiblock failure mechanism 

 

Performance function, autocorrelation function and reliability index  

The performance function used in the reliability analysis is defined with respect to 

the punching failure mode of the soil. It is given as follows: 

1−=
S
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where uP  is the ultimate foundation load and SP  is the vertical applied load. 

An anisotropic autocorrelation function is used in this paper for both the cohesion 

and the angle of internal friction. It is given by an exponential first order function as 

follows (e.g. Vanmarcke, 1983): 
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where hD  and vD  are the autocorrelation distances in the horizontal and vertical 

directions respectively and, xδ  and yδ  are the lag distances in the horizontal and 

vertical directions respectively. A constant cross-correlation ϕρ ,c  is used here. 

The Hasofer-Lind reliability index given by equation (3) is used for the 

computation of the reliability of the foundation. The vector of random variables x in 

this equation is composed of the local average values of the soil shear strength 

random fields. Consequently, the reliability index depends on 24 −n  random 

variables ( ), , ,rj rj oi oic cϕ ϕ  with 1,...,i n=  and 1,..., 1j n= − . The correlation matrix 

[R] is a square matrix of dimensions ( 24 −n )× ( 24 −n ) in which ( )2
12 −n  

components are determined by equation (2) using numerical integration. Each 

component represents the local average correlation between two average values of the 

random field along two different lines of the failure mechanism. Others ( )2
12 −n  

components correspond to the value of the cross-correlation of the two random fields. 

The numerical integration is performed using the Gauss-Legendre quadrature method.  
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NUMERICAL RESULTS 
 

The numerical results presented in this paper consider the case of a shallow strip 

foundation with breadth B=2 m subjected to a vertical load. The soil has a unit 

weight of 18  kN/m3. No surcharge loading ( )0=q  is considered in the analysis. The 

illustrative values used for the statistical moments of the shear strength random fields 

are as follows: kPac 20=µ , �30=ϕµ , %20=cCOV , %10=ϕCOV . For the 

probability distributions of the random fields, two cases are studied. In the first case, 

referred to as normal random fields, c and ϕ  are considered as normally distributed 

random fields. In the second case referred to as non-normal random fields, c follows 

a log-normal distribution while ϕ  is assumed to be bounded and a beta distribution is 

used. For both cases, uncorrelated (i.e. 0, =ϕρc ) or negatively correlated 

( 5.0, −=ϕρc ) random fields are considered.  

 

Probabilistic failure surface 

A common approach to determine the reliability of a stressed soil mass is based on 

the calculation of the reliability index HLβ  corresponding to the deterministic failure 

surface. In this paper, a more rigorous approach is used. It consists in the 
determination of the reliability index by minimizing the quadratic form of equation 

(3) not only with respect to the values of the local averages but also with respect to 

the geometrical parameters of the failure mechanism ( )ii βα , . Notice that the 

correlation matrix [R] should be calculated for each function evaluation during the 

minimization process. This is because of the change in the potential failure 

mechanism. Thus, ( )2
12 −n  numerical integrations are required for each function 

evaluation. This approach leads to a much higher computation time than calculating 

the reliability index using the deterministic surface. A comparison of the reliability 

index and the corresponding critical mechanism as obtained by the two approaches is 

presented in figure (2) for 1000=SP kN/m, mDh 10= , mDv 2= , , 0c ϕρ =  and 

n=10. The minimization of the quadratic form of equation (3) is performed with 

respect to (6n-2=58) parameters ( ), , , , ,i i rj rj oi oic cα β ϕ ϕ  ( 1,...,1 −= ni  and nj ,...,1= ). 

The surface corresponding to the minimum reliability index is referred to here as the 

critical probabilistic surface. The reliability index calculated with respect to the 
critical probabilistic surface is smaller (i.e. more critical) than the one calculated 

using the critical deterministic surface (cf. Figure 2).  

 

 
FIG. 2. Deterministic and probabilistic failure surfaces 

 Probabilistic surface 

   Deterministic surface 

14.3=HLβ  

61.3=HLβ  
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It was found that the probabilistic failure surface is significantly sensitive to a 

variation of the applied load and nearly insensitive to the variation of the coefficient 

of variation, the autocorrelation distances and the cross-correlation of the soil 

properties. Thus, in the next sections, only one probabilistic failure surface will be 

calculated for a given applied load (i.e. a given safety factor) and given values of 
c

µ  

and ϕµ . This significantly reduces the computation time of the minimization process. 
 

Variation of the reliability index with the statistical parameters of the shear 

strength properties 

Figure (3) shows the variation of the reliability index with the autocorrelation 

distance for normal and non-normal isotropic fields ( v hD D D= = ). Both 

uncorrelated and negatively correlated random fields are considered. A safety factor 

F=3 is used. It can be shown that the reliability index corresponding to uncorrelated 

fields is smaller than the one of negatively correlated fields. One can conclude that 

assuming negatively correlated shear strength parameters gives economic design in 

comparison to assuming uncorrelated ones. For the case in hand, the results of normal 

and non-normal fields are nearly identical. One can also notice that for a high soil 

heterogeneity corresponding to small values of D B , one obtains a high reliability 

index which means that the assumption of soil heterogeneity increases the reliability 

of the foundation and thus leads to economic designs. 
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Sensitivity of the failure probability to the variability of the soil shear strength  

Figure (4) shows the FORM failure probability versus the coefficient of variation 

of c or ϕ . For each curve, the coefficient of variation of a random field is hold to the 

same constant value given in the introduction of the section "Numerical results" and 

the coefficient of variation of the second field is varied over the range 5% - 40%. A 

safety factor 3=F  is used. Anisotropic non-normal random fields with no cross 

correlation ( mDh 10= , mDv 2= , 0, =ϕρc ) are considered. The results show that 

the failure probability is highly influenced by the coefficient of variation of the angle 

of internal friction, the greater the scatter in ϕ  the higher the failure probability of the 

foundation. This means that the accurate determination of the statistical properties of 
this parameter is very important in obtaining reliable probabilistic results. In contrast, 
the coefficient of variation of c does not significantly affect the failure probability.  

FIG. 3. Effect of the probability 

distribution and cross-correlation on HLβ   
FIG. 4. fP  versus COVc and COVϕϕϕϕ 
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Influence of the anisotropy of the soil shear strength random fields 

In general, the variability of the soil in the horizontal direction is different from 

that in the vertical direction. Figure (5) shows the variation of the failure probability 

with the ratio hv DD  for hD  varying between 0.1 and 100 m. One can conclude 

from this figure that for the practical case 1<hv DD  for which the variability in the 

vertical direction is higher than that in the horizontal direction, the reliability index is 

underestimated if the calculation is performed using the assumption of isotropic fields 

(i.e. 1=hv DD ) and leads to non-economic design. When both autocorrelation 

distances highly increase, the reliability index tends to the value obtained when 

modeling the soil shear strength parameters as random variables. 
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Probabilistic design 

The conventional approach used in the design of a shallow foundation is to 

prescribe a target safety factor (generally 3=F ) and to determine the corresponding 

breadth B of the footing. Recently, a reliability-based design (RBD) has been used by 

several authors (e.g. Low 2005) on the case of a homogeneous soil. In this paper, a 

RBD is used for spatially varying soil. The approach consists in the calculation of the 

footing breadth B for a target reliability index of 3.8 as suggested by Eurocode 7 for 

the ultimate limit states. This foundation breadth is called hereafter "probabilistic 

foundation breadth". Figure (6) presents the deterministic and the probabilistic 

foundation breadth for different values of the coefficients of variation of the shear 
strength random fields and their vertical autocorrelation distance. Anisotropic 

( mDh 10= ) non-normal random fields with no cross correlation are considered. This 

figure also presents the deterministic breadth corresponding to a safety factor of 3. It 

can be noticed that the probabilistic foundation breadth increases with the increase of 

vD  and the increase of the coefficients of variation of the shear strength random 

fields. The assumption of isotropic random fields (i.e. mDD hv 10== ) gives higher 

foundation breadth in comparison to the practical case of anisotropy corresponding to 

higher horizontal autocorrelation distance (i.e. hv DD <  ). As a conclusion, the 

deterministic footing breadth may be greater or smaller than the probabilistic 

foundation breadth, depending on the soil variability. 

FIG. 5. Influence of anisotropy on 

the reliability index 

FIG. 6. Comparison between 

probabilistic and deterministic design 
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CONCLUSION 

 

This paper presents the effect of the soil shear strength spatial variability on the 

reliability analysis and design of a shallow strip footing against bearing failure. The 

deterministic model used is based on the upper-bound method of limit analysis. The 
Hasofer-Lind reliability index and the FORM failure probability were calculated. The 

random fields used in the analysis are the soil shear strength parameters. Normal and 

non-normal anisotropic random fields with or without cross correlation are 

considered. It was found that the reliability index calculated with respect to the 

critical probabilistic surface is smaller (i.e. more critical) than the one determined 

using the critical deterministic surface. The probabilistic failure surface is 

significantly sensitive to a variation of the applied load (i.e. safety factor) and nearly 

insensitive to the variation of the coefficient of variation, the autocorrelation 

distances and the cross-correlation of the soil properties. The failure probability is 

more sensitive to the variability of the angle of internal friction than the cohesion. For 

the practical case for which the variability in the vertical direction is higher than that 

in the horizontal direction, the reliability index is underestimated if the calculation is 

performed using the assumption of isotropic fields and leads to non-economic design. 

Finally, the deterministic footing breadth may be greater or smaller than the 

probabilistic foundation breadth, depending on the soil variability. 
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