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ABSTRACT

The upper-bound method of the limit analysis theory is used to calculate the active and passive
limit pressure in front of a pressurized shield. Two translational kinematically admissible failure
mechanisms are considered for the calculation schemes. The numerical results obtained are
presented and compared to those given by other authors.

INTRODUCTION

Over the past twenty years, tunneling in cohesionless soils has been made possible due to recent
technological advances including the pressurized shield. Face stability analysis of shallow circular
tunnels driven by the pressurized shield requires determination of the pressure to be applied by the
shield to ensure the tunnel’'s face stability and limit environmental impact of tunneling. This
pressure must avoid both the collapse (active failure) and the blow-out (passive failure) of the soil
mass near the tunnel face. Active failure of the tunnel is triggered by application of surcharge and
self weight, with the tunnel face pressure providing resistance against collapse. Under passive
conditions, these roles are reversed and the face pressure causes blow-out with resistance being
provided by the surcharge and self-weight.

In this paper, the collapse and the blow-out failures are investigated by the upper-bound theorem
of the limit analysis theory using respectively collapse and blow-out mechanisms. These
mechanisms allow the slip surface to develop more freely in comparison with the available
mechanisms given by Leca and Dormieux (1990). It is to be noted that the upper-bound theorem
gives unsafe estimates of the collapse and the blow-out loads. The aim of this work is to improve
the available solutions by increasing (respectively reducing) the best available upper-bound
solutions given in the collapse (respectively blow-out) case.

KINEMATICAL APPROACH TO THE FACE STABILITY ANALYSIS

The problem can be idealized, as shown in figures 1 and 2, by considering a circular rigid tunnel
of diameteD driven under a depth of cover A surchargegs is applied at the ground surface and a
constant retaining pressugeis applied to the tunnel’s face.

To obtain upper-bound solutions for the collapse and blow-out problems, kinematically
admissible failure mechanisms must be considered. According to the normality condition for an
associated flow rule Coulomb material, for a kinematically admissible failure mechanism, the
velocity along a plastically deformed surface must make an gnglth this velocity discontinuity
[cf. Chen (1975)].

Failure Mechanisms

Davis et al. (1980) used the upper bound method in limit analysis and developed solutions for the
collapse problem in the analysis of tunnel face stability. These authors considered the case of a
Tresca materialge0°) and their mechanism was composed of two truncated cylinders. Later, Leca
& Dormieux (1990) adapted this mechanism to the case of a Cougrgprhaterial by replacing
the cylinders with cones to respect the normality condition imposed by the upper-bound method of
the limit analysis theory. These authors presented solutions for collapse and blow-out problems in
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the analysis of tunnel face stability. The results they presented showed significant differences with
the lower bound solutions presented by Leca and Panet (1988). In the current paper, two failure
mechanism&/11 andM2 are considered for the tunnel face stability. For both mechanisms, when the
total rate of energy dissipation and the total rate of external work are equated, the pressute
expressed as follows:

Oy = yDNy +CN; +0sNg (1)

Where N,, N and Ng are non dimensional parameters. They represent respectively the effect of
soil weight, cohesion and surcharge loading. Notice that:

N tang+1-N =0 (2)

Hence, in the following, only thd andN coefficients will be presented; ti\Ng coefficient can be
obtained using (2).

Collapse Mechanism M1

M1 is an improvement of the collapse two-block mechanism presented by Leca and Dormieux
(1990). It is composed of a shearing zddAB sandwiched between two rigid truncated cones
OACDandOBE (Figure 1).
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Figure 1 : Failure Mechanism1 (Collapse)

The geometrical construction of this mechanism is similar to that of Leca and Dormieux (1990).
The upper rigid con®'OA with a circular cross-section is truncated by the plan€his cone is
called ‘Block I'. It will or will not intersect the ground surface depending orCfizvalue. On the

other hand, the lower rigid col®'OE with a circular cross-section is truncated by the pldrand

by the vertical tunnel face. This cone is called ‘Bldidk It has an axis inclined at an angle of
w2- with the horizontal direction and thus, the intersection of this cone with the vertical tunnel
face is an ellipse. This is in conformity with the experimental observations in centrifuge tests as
mentioned by Leca and Dormieux (1990). Finally, the shear @& is bounded by a three-
dimensional discontinuity surface that is a log-spiral cuien the vertical median plane of the
tunnel. The equation of the curve, in polar coordinatd3(8=D ,.exp(@—a).tang) whereD(6) is

the radius of the log-spiral at an anglea,‘JﬂD andD, are the radn of the log-spiral & andB
respectively and the center of the log- splre(DJsNote tﬁat the cong3'0OA andO"OE considered in

this mechanism have an opening angle equaptoWe will now describe the velocity field for this



mechanismM1 is a translational mechanism. The different blocks of this mechanism move as rigid
bodies. The upper and lower rigid truncated cddAE€D andOBE move with the velocitie¥, and

V, respectively. These velocities are collinear with the cones' axes. This satisfies tlhe condition
imposed by the normality condition for an associated flow rule Coulomb material since the velocity
jump vector is inclined at an angle to the discontinuity surface. The shearing z@W®B is
composed of infinitely small-truncated rigid cones with circular cross-sections and an opening angle
equal to2¢@. These rigid cones translate with velocities of different directions, which are collinear
with the cones’ axes and make an angleith the discontinuity surface. The velocity of each small
cone is determined by the condition that the relative velocity between the cones in contact has the
direction that makes an angpavith the contact surface. It can be easily shown that the velboity

each cone i¥(6)=V,.exp(@-a).tang). Notice that the log-spiral cun&B is assumed to be tangent

to the upper and lower cones at poiftsand B respectively ; thus, there are no velocity
discontinuities alongpA andOB. As shown in figure (1), this mechanism is completely defined by
two angular parameters and 8. We will now present the work equation for this kinematically
admissible mechanism. The external forces contributing to the rate of external work consist of (i)
the self-weight of the upper and lower truncated rigid cones (Block llixaehd of the shear zone

OAB; (ii) the surcharge loading; (in case of outcrop of the upper rigid block% and (iii) the pressure

ot at the face of the tunnel. The rate of energy dissipation occurs along the lateral surfaces of the
upper and the lower rigid cones. It also occurs along the lateral surface and the radial planes of the
radial shear zone. By equating the total rate of external work to the total rate of internal energy
dissipation, one obtains an equation, which has the same form as equation (1).

Blow-out Mechanism M2

Even though safety against collapse is a major concern during tunneling, the blow-out
mechanism may be of interest for very shallow tunnels bored in weak soils, when the pressure
can become so great that soil is heaved in front of the shield. Such phenomenon has been observec
during tunneling projects (Clough et al. 1983).
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Figure 2 : Failure MechanisM2 (Blow-out)

M2 is a blow-out mechanism (cf. figure 2). It represents the passive case of the former
mechanism. It is composed of three zones. Zones 1 and 3 are two rigid blocks (Blocks | and I
respectively) consisting of two truncated rigid cones moving upward with velowifiesd V,
respectively. The radial shear zone (Zone 2) is limited by a log spiral in the vertical symmetrical
plane of the tunnel. With referenceNti, the M2 mechanism presents an upward movement of the
three zones, thus, the cones with an opening ahglare reversed and the log spiral's radius
increases with thé-decrease. Consequently, the velocity along the log-spiral of the shear zone is
given by: v(6) =V, exp(8 -8)tanp). Contrary toM1, the present mechanism always outcrops. It is



completely defined by two parameterandf as shown in figure (2). As for tihd1 mechanism, by
equating the total rate of external work to the total rate of internal energy dissipation, one obtains an
eqguation, which has the same form as equation (1).

NUMERICAL RESULTS AND DISCUSSIONS

By equating the total rate of external work to the total rate of internal energy dissipation for both
the M1 andM2 mechanisms, one obtains tNeandN, factors as function of the two anglesand

B. To obtain the criticaN, and N, corresponding to the blow-out case (respectively the collapse

case), one has to minimize (respectively maximize) these factors with respeat eniy@-angles.

As mentioned before, Leca and Dormieux (1990) have considered a collapse failure mechanism
composed of two rigid cones and forced the upper cone to remain vertical. We present in figures (3)
and (4) theN, and N, values given by the present analysis (Mechamkinand the ones given by

Leca and Dormieux.
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Figure 3 : Comparison of Presétt(thick lines) with that of Leca and Dormieux (1990) (thin lines)
[Collapse]
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Figure 4 : Comparison of Presaé(thick lines) with that of Leca and Dormieux (1990) (thin
lines) [Collapse]



It is clear that N, increases withC/D; then, it becomes constant for larger valuesCéd

corresponding to the condition of no-outcrop of the upper block. How@&edecreases with the

C/D-increase and vanishes beyond a certain val@Dtorresponding to the outcrop condition. In

this case, the surcharge loading will have no influence on the criticalalue. These conclusions
conform to those of Leca and Dormieux (1990). It should be mentioned that the present failure
mechanism gives greater upper-bound solutions than the best available upper-bound solutions
proposed by Leca and Dormieux (1990). The improvement of the solution is&dat the N,

factor wheng=20° and C/D>0.55.

For the blow-out case, Leca and Dormieux (1990) have considered a mechanism composed of a
single rigid cone moving upward. The upper-bound solutions presented by them are compared with
the ones corresponding to the pregd@tmechanism in figures (5) and (6).
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Figure 5 : Comparison of PreséMt(thick lines) with that of Leca and Dormieux (1990) (thin lines)
[Blow-out]
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Figure 6 : Comparison of PreséM(thick lines) with that of Leca and Dormieux (1990) (thin lines)
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The M2 mechanism is better than the one presented by Leca and Dormieux since the present upper-
bound solutions are smaller. For thg values, the reduction is very significant and it is dfo41

when ¢=30° andC/D=1.4. For the N, values, significant reductions are also obtained with regard
to the results presented by Leca and Dormieux. For example, @®0f and C/D=1.4, the
reduction attain1%

On the other hand, centrifuge tests have been carried out in Nantes (France) to study the face
stability of tunnels in case of collapse (Chambon & Corté 1989). Two soil conditions were
examined. A loose sang=(15.3kN/m) and a dense sang=Q6.1kN/nf). Shear tests on these soils
has shown that'=2.3kPa, ¢)=35.2° for the loose sand, ant=1.1kPa, ¢=38.3° for the dense
sand.

Table 1: Comparison between the present results and those of the centrifuge tests

C/D y [KN/m”~] o, [kPa] o; [kPa]
(Present analysis) | (Centrifuge tests)
2 15.3 3.5 4.4
2 16.1 4.6 4.1

The results obtained by Chambon and Corté (1989) are presented in Table (1) and compared to
those given by the present analysis. Note thattlygven by the present analysis is calculated from
direct maximization of this pressure (i.e. there is no error induced by the application of the
superposition effect in equation 1). In order to be rigorous, no comparison is made with Leca and
Dormieux (1990) in the present section ; the calculation of theialue from the corresponding N
factors may lead to approximate results due to superposition effect which may err any conclusion.
As we can see, there is good agreement between experimental and theoretical results.

CONCLUSIONS

The analysis of translational failure mechanisms has shown that the present mechanisms give
better results than the ones considered by Leca and Dormieux. The comparison of our results with
those given by Leca & Dormieux (1990) has shown that the present theoretical model iniyyoves

factor by 8% in case of collapse wher20° and C/D>0.55 ; the improvement attains 41% in the
blow-out case whep=30° and C/D=1.4. On the other hand, the comparison with the results given
by centrifuge tests has shown good agreement.
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