Internship Proposition

(one page max)

Master 2 GP Immunology & ImmunoIntervention (I³) 2025-2026

Lab: CRHMR (Centre de Recherche de l'Hôpital Maison Neuve Rosemont)

Team: Laboratoire de génomique fonctionnelle et bio-informatique

Name and position of the supervisor: Yoshiaki Tanaka, Christopher Rudd

Email of the supervisor: yoshiaki.tanaka@umontreal.ca

Candidate (if internship filled): Marie Balohe-Laccourège

Title of the internship: Boosting CAR-T Cell Efficacy against Solid Tumors

Summary of the internship proposal:

Cancer is the most leading cause of death (~30%), and devastate lives of over 20 million patients every year worldwide. Chimeric Antigen Receptor (CAR)-T cell therapy is a promising personalized medicine that engineers patients' immune cells to fight against cancer cells. Recently, CAT-T cell therapy has demonstrated remarkable success in the treatment of hematopoietic cancers, in particular, leukemia and lymphoma. In contrast, CAR-T cell therapy is still less effective against solid tumors, such as brain tumors, due to unexpected inactivation and limited tumor infiltration of CAR-T cells. Despite a recent growing number of clinical trials of CAR-T cell therapy, there is no solution to improve efficacy for the solid tumors and none of CAR-T cell therapies is not approved yet. To counter this limitation, our teams recently have performed huge scale comprehensive analysis of single-cell transcriptomics of CAR-T cells, and applied artificial intelligence-based inference to identify molecular characteristics of CAR-T cells associated with the solid tumors. Notably, we found that CAR-T cells in solid tumors elevated GTPase activating proteins (GAPs) and suppressed canonical NF-κB signaling. In addition, we also identified that the solid tumors enhance derivation of unique CD4⁺ CAR-T cell subpopulations that are characterized by high expression of TGFB/SMAD and glutamate signaling. Here, we hypothesize that these aberrantly-changed signaling pathways lead to inactivation of CAR-T cells, and address whether the modulation of these signaling pathways can ameliorate efficacy of CAR-T cell therapy. Collectively, the proposed research will open a new avenue for immunotherapy against solid tumors and give strong impact on cancer treatment.

Option(s) linked to the project:

☐ Cli	nical Research Profile (Recherche Clinique)
Da	ta Analyst Profile (Recherche et Analyse de Données Omiques)
□ Exi	perimental Biology Profile (Recherche Expérimentale)

Form to be sent by email to: gpi3@univ-nantes.fr