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ABSTRACT: The paper presents the effect of the spatial variability of the soil 

properties on the ultimate bearing capacity of a vertically loaded shallow strip footing. 

The deterministic model used is based on numerical simulations using the Lagrangian 

explicit finite difference code FLAC
3D

. The cohesion and the angle of internal friction 

of the soil are modelled as non normal anisotropic random fields. The methodology 

used for the discretization of the random fields is based on the spectral representation 

method proposed by Yamazaki and Shinozuka (1988). The results have shown that 

the average bearing capacity of a spatially random soil is lower than the deterministic 

value obtained for a homogeneous soil. A critical case appears when the 

autocorrelation distances are equal to the footing breadth. The average value of the 

ultimate footing load is more sensitive to the horizontal autocorrelation distance than 

the vertical one. Accounting for the spatial variability of the soil properties gives a 

higher reliability index of the foundation than the one obtained with the assumption of 

random variable. 

 

INTRODUCTION 

 

The spatial variability of the soil properties may largely affect the behaviour of 

geotechnical structures. This variability is widely dealt with as uncertainties in soil 

properties. Several authors have investigated the reliability-based analysis of 

foundations. Some authors have modelled the uncertainties of the different parameters 

as random variables (e.g. Low and Phoon 2002) without introducing the spatial 

variability of the soil parameters. Others (Cherubini 2000) have considered the effect 

of the soil spatial variability by using a simplified approach. Later on, several authors 

(Griffiths et al. 2002, Fenton and Griffiths 2003 and Popescu et al. 2005 among 

others) have modelled the uncertain soil parameters as random processes more 

rigorously. They have examined the effect of the spatial variability of these 

parameters on the ultimate bearing capacity using finite elements models combined 

with Monte Carlo simulations. However, most of these studies (except Fenton and 

Griffiths 2003) consider only a single random process in their analysis. 

In this paper, the effect of the soil spatial variability on the reliability analysis and 

design of a vertically loaded strip foundation is presented. The punching mode of the 
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ultimate limit state is analyzed. Only the cohesion and the angle of internal friction of 

the soil are modelled as non normal anisotropic random fields. The cohesion is 

considered to be Log-normally distributed while the angle of internal friction follows 

a Beta distribution. Several realisations of the random fields are performed using 

Monte Carlo simulations. The methodology used for the discretization of the random 

fields is based on the spectral representation method proposed by Yamazaki and 

Shinozuka (1988). This method is fast, easy to apply and allows one to take into 

account the soil anisotropy regarding the autocorrelation distances.  

After a brief description of the methodology used in this paper, the deterministic 

model is first described and then, the stochastic numerical results are presented and 

discussed. 

 

METHODOLOGY 

 

Generation of non-Gaussian random fields 

The approach described by Popescu et al. (1998) based on the spectral 

representation method was used to generate sample functions of a 2D non-Gaussian 

stochastic vector field according to a prescribed spectral density function and a 

prescribed (non-Gaussian) probability distribution function. It should be mentioned 

that the spectral density function ( )S ω  is related to the autocorrelation function ( )ρ τ  

of the random process by the following relation: 
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First a Gaussian vector field is generated according to the target spectral density 

function using the Fast Fourier Transformation (FFT) algorithm. Next, this Gaussian 

vector field is transformed into the desired non-Gaussian field using a memory less 

non-linear transformation coupled with an iterative process. For the description of the 

theoretical bases of the spectral representation method, one can refer to Shinozuka 

and Deodatis (1991) and Popescu et al. (1998).   

 

Monte Carlo simulations 

For each set of assumed statistical parameters of the soil properties random fields, 

several realizations of the random field are generated in Matlab 7.0 by the spectral 

representation method using Monte Carlo simulations. The bearing capacity and the 

slope of the foundation corresponding to each realisation are calculated based on 

numerical simulations using the Lagrangian explicit finite difference code FLAC
3D

. 

The data transfer from the stochastic mesh used to generate the random fields to the 

finite difference mesh of FLAC
3D 

is performed using the mid point method. The 

unbiased mean and standard deviation of the footing load are obtained using the 

following equations:  
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where nsim is the number of the sample size of the random field realizations.  

An exchange of data between FLAC
3D

 and Matlab 7.0 in both directions was 

necessary to enable an automatic resolution of the Monte Carlo simulations for the 

generation of the soil properties random fields and the calculation of the geotechnical 
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system responses (i.e. ultimate footing load, footing displacement, footing slope). The 

link between FLAC
3D

 and Matlab 7.0 was performed using text files and FISH 

commands. FISH is an internal programming option of FLAC
3D

 which enables the 

user to add his own subroutines.  

 

DETERMINISTIC MODEL 

 

The deterministic model used for the calculation of the ultimate footing load, the 

vertical footing displacement and the footing slope is based on numerical simulations 

using FLAC
3D

. A soil domain of width 15B and depth 2.5B is considered (Figure 5). 

The bottom and right vertical boundaries are far enough from the footing and they do 

not disturb the soil mass in motion (i.e. velocity field) for all the soil configurations 

studied in this paper. A non uniform optimized mesh composed of 1620 zones is used 

(Figure 5). Since this is a 2D case, all displacements in the Y direction (i.e. parallel to 

the footing length) are fixed. For the displacement boundary conditions, the bottom 

boundary was assumed to be fixed and the vertical boundaries were constrained in 

motion in the horizontal direction. A conventional elastic-perfectly plastic model 

based on the Mohr-Coulomb failure criterion is used to represent the soil. A strip 

footing of width equal to 2m and depth 0.5m is simulated by a weightless elastic 

material. It is divided horizontally into eight zones. The footing elastic properties used 

are the Young’s modulus E=25 GPa and the Poisson’s ratio υ=0.4. Compared to the 

soil elastic properties (E=240MPa, ν=0.2), these values are well in excess of those of 

the soil and ensure a rigid behavior of the footing. The footing is connected to the soil 

via interface elements that follow Coulomb law. The interface is assumed to have a 

friction angle equal to the soil angle of internal friction, dilation equal to that of the 

soil and cohesion equal to the soil cohesion in order to simulate a perfectly rough soil-

footing interface. Normal stiffness Kn=10
9
 Pa/m and shear stiffness Ks=10

9
 Pa/m are 

assigned to this interface. These parameters do not have a major influence on the 

failure load. 

For the computation of the bearing capacity of a rigid rough strip footing subjected 

to a central vertical load using FLAC
3D

, the following method is adopted: an optimal 

controlled downward vertical velocity of 5.10
-6

 m/timestep (i.e. displacement per 

timestep) is applied to the bottom central node of the footing in order to allow the 

rotation of the footing due to the soil spatial variability. Damping of the system is 

introduced by running several cycles until a steady state of plastic flow is developed 

in the soil underneath the footing. At each cycle, the vertical footing load is obtained 

by using a FISH function that calculates the integral of the normal stress components 

for all elements in contact with the footing. The value of the vertical footing load at 

the plastic steady state is the ultimate footing load.  

 

NUMERICAL RESULTS 

 

The numerical results presented in this paper consider the case of a shallow strip 

foundation with breadth B=2 m subjected to a central vertical load. The soil has a unit 

weight of 18  kN/m
3
. The cohesion and the angle of internal friction are modeled as 

two independent random fields. The illustrative values used for the statistical 

moments of c and ϕ are as follows: kPac 20=µ , �30=ϕµ , %20=cCOV , 

%10=ϕCOV . The dilation angle was taken equal to 2 3ϕ . For the probability 
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distributions of the random fields, c follows a log-normal distribution while ϕ  is 

assumed to be bounded ( 0 45o oϕ< < ) and a Beta distribution is used.  

An anisotropic autocorrelation function is used in this paper for both the cohesion 

and the angle of internal friction. It is given by an exponential first order function as 

follows (e.g. Vanmarcke, 1983): 

( )
22
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− +  
   =            (4) 

where hD  and vD  are the autocorrelation distances in the horizontal and vertical 

directions respectively and, xδ  and yδ  are the lag distances in the horizontal and 

vertical directions respectively. 
 
Convergence of the Monte Carlo simulations 

Figures (1) and (2) show the effect of the sample size on the predicted mean 
Pu

µ  

and coefficient of variation 
Pu

COV  of the ultimate footing load. The case considered in 

these figures corresponds to an isotropic autocorrelation function with 2 mx yδ δ= = . 

It can be seen that the predicted mean and coefficient of variation remain practically 

constant for sample size larger than 100. Consequently, only 100 realizations of the 

soil properties random fields are used in all subsequent calculations. Figure (3) and 

(4) present respectively the load-displacement curves and the load-slope curves of the 

footing obtained for all the soil realizations of the Monte Carlo simulations. These 

figures also present the mean curves of all simulations. It can be noticed that the mean 

value of the footing slope is very close to zero. However, the footing slope 

corresponding to each realization is different from zero. Figure (5) shows the 

deformed mesh obtained for a random soil realization. This figure shows that the 

inherent spatial variability of the soil shear strength parameters can modify drastically 

the basic form of the failure mechanism. Differential settlements appear in the 

spatially varying soil leading to the rotation of the footing. This is impossible in a 

deterministic homogeneous soil analysis of a symmetrical problem. 
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FIG. 1: Mean of the ultimate 

footing load versus the sample 

size 

FIG. 2: Standard deviation of the 

ultimate footing load versus the 

sample size 
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Predicted mean and standard deviation of the ultimate footing load  
Figures (6) and (7) show respectively, in a dimensionless form, the variation of the 

predicted mean and standard deviation of the ultimate footing load with the 

autocorrelation distance for an isotropic random soil (i.e. x yδ δ= ) and for different 

values of the coefficient of variation of the random fields. One can notice that the 

average bearing capacity of a spatially random soil is lower than the deterministic 

value obtained for a homogeneous soil for which the soil properties are set equal to 

their mean values. A critical case appears in figure (6) when the autocorrelation 

distances are close to the footing breadth. For this case, the curve of the mean value of 

the footing load reaches a minimum. This case was also obtained in Fenton and 

Griffiths (2003). Concerning the standard deviation of the ultimate footing load, it 

always increases with the increase of the autocorrelation distances. From the two 

figures, one can conclude that the statistical parameters of the bearing capacity are 

more sensitive to the variation of the angle of internal friction than the cohesion. 
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FIG. 5: Deformed Mesh corresponding to a realization of the random soil 
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FIG. 3: Load-displacement curves 

from Monte Carlo simulations 

FIG. 7: Standard deviation of Pu 

versus the autocorrelation distance 

(isotropic random soil) 

FIG. 6: Mean value of Pu versus 

the autocorrelation distance 

(isotropic random soil) 

FIG. 4: Load-slope curves from 

Monte Carlo simulations 
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Effect of the vertical and horizontal autocorrelation distances on the mean value 

of the ultimate footing load 

Figure (8) presents the variation of the mean ultimate footing load with the vertical 

and horizontal autocorrelation distances. For each curve in figure (8), one 

autocorrelation distance is set equal to 2 m and the second one varies from 

0.5mBδ =  to 50mBδ = . It can be noticed that the mean ultimate footing load is 

more sensitive to the variation of the horizontal autocorrelation distance than the 

vertical one.  

29

30

31

32

33

34

35

0.1 1 10 100
δ/B

µ P
u
/ γ

B
2

δy = 2 m ; δ = δx

δx = 2 m ; δ = δy

 
FIG. 8: Mean value of the ultimate footing load versus the autocorrelation 

distances for an anisotropic random soil 
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FIG. 9: Histogram and fitted probability density distributions of the ultimate 

footing load 
 

Reliability index 
By fitting the histogram of the ultimate footing load obtained from the Monte 

Carlo simulations to an empirical probability density function [Normal (N), 

Lognormal (LN), Gamma (G)] (cf. Figure 9), one can approximate the reliability of 

the footing, subjected to a prescribed service applied load Ps, against punching failure 

by calculating the Hasofer-Lind reliability index as follows: 

1

min u u u

u

u u
s

N N

P P S P

HL N NP
P P

P

x Pµ µ
β

σ σ≤

− −
= =           (6) 

2143.5 kPaPuµ =  

401.29 kPaPuσ =  
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where et
u u

N N

P Pµ σ  are respectively the equivalent normal mean and standard deviation 

of the ultimate footing load.  

Table 1 shows that the reliability index decreases with the increase of the 

autocorrelation distances. Consequently, accounting for the spatial variability of the 

soil properties increases the reliability of the foundation. 

Table 2 presents a comparison between the reliability index values obtained for 

large autocorrelation distances ( )100mx yδ δ δ= = =  and the ones obtained by 

Youssef Abdel Massih and Soubra (2007). In the later reference, the soil shear 

strength properties were modeled by random variables and the response surface 

methodology was used to calculate the reliability index based on FLAC
3D

 simulations. 

A good agreement between the two results was noticed when assuming a Gamma 

distribution for the ultimate footing. 
 

Table 1. Reliability index for different values of the autocorrelation distance 

( )x yδ δ δ= =  and for different probability distribution of the ultimate load. 

HLβ  

20%

10%

cCOV

COV ϕ

=

=
 40%

10%

cCOV

COV ϕ

=

=
 

20%

15%

c
COV

COV ϕ

=

=
 Bδ  

N LN G N LN G N LN G 

0.5 11.51 18.68 - 9.89 15.89 - 7.57 12.14 - 

1 4.26 6.78 4.96 3.44 5.39 4.6 2.93 4.54 3.88 

5 2.60 4.14 3.49 2.24 3.51 2.95 1.81 2.80 2.34 

50 2.43 3.91 3.27 1.84 2.89 2.41 1.53 2.37 1.95 
 

Table 2. Reliability index for large autocorrelation distances ( )100 mx yδ δ= =  

and for different safety factors F when 20%,cCOV =  10%COV ϕ =  

 

CONCLUSIONS 

 

The paper presents the effect of the spatial variability of the soil shear strength 

parameters on the ultimate bearing capacity of a vertically loaded shallow strip 

footing. The deterministic model used is based on numerical simulations using the 

Lagrangian explicit finite difference code FLAC
3D

. The cohesion and the angle of 

internal friction of the soil are modelled as non normal anisotropic random fields. The 

cohesion is considered to be Log-normally distributed while the angle of internal 

friction follows a Beta distribution. An anisotropic exponential first order 

HLβ   

 

F  
 

N LN G 
Random variables (Youssef Abdel Massih 

and Soubra 2007) 

3.19 2.5 4.14 3.44 3.49 

2.08 1.88 2.55 2.26 2.12 

1.54 1.25 1.43 1.34 1.21 

1.35 0.91 0.93 0.91 0.81 

1.23 0.64 0.59 0.59 0.55 

1.00 0.05 0.19 0.14 0.00 
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autocorrelation function is used in this paper for the two random processes. Several 

realisations of the random field are generated by the spectral representation method 

using Monte Carlo simulations. The ultimate footing load was calculated for all the 

realisations. The results have shown that the inherent spatial variability of the soil 

shear strength parameters can modify drastically the basic form of the failure 

mechanism. Differential settlements appear in the spatially random soil leading to the 

rotation of the footing. This is impossible in a deterministic homogeneous soil 

analysis of a symmetrical problem. The average bearing capacity of a spatially 

varying soil was found lower than the deterministic value obtained for a homogeneous 

soil. A critical case appears when the autocorrelation distances are equal to the footing 

breadth. It was found that the statistical parameters of the bearing capacity are more 

sensitive to the variation of the angle of internal friction than the cohesion. Also, the 

average value of the ultimate footing load was found more sensitive to the variation of 

the horizontal autocorrelation distance than the vertical one. The probability 

distribution of the bearing capacity was analysed. Several types of the probability 

distribution function were fitted to the histogram of the obtained bearing capacities. 

After assuming a probability distribution for the ultimate foundation load, a reliability 

analysis was performed. The Hasofer-Lind reliability index was calculated for the 

assessment of the footing reliability. It was found that accounting for the spatial 

variability of the soil properties gives a higher reliability index of the foundation than 

the one obtained by the assumption of random variable. 
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