
THREE-DIMENSIONAL FACE STABILITY ANALYSIS OF 
SHALLOW CIRCULAR TUNNELS 
 
 

Abdul-Hamid Soubra1 
 
 
 
ABSTRACT 
 

The upper-bound method of the limit analysis theory is used to calculate the active and passive 
limit pressure in front of a pressurized shield. Two translational kinematically admissible failure 
mechanisms are considered for the calculation schemes. The numerical results obtained are 
presented and compared to those given by other authors. 
 
INTRODUCTION 
 

Over the past twenty years, tunneling in cohesionless soils has been made possible due to recent 
technological advances including the pressurized shield. Face stability analysis of shallow circular 
tunnels driven by the pressurized shield requires determination of the pressure to be applied by the 
shield to ensure the tunnel’s face stability and limit environmental impact of tunneling. This 
pressure must avoid both the collapse (active failure) and the blow-out (passive failure) of the soil 
mass near the tunnel face. Active failure of the tunnel is triggered by application of surcharge and 
self weight, with the tunnel face pressure providing resistance against collapse. Under passive 
conditions, these roles are reversed and the face pressure causes blow-out with resistance being 
provided by the surcharge and self-weight. 

In this paper, the collapse and the blow-out failures are investigated by the upper-bound theorem 
of the limit analysis theory using respectively collapse and blow-out mechanisms. These 
mechanisms allow the slip surface to develop more freely in comparison with the available 
mechanisms given by Leca and Dormieux (1990). It is to be noted that the upper-bound theorem 
gives unsafe estimates of the collapse and the blow-out loads. The aim of this work is to improve 
the available solutions by increasing (respectively reducing) the best available upper-bound 
solutions given in the collapse (respectively blow-out) case.  
 
KINEMATICAL APPROACH TO THE FACE STABILITY ANALYSIS 
 

The problem can be idealized, as shown in figures 1 and 2, by considering a circular rigid tunnel 
of diameter D driven under a depth of cover C. A surcharge σs is applied at the ground surface and a 
constant retaining pressure σt is applied to the tunnel’s face. 

To obtain upper-bound solutions for the collapse and blow-out problems, kinematically 
admissible failure mechanisms must be considered. According to the normality condition for an 
associated flow rule Coulomb material, for a kinematically admissible failure mechanism, the 
velocity along a plastically deformed surface must make an angle φ with this velocity discontinuity 
[cf. Chen (1975)]. 
 
Failure Mechanisms 

Davis et al. (1980) used the upper bound method in limit analysis and developed solutions for the 
collapse problem in the analysis of tunnel face stability. These authors considered the case of a 
Tresca material (φ=0°) and their mechanism was composed of two truncated cylinders. Later, Leca 
& Dormieux (1990) adapted this mechanism to the case of a Coulomb (c, φ) material by replacing 
the cylinders with cones to respect the normality condition imposed by the upper-bound method of 
the limit analysis theory. These authors presented solutions for collapse and blow-out problems in 
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the analysis of tunnel face stability. The results they presented showed significant differences with 
the lower bound solutions presented by Leca and Panet (1988). In the current paper, two failure 
mechanisms M1 and M2 are considered for the tunnel face stability. For both mechanisms, when the 
total rate of energy dissipation and the total rate of external work are equated, the pressure σt can be 
expressed as follows: 
 

ssct NcNDN σγσ γ ++=       (1) 

 
Where γN , cN and SN  are non dimensional parameters. They represent respectively the effect of 

soil weight, cohesion and surcharge loading. Notice that: 
 

01tan =−+ sc NN φ       (2) 
 
Hence, in the following, only the Nγ and Ns coefficients will be presented; the Nc coefficient can be 
obtained using (2). 
 
Collapse Mechanism M1 

M1 is an improvement of the collapse two-block mechanism presented by Leca and Dormieux 
(1990). It is composed of a shearing zone OAB sandwiched between two rigid truncated cones 
OACD and OBE (Figure 1). 

 

 
Figure 1 : Failure Mechanism M1 (Collapse) 

 
The geometrical construction of this mechanism is similar to that of Leca and Dormieux (1990). 
The upper rigid cone O'OA with a circular cross-section is truncated by the plane π. This cone is 
called ‘Block I’. It will or will not intersect the ground surface depending on the C/D value. On the 
other hand, the lower rigid cone O''OE with a circular cross-section is truncated by the plane π' and 
by the vertical tunnel face. This cone is called ‘Block III’. It has an axis inclined at an angle of 
π/2−β with the horizontal direction and thus, the intersection of this cone with the vertical tunnel 
face is an ellipse. This is in conformity with the experimental observations in centrifuge tests as 
mentioned by Leca and Dormieux (1990). Finally, the shear zone OAB is bounded by a three-
dimensional discontinuity surface that is a log-spiral curve AB in the vertical median plane of the 
tunnel. The equation of the curve, in polar coordinates is D(θ)=D1.exp((θ−α).tanφ) where D(θ) is 
the radius of the log-spiral at an angle of θ, D1 and D3 are the radii of the log-spiral at A and B 
respectively and the center of the log-spiral is O. Note that the cones O'OA and O"OE considered in 
this mechanism have an opening angle equal to 2φ . We will now describe the velocity field for this 
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mechanism. M1 is a translational mechanism. The different blocks of this mechanism move as rigid 
bodies. The upper and lower rigid truncated cones OACD and OBE move with the velocities V1 and 
V3 respectively. These velocities are collinear with the cones' axes. This satisfies the condition 
imposed by the normality condition for an associated flow rule Coulomb material since the velocity 
jump vector is inclined at an angle φ to the discontinuity surface. The shearing zone OAB is 
composed of infinitely small-truncated rigid cones with circular cross-sections and an opening angle 
equal to 2φ. These rigid cones translate with velocities of different directions, which are collinear 
with the cones’ axes and make an angle φ with the discontinuity surface. The velocity of each small 
cone is determined by the condition that the relative velocity between the cones in contact has the 
direction that makes an angle φ with the contact surface. It can be easily shown that the velocity V of 
each cone is V(θ)=V1.exp((θ−α).tanφ). Notice that the log-spiral curve AB is assumed to be tangent 
to the upper and lower cones at points A and B respectively ; thus, there are no velocity 
discontinuities along OA and OB. As shown in figure (1), this mechanism is completely defined by 
two angular parameters α and β. We will now present the work equation for this kinematically 
admissible mechanism. The external forces contributing to the rate of external work consist of (i) 
the self-weight of the upper and lower truncated rigid cones (Block I and III) and of the shear zone 
OAB; (ii) the surcharge loading σs (in case of outcrop of the upper rigid block) and (iii) the pressure 
σt at the face of the tunnel. The rate of energy dissipation occurs along the lateral surfaces of the 
upper and the lower rigid cones. It also occurs along the lateral surface and the radial planes of the 
radial shear zone. By  equating  the total rate of external work to the total rate of internal energy 
dissipation, one obtains an equation, which has the same form as equation (1). 
 
Blow-out Mechanism M2 

Even though safety against collapse is a major concern during tunneling, the blow-out 
mechanism may be of interest for very shallow tunnels bored in weak soils, when the pressure σt 
can become so great that soil is heaved in front of the shield. Such phenomenon has been observed 
during tunneling projects (Clough et al. 1983).  

 

 
Figure 2 : Failure Mechanism M2 (Blow-out) 

 
M2 is a blow-out mechanism (cf. figure 2). It represents the passive case of the former 

mechanism. It is composed of three zones. Zones 1 and 3 are two rigid blocks (Blocks I and III 
respectively) consisting of two truncated rigid cones moving upward with velocities V1 and V3 
respectively. The radial shear zone (Zone 2) is limited by a log spiral in the vertical symmetrical 
plane of the tunnel. With reference to M1, the M2 mechanism presents an upward movement of the 
three zones, thus, the cones with an opening angle 2φ are reversed and the log spiral's radius 
increases with the θ-decrease. Consequently, the velocity along the log-spiral of the shear zone is 
given by: ( )( )φθβθ tanexp)( 1 −= VV . Contrary to M1, the present mechanism always outcrops. It is 



completely defined by two parameters α and β as shown in figure (2). As for the M1 mechanism, by  
equating the total rate of external work to the total rate of internal energy dissipation, one obtains an 
equation, which has the same form as equation (1). 
 
NUMERICAL RESULTS AND DISCUSSIONS  
 

By equating the total rate of external work to the total rate of internal energy dissipation for both 
the M1 and M2 mechanisms, one obtains the Nγ and Ns factors as function of the two angles α and 

β. To obtain the critical γN  and Ns  corresponding to the blow-out case (respectively the collapse 

case), one has to minimize (respectively maximize) these factors with respect to the α and β-angles. 
As mentioned before, Leca and Dormieux (1990) have considered a collapse failure mechanism 

composed of two rigid cones and forced the upper cone to remain vertical. We present in  figures (3) 
and (4) the γN  and Ns  values given by the present analysis (Mechanism M1) and the ones given by 

Leca and Dormieux.  

 
Figure 3 : Comparison of Present Nγ (thick lines) with that of Leca and Dormieux (1990) (thin lines) 

[Collapse] 

 
Figure 4 : Comparison of Present Ns (thick lines) with that of  Leca and Dormieux (1990) (thin 

lines) [Collapse] 
 



It is clear that Nγ  increases with C/D ; then, it becomes constant for larger values of C/D 

corresponding to the condition of no-outcrop of the upper block. However, Ns  decreases with the 
C/D-increase and vanishes beyond a certain value of C/D corresponding to the outcrop condition. In 
this case, the surcharge loading will have no influence on the critical Ns  value. These conclusions 
conform to those of Leca and Dormieux (1990). It should be mentioned that the present failure 
mechanism gives greater upper-bound solutions than the best available upper-bound solutions 
proposed by Leca and Dormieux (1990). The improvement of the solution is about 8% for the Nγ  

factor when φ=20° and C/D>0.55. 
For the blow-out case, Leca and Dormieux (1990) have considered a mechanism composed of a 

single rigid cone moving upward. The upper-bound solutions presented by them are compared with 
the ones corresponding to the present M2 mechanism in figures (5) and (6).  

 
Figure 5 : Comparison of Present Nγ (thick lines) with that of Leca and Dormieux (1990) (thin lines) 

[Blow-out] 

 
Figure 6 : Comparison of Present Ns (thick lines) with that of Leca and Dormieux (1990) (thin lines) 

[Blow-out] 



The M2 mechanism is better than the one presented by Leca and Dormieux since the present upper-
bound solutions are smaller. For the Nγ  values, the reduction is very significant and it is of 41% 

when φ=30° and C/D=1.4. For the Ns  values, significant reductions are also obtained with regard 

to the results presented by Leca and Dormieux. For example, when φ=30° and C/D=1.4, the 
reduction attains 51%. 

On the other hand, centrifuge tests have been carried out in Nantes (France) to study the face 
stability of tunnels in case of collapse (Chambon & Corté 1989). Two soil conditions were 
examined. A loose sand (γ=15.3kN/m3) and a dense sand (γ=16.1kN/m3). Shear tests on these soils 
has shown that c’=2.3kPa, φ’=35.2° for the loose sand, and c’=1.1kPa, φ’=38.3° for the dense 
sand.  

 
Table 1: Comparison between the present results and those of the centrifuge tests 

 
C/D γ [kN/m3] σt [kPa]  

(Present analysis) 
σt [kPa]  

(Centrifuge tests) 
2 15.3 3.5 4.4 
2 16.1 4.6 4.1 

 
The results obtained by Chambon and Corté (1989) are presented in Table (1) and compared to 

those given by the present analysis. Note that the σt given by the present analysis is calculated from 
direct maximization of this pressure (i.e. there is no error induced by the application of the 
superposition effect in equation 1). In order to be rigorous, no comparison is made with Leca and 
Dormieux (1990) in the present section ; the calculation of their σt value from the corresponding N 
factors may lead to approximate results due to superposition effect which may err any conclusion. 
As we can see, there is good agreement between experimental and theoretical results. 
 
CONCLUSIONS 
 

The analysis of translational failure mechanisms has shown that the present mechanisms give 
better results than the ones considered by Leca and Dormieux. The comparison of our results with 
those given by Leca & Dormieux (1990) has shown that the present theoretical model improves Nγ  

factor by 8% in case of collapse when φ=20° and C/D>0.55 ; the improvement attains 41% in the 
blow-out case when φ=30° and C/D=1.4. On the other hand, the comparison with the results given 
by centrifuge tests has shown good agreement. 
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