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ABSTRACT  
 

The failure probability of a footing resting on a spatially random soil is 
currently computed using Monte Carlo simulation (MCS) methodology. This 
approach is well known to be very time-consuming especially for computing small 
failure probabilities. One alternative to MCS is the subset simulation approach. This 
approach is used in this paper to perform a probabilistic analysis at the serviceability 
limit state of a strip footing resting on a soil with a spatially varying Young modulus. 
The random field was discretized using Karhunen-Loeve expansion. The 
probabilistic numerical results have shown that the failure probability calculated by 
subset simulation is very close to that computed by MCS methodology but with a 
significant reduction in the number of simulations.  

 
INTRODUCTION 
 

The failure probability of geotechnical problems modeled by random fields is 
generally calculated using Monte Carlo simulation (MCS) methodology. This 
method is very expensive for the computation of a small failure probability. Au and 
Beck (2001) proposed an efficient approach (called subset simulation) to calculate 
the small failure probabilities. Except Au et al. (2010) and Santoso et al. (2010) who 
applied this approach to the random field problems, the subset simulation method 
was mainly applied in literature to problems where the uncertainties of the different 
parameters were modeled by random variables. These authors have considered only 
one-dimensional random field problems. It should be noted that Au et al. (2010) have 
discretized the random field into a finite number of random variables equal to the 
number of elements of the deterministic model. Thus the random dimension depends 
on the number of elements of the deterministic model. In this paper, the subset 
simulation method was proposed to calculate the failure probability in case of a two-
dimensional random field discretized by K-L expansion. As will be explained 
hereafter, the random dimension in the present work does not depend on the number 
of elements of the deterministic model but on the size M of the K-L expansion. The 
proposed procedure was applied to perform a probabilistic analysis at the 
serviceability limit state (SLS) of a shallow strip footing subjected to a central 
vertical load (PV). The uncertain random field considered in the analysis is the soil 
Young modulus (E). The footing vertical displacement was used to represent the 
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system response. The deterministic model used to compute the system response is 
based on numerical simulations using the commercial software FLAC3D. 

  
KARHNUEN-LOEVE EXPANSION    
                  

Consider a random process H(X, θ) where X denotes the spatial coordinates 
and θ indicates the random nature of the corresponding quantity. If μ is the mean of 
the process, then the process can be expanded as follows Spanos and Ghanem 
(1989): 
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where λi and iφ  are the eigenvalues and eigenfunctions of the covariance function 
C(X1, X2) and ξ(θ) is a vector of standard uncorrelated random variables. The series 
expansion in Equation (1) is referred to as the K-L expansion. For practical 
implementation, the approximate random process is defined by truncating the series 
in Equation (1) to a finite number of terms M. The choice of the number of terms M 
depends on the desired accuracy of the problem being treated.  
 
SUBSET SIMULATION 
 

Subset simulation was proposed by Au and Beck (2001) to compute the small 
failure probabilities. The basic idea of subset simulation can be described as follows: 
Consider a failure region F defined by the condition G<0 where G is the performance 
function and let (s1, …, sk, ..., sNt) be Nt samples located in the space of the uncertain 
variables. It is possible to divide the failure region F into a number of nested failure 
regions F1, …, Fj, ..., Fm of increasing size where FFFF mj =⊃⊃⊃⊃ ......1  (Fig. 1).  
 

 
 

Figure 1. Nested Failure domain 
 

An intermediate failure region Fj can be defined by Gj<Cj where Cj>0. Thus, 
there is a decreasing sequence of positive numbers C1, …, Cj, ..., Cm corresponding 
respectively to F1, …, Fj,…, Fm where C1>…>Cj>...> Cm=0. The Nt samples (s1, …, 
sk, ..., sNt) will be divided into groups where each group contains a given number Ns 
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of samples (s1, …, sk, ..., sNs). The failure probability corresponding to an 
intermediate failure region Fj is calculated as follows: 
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1=

jFI  if jFs ∈  and 0=
jFI  otherwise. The conditional failure probability P(F)=P(Fm) 

can be calculated from the previous nested sequence of conditional failure regions as 
follows: 
 
P(F)=P(Fm)=P(Fm׀Fm-1)xP(Fm-1׀Fm-2)xP(Fm-2׀Fm-3)x ... xP(F2׀F1)xP(F1)         (3)  

 
IMPLEMENTATION OF SUBSET SIMULATION ALGORITHM IN THE 
CASE OF A SPATIALLY VARYING SOIL PROPERTY  
 

As mentioned previously, this paper aims at employing the subset simulation 
methodology for the computation of the failure probability in the case of a spatially 
varying soil property. In order to achieve this objective, K-L expansion described 
before is used to discretize the random field. Therefore, the random field is 
transformed into a finite number of random variables Mii ...,,1}{ =ξ . Due to this 
transformation, the use of subset simulation becomes an easy task. The algorithm of 
subset simulation in case of a spatially varying soil property can thus be described by 
the following steps: 
1- Choose the number M of terms of K-L expansion. This number must be 

sufficient to rigorously represent the target random field.   
2- Generate a vector {ξ1, …, ξk, ..., ξM} by direct Monte Carlo simulation with the 

target probability density function Pt. Notice that Pt is normal in our case.    
3- Use the K-L expansion to obtain the first realisation of the random field. Then, 

use the deterministic model to calculate the corresponding response. 
4- Repeat steps 2 and 3 to obtain Ns realisations and their corresponding responses. 

Then, evaluate the corresponding values of the performance function to obtain 
the vector G0={g1, …, gk, ..., gNs}.  

5- Propose an intermediate failure probability P(Fj) and evaluate the first failure 
threshold C1 which corresponds to the failure region F1 where C1 is equal to the 
[(NsxP(Fj))+1]th value in the increasing list of elements of the vector G0. This 
ensures that the value of P(F1) wi equal to the proposed value of P(Fj).  

6- Among the Ns realisations, there are [NsxP(Fj)] ones whose values of the 
performance function is less than C1 (i.e. they are located in the failure region 
F1). The corresponding vectors {ξ1, …, ξk, ..., ξM} of these realisations are used 
as ‘seeds’ to generate an additional [(1-P(Fj))Ns] vectors of {ξ1, …, ξk, ..., ξM} 
using Markov chain method based on Metropolis-Hasting algorithm. These new 
vectors are used to obtain the random field realisations of level 1 using K-L 
expansion. The corresponding responses are evaluated using the deterministic 
model and the corresponding vector of performance function G1={g1, …, gk, ..., 
gNs} is computed. 
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7- Evaluate the second failure threshold C2 as the [(NsxP(Fj))+1]th value in the 
increasing list of the vector G1.    

8- Repeat steps 6-7 until reaching the value of the last failure threshold (i.e. Cm=0). 
For the last failure threshold, thowing equation may be used: 
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Where 1=

mFI  if the performance function gk corresponding to the sample sk is 
negative and 0=

mFI  otherwise. 
9- Finally, the failure probability P(F) is evaluated according to Equation  (3).  
 
EXAMPLE PROBLEM 
  

In this section, the proposed procedure for the computation of the failure 
probability is illustrated through an example problem. In this example, the failure 
probability at SLS (i.e. the probability of exceeding a tolerable vertical displacement) 
of a strip footing resting on a soil having spatially varying Young modulus and 
subjected to a central vertical load (Pv) is calculated. The Young modulus was 
considered as a log-normal random field with mean value μ=60MPa and coefficient 
of variation COV=15%. An exponential covariance function was used in this paper. 
The random field was discretized using K-L expansion. Although an isotropic 
random field is often assumed in theature; in this paper, different values of the 
horizontal and vertical autocorrelation distances were studied and analyzed. The 
performance function used to calculate the failure probability is defined as follows:  
 
G=vmax-v                 (5) 
 
where vmax is a prescribed tolerable vertical displacement and v is the footing vertical 
displacement due to the applied load. The deterministic model used to calculate the 
footing vertical displacement (v) is based on the commercial numerical code 
FLAC3D. Due to the non-symmetrical footing movement created by the soil 
heterogeneity, the entire soil domain shown in Fig. 2 was considered to calculate the 
footing displacement. The values of the parameters of the soil, footing and interface 
are given in Table (1). 
 

It should be mentioned here that a normal PDF was used as a target 
probability distribution Pt. However, a uniform PDF was used as a proposal 
probability distribution Pp. Notice also that the intermediate failure probability P(Fi) 
was chosen equal to 0.1. Notice finally that vmax was assumed equal to 4cm and Pv 
was taken equal to 1000kN/m throughout the paper. As mentioned before, the 
accuracy of the approximated random field depends on the number M of terms of the 
K-L expansion. For the most critical configurations of the autocorrelation distances 
used in this paper [(Lx=10m and Ly=0.5m), (Lx=5m and Ly=1m)], the eigenvalue 
vanishes when the number of terms is 100≈M terms. As a conclusion, the number 
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of terms will be set to M=100 terms for all the probabilistic calculations presented in 
this paper. 

 
Comparison between subset simulation and MCS methodologies 
     

In this section, the failure probabilities calculated at each level of the subset 
simulation were compared to those obtained by MCS. To perform this comparison, a 
random field with Lx=10m and Ly=1m (called hereafter the reference case) was 
considered. For each level j of the subset simulation, the corresponding failure 
threshold Cj was calculated and presented in Table (2) for different values of the 
number of realisations Ns.  

 
Table 2. Evolution of the performance function with the different levels of the 

subset simulation and with the number of realisations (Ns) at each level  
 

Performance function Cj 
for each level j 

Number of realisations at each level (Ns) 
50 100 150 200 250 

C1 0.0086 0.0077 0.0080 0.0076 0.0076 
C2 0.0058 0.0048 0.0050 0.0041 0.0040 
C3 0.0044 0.0015 0.0019 0.0011 0.0011 
C4 0.0017 0 0 0 0 
C5 0 - - - - 

 
This table indicates that the failure threshold decreases with the successive 

levels until reaching zero at the last level. This means that the realisations generated 
by the proposed procedure successfully progress towards the limit state surface G=0 
which indicates the validity of the proposed procedure. Notice that the value of the 
failure threshold remains almost constant for Ns≥200. This means that 200 
realisations at each level are sufficient to calculate the failure probability. To confirm 
the validity of the present approach, a comparison with MCS was carried out. The 
number of realisations N of MCS should be adequate for a rigorous calculation of the 
failure probability. The accuracy of MCS can be estimated by calculating the 
coefficient of variation of the failure probability as follows: 

 
 

Figure 2. Soil domain and mesh used
in the numerical simulation

Table 1. Shear Strength and Elastic 
Properties of Soil, Footing, and Interface 

 
Variable Soil Footing Interface

c 20kPa N/A 20kPa
ϕ 30o N/A 30o 

ψs=2/3 φ 20o N/A 20o 
E 60MPa 25GPa N/A 
ν 0.3 0.4 N/A 

Kn N/A N/A 1GPa 
Ks N/A N/A 1GPa 
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Using this equation, the coefficient of variation of the failure probability was 
calculated and presented in Fig. 3. It was found to decrease with the increase of the 
number of realisations. It reaches an asymptote when the number N of realisations is 
equal to 20,000. Hence, 20,000 realisations were used to calculate the failure 
probabilities by MCS.

 
The comparison between the subset simulation method (using 

4 levels with Ns=200, i.e. 800 realisations) and the MCS method is presented in Fig. 
4.  

 
Notice that to calculate the failure probability at level j using MCS, the 

performance function should be set equal to Cj. In this case, the failure region is 
defined as G≤Cj and the safety region is defined as G>Cj. The failure probability can 
then be calculated as:   
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where 1IF =  if sk is located in the failure region Fj and 0IF =  otherwise. Fig. 4 shows 
that for the case where Ns=200 realisations, the failure probabilities calculated by 
subset simulation were found to be very close to those computed by MCS. For 
smaller values of Ns, there is some discrepancy between both approaches (results not 
shown in this paper). From Fig. 4, one can conclude that the 20,000 realisations 
required by MCS methodology can be reduced to only 800 realisations by applying 
the proposed procedure based on subset simulation methodology. 
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Figure 3. Effect of number of realisations  
of MCS on COV(Pf) 
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Figure 4. Comparison between Pf 
obtainedat at each level of subset 

simulation and that computed by MCS
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Parametric study 
 
In order to investigate the effect of the anisotropy of the random field, the 

failure probability was plotted against the vertical and horizontal autocorrelation 
distance in Figs. 5 and 6 respectively for the prescribed footing breadth. (i.e. B=2m).  
 

 
Both figures show that the failure probability presents a maximum when the ratio of 
Lx to Ly is equal to 10 for B=2m. This observation can be explained as follows: The 
small value of the autocorrelation distance (Lx or Ly) induces a large soil 
heterogeneity which results in a large variety (i.e. a great number of high and small 
values) of the Young modulus beneath the footing. This variety leads to small 
footing displacement and consequently to small failure probability. The small footing 
displacement occurs because the rigid footing is prevented to settle due to the 
presence of a high number of small strong zones beneath this footing; the high 
number of small weak zones being of little effect in this case; the increase in the 
autocorrelation distance increases the footing displacement and consequently the 
failure probability. On the other hand, when the autocorrelation distance is very large 
in either the vertical or the horizontal direction, the problem becomes similar to that 
of the one-dimensional random field for which the failure probability is smaller than 
that of the two-dimensional isotropic case. For medium autocorrelation distances, the 
soil contains a number of strong zones adjacent to a number of weak zones whose 
areas are greater than those corresponding to the case of the one-dimensional random 
field. The soil movement can easily develop throughout the weak zones. As a result, 
the failure probability increases in such cases with respect to the case of the one-
dimensional random field. The values of the autocorrelation distance corresponding 
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Figure 5. Effect of Ly on the failure 

probability for different values of Lx 
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Figure 6. Effect of Lx on the failure 

probability for different values of Ly 
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to the maximum can be used to define a conservative design case for probabilistic 
analysis when rigorous information about the autocorrelation distance is not 
available. Notice finally that for the same ratio of Lx/Ly but greater values of Lx and 
Ly, the maximum failure probability was found to be higher. This is due to the 
simultaneous increase of the autocorrelation distances in both the vertical and the 
horizontal directions which makes the failure probability tend to that of the 
homogeneous soil. The numerical results of Figs 5 and 6 also indicate that the failure 
probability is more sensitive to the vertical autocorrelation distance. This is because 
the rate of change in the failure probability (i.e. rate of increase or decrease) when 
increasing the vertical autocorrelation distance by a certain percentage is larger than 
that when increasing the horizontal autocorrelation distance by the same percentage.  
 
CONCLUSION 
 

This paper presents an alternative procedure to Monte Carlo Simulation 
(MCS) methodology for the computation of the failure probability of a strip footing 
resting on a soil with spatially varying properties. This procedure is based on the 
subset simulation approach. The proposed procedure was applied to calculate the 
failure probability at the serviceability limit state of a strip footing resting on a soil 
with a spatially varying Young modulus and subjected to a central vertical load. The 
random field was discretized into a finite number of random variables using K-L 
expansion. The vertical displacement of the footing center was used to represent the 
system response. The deterministic model used to compute the system response is 
based on numerical simulations using the commercial software FLAC3D. The failure 
probability calculated by the proposed procedure was compared to that computed by 
MCS methodology and was found to be very close with a significant decrease in the 
number of calls of the deterministic model. For the case of a non-isotropic random 
field, the failure probability presents a maximum value. The maximum was obtained 
at a fixed value of Lx/Ly=10 for a footing breadth equal to 2. Notice however that for 
the same ratio of Lx/Ly but greater values of Lx and Ly, the maximum failure 
probability was found to be higher. It has also been shown that the failure probability 
is more sensitive to the vertical autocorrelation distance than the horizontal one.  
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