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The computation of the failure probability of geotechnical structures considering the soil spatial variabil-
ity is generally performed using Monte Carlo Simulation (MCS) methodology. This method is very time-
consuming especially when computing a small failure probability. As an alternative, Subset Simulation
(SS) approach was proposed by Au and Beck [3] to efficiently calculate the small failure probability. In
the present paper, a more efficient approach called ‘‘improved Subset Simulation (iSS)’’ approach is
employed. In this method, the first step of the SS approach is replaced by a conditional simulation in
which the samples are generated outside a hypersphere of a given radius. The efficiency of the iSS
approach is illustrated here through the probabilistic analysis at the serviceability limit state (SLS) of
two neighboring strip footings resting on a soil with 2D spatially varying Young’s modulus. The system
response is the differential settlement between the two footings. The probabilistic results have shown
that the probability Pe of exceeding a tolerable differential settlement computed by the iSS approach is
very close to that calculated by the MCS methodology applied on the original deterministic model. The
results have also shown that the use of the iSS approach has reduced the number of calls of the determin-
istic model by about 50% with respect to the SS approach.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The classical Monte Carlo Simulation (MCS) methodology is
generally used to calculate the failure probability of geotechnical
problems involving random fields (e.g. [8,14,5] at ULS and [7,9]
at SLS analysis). In these studies, only the mean value and the stan-
dard deviation of the system response were extensively investi-
gated. This is because MCS requires a large number of calls of the
deterministic model for the computation of the small failure prob-
abilities. As alternative to MCS methodology, the Subset Simulation
(SS) approach was proposed by Au and Beck [3] to calculate the
small failure probability. The first step of the SS method is to gen-
erate a given number of realizations of the uncertain parameters
using the classical MCS technique. The second step is to use the
Metropolis–Hastings (M–H) algorithm to generate realizations in
the direction of the limit state surface. This step is repeated until
reaching the limit state surface. It should be emphasized here that
in case of a small failure probability, SS requires the repetition of
the second step several times to reach the limit state surface. This
leads to a high number of calls of the deterministic model and con-
sequently a high computational time. To reduce the computation
time of the SS approach, Defaux et al. [6] proposed a more efficient
ll rights reserved.
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approach called ‘‘improved Subset Simulation (iSS)’’. In this meth-
od, the first step of the SS approach was replaced by a conditional
simulation. In other words, instead of generating realizations di-
rectly around the origin by the classical MCS, the realizations are
generated outside a hypersphere of a given radius Rh. This reduces
the number of realizations which are not located in the failure
zone. Consequently, the number of realizations required to reach
the limit state surface is significantly reduced. Notice that Defaux
et al. [6] have employed the iSS to calculate the failure probability
in the case where the uncertain parameters are modeled by ran-
dom variables. In the present paper, the iSS is employed in the case
where the uncertain parameters are modeled by random fields.
This method is illustrated herein through the computation of the
probability (Pe) of exceeding a tolerable differential settlement be-
tween two neighboring strip footings resting on a soil with a 2D
spatially varying Young’s modulus. The Young’s modulus is mod-
eled by a random field. The footings are subjected to central verti-
cal loads with equal magnitude. The random field is discretized
into a finite number of random variables using the Karhunen–
Loeve (K–L) expansion. The differential settlement between the
two footings was used to represent the system response. The
deterministic model used to compute the system response is based
on numerical simulations using the commercial software FLAC.

This paper is organized as follows: a brief review of the SS
approach and the Karhunen–Loeve expansion method is first
t the serviceability limit state of two neighboring strip footings resting on a
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presented. Then, the iSS approach and its implementation in the
case of random field problems are presented. This is followed by
the illustration of the efficiency of the iSS approach through the
probabilistic analysis of two neighboring strip footings resting on
a spatially varying soil. The paper ends with a conclusion of the
main findings.

2. Review of subset simulation approach

Subset simulation was proposed by Au and Beck [3] to compute
the small failure probabilities. The basic idea of the subset simula-
tion approach is that the small failure probability can be expressed
as a product of larger conditional failure probabilities. Consider a
failure region F defined by the condition G < 0 where G is the perfor-
mance function and let (s1, . . ., sk, ..., sNt) be a sample of Nt realizations
of a vector ‘s’ composed of M random variables. It is possible to define
a sequence of nested failure regions F1, . . ., Fj, ..., Fm of decreasing size
where F1 � ::: � Fj � ::: � Fm ¼ F (Fig. 1). An intermediate failure re-
gion Fj can be defined by G < Cj where Cj is an intermediate failure
threshold whose value is larger than zero. Thus, there is a decreasing
sequence of positive failure thresholds C1, . . ., Cj, ..., Cm corresponding
respectively to F1, . . ., Fj,. . ., Fm where C1>. . .>Cj>...>Cm = 0. In the SS
approach, the space of uncertain parameters is divided into a num-
ber m of levels with equal number Ns of realizations (s1, . . ., sk, ..., sNs)
where Nt = Ns �m. An intermediate level j contains a safe region and
a failure region defined with respect to a given failure threshold Cj.
The conditional failure probability corresponding to this intermedi-
ate level j is calculated as follows:

PðFj Fj�1

�� Þ ¼ 1
Ns

XNs

k¼1

IFj
ðskÞ ð1Þ

where IFj
ðskÞ ¼ 1 if sk 2 Fj and IFj

ðskÞ ¼ 0 otherwise. Notice that in
the SS approach, the first Ns realizations are generated using MCS
methodology according to a target PDF Pt. The next Ns realizations
of each subsequent level are obtained using Markov chain method
based on Metropolis–Hastings (M–H) algorithm according to a pro-
posal PDF Pp. Notice that a modified M–H algorithm was proposed
by [15]. This modified algorithm was used in this paper to generate
the realizations of level j (j = 1, 2, . . ., m).

The failure probability P(F) = P(Fm) of the failure region F can be
calculated from the sequence of conditional failure probabilities as
follows:

PðFÞ ¼ PðF1Þ
Ym
j¼2

PðFj Fj�1

�� Þ ð2Þ
Fig. 1. Nested failure domain.
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where P(F1) is the failure probability corresponding to the first level
of the SS approach, m is the number of levels required to reach the
limit state surface and PðFj Fj�1

�� Þ is an intermediate conditional fail-
ure probability. This equation can be regarded as a system consist-
ing of m components (related to the m failure regions F1, . . ., Fj,. . .,
Fm) connected in parallel. Consequently, the failure probability of
the failure region F is the intersection of all conditional failure prob-
abilities of the failure regions F1, . . ., Fj, . . ., Fm. Thus, the failure prob-
ability P(F) is:
PðFÞ ¼ Pð\m
j¼1FjÞ ð3Þ
where
Pð\m
j¼1FjÞ ¼ PðFm \m�1

j¼1 Fj

��� ÞxPð\m�1
j¼1 FjÞ ¼ PðFm Fm�1j ÞxPð\m�1

j¼1 FjÞ

¼ ::: ¼ PðF1Þ
Ym
j¼2

PðFj Fj�1

�� Þ ð4Þ

It should be noticed here that the computation of the failure
probability P(F) may be determined using alternatively one of the
two following procedures. The first procedure consists in prescrib-
ing a sequence of C1, . . ., Cj,. . ., Cm so that C1>. . .>Cj>...>Cm = 0 and
then, calculating the different values of P(Fj/Fj�1) at the different
levels using Eq. (1). The second procedure consists in prescribing
a constant conditional failure probability P(Fj/Fj�1) for the different
levels and then, calculating the different Cj values corresponding to
these levels. The value of Cj of level j is the one for which the ratio
between the number of realizations for which G < Cj and the num-
ber of realizations Ns of this level (which is identical for the differ-
ent levels), is equal to the prescribed value P(Fj/Fj�1). In this paper,
the second procedure is used. Notice that, for simplicity in nota-
tions, the constant conditional failure probability P(Fj/Fj�1) will be
referred to as p0 later on. The algorithm of the SS approach can
be described by the following steps:

(1) Generate a realization of the vector ‘s’ of M random variables
by MCS according to the target PDF Pt.

(2) Using the deterministic model, calculate the system re-
sponse corresponding to this realization.

(3) Repeat steps 1 and 2 until obtaining a prescribed number Ns

of realizations of the vector ‘s’ and the corresponding system
response values. Then, evaluate the corresponding values of
the performance function to obtain the vector
G0 ¼ fG1

0; :::;G
k
0; :::;G

Ns
0 g. Notice that the values of the perfor-

mance function of the different realizations are arranged in
an increasing order in the vector G0. Notice also that the sub-
scripts ‘0’ refer to the first level (level 0) of the subset
simulation.

(4) Prescribe a constant conditional failure probability p0 for all
the failure regions Fj (j = 1,. . ., m-1) and evaluate the first
failure threshold C1 which corresponds to the failure region
F1 where C1 is equal to the [(Ns � p0) + 1]th value in the
increasing list of elements of the vector G0. This ensures that
the value of P(F1) will be equal to the prescribed p0 value.

(5) Among the Ns realizations, there are [Ns � p0] ones whose
values of the performance function are less than C1 (i.e. they
are located in the failure region F1). These realizations are
used as ‘mother realizations’ to generate additional [(1�p0)-
Ns] realizations of the vector ‘s’ using Markov chain method
based on Metropolis–Hastings algorithm. These new real-
izations are located in the second level (level 1 in Fig. 1).

(6) The values of the performance function corresponding to the
realizations obtained from the preceding step are listed in an
increasing order and are gathered in the vector of perfor-
mance function values G1 ¼ fG1

1; :::;G
k
1; :::;G

Ns
1 g.
t the serviceability limit state of two neighboring strip footings resting on a
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(7) Evaluate the second failure threshold C2 as the [(Ns -
� p0) + 1]th value in the increasing list of elements of the
vector G1.

(8) Repeat steps 5–7 to evaluate the failure thresholds C3, C4, . . .,
Cm corresponding to the failure regions F3, F4, . . ., Fm. Notice
that contrary to all other thresholds, the last failure thresh-
old Cm is negative. Thus, Cm is set to zero and the conditional
failure probability of the last level [P(Fm/Fm�1)] is calculated
as follows:
Please
spatia
PðFm Fm�1j Þ ¼ 1
Ns

XNs

k¼1

IFm ðskÞ ð5Þ
where IFm ðskÞ ¼ 1 if the performance function G(sk) is negative

and IFm ðskÞ ¼ 0 otherwise.
Fig. 2. Samples generation outside a hypersphere of radius Rh.
(9) The failure probability P(F) is evaluated according to Eq. (2).

3. Discretization of random field by K–L expansion

For a Gaussian random field E(X, h), where X denotes the spatial
coordinates and h indicates the random nature of this random field,
this random field can be approximated by the K–L expansion as fol-
lows [16]:

EðX; hÞ � lþ
XM

i¼1

ffiffiffiffi
ki

p
/iðXÞniðhÞ ð6Þ

where l is the mean of the random field, M is the size of the series
expansion, ki and /i are the eigenvalues and eigenfunctions of the
covariance function, and ni(h) is a vector of standard uncorrelated
random variables.

In the present paper, the random field E was assumed to follow a
log-normal probability density function so that ln(E) is a normal ran-
dom field with mean value lln and standard deviation rln. For a log-
normal random field, the K–L expansion given in Eq. (6) becomes [5]:

EðX; hÞ � exp½lln þ
XM

i¼1

ffiffiffiffi
ki

p
/iðXÞniðhÞ� ð7Þ

On the other hand, the random field E was assumed to follow an
exponential covariance function. This function is given as follows:

C½ðx1; y1Þ; ðx2; y2Þ� ¼ r2
ln exp � jx1 � x2j

lln x
� jy1 � y2j

lln y

� �
ð8Þ

where (x1, y1) and (x2, y2) are the coordinates of two arbitrary points
in the domain over which the random field is defined and lln x and lln
y are respectively the horizontal and vertical lengths over which the
values of ln(E) are highly correlated. Notice that in the case of an
exponential covariance function, the eigenvalues and eigenfunc-
tions are given analytically. Their solutions are presented in Gha-
nem and Spanos [10]. Notice finally that the choice of the number
of terms M of the K–L expansion depends on the desired accuracy
of the problem being treated. In the case of a Gaussian random field,
the error estimate of the K–L expansion with M terms can be calcu-
lated as follows ([18]):

errðXÞ ¼ 1� ð1=rÞ
XM

i¼1

ki/
2
i ðXÞ ð9Þ

in which r is the standard deviation of the Gaussian random field.
In case of a log-normal random field, one should use rln instead
of r in Eq. (9).

4. Improved subset simulation (iSS) approach and its
implementation in the case of random fields

The basic idea of the iSS approach is to replace the first step of
the SS methodology (i.e. generating realizations directly around
cite this article in press as: Ahmed A, Soubra A-H. Probabilistic analysis a
lly random soil. Struct Saf (2013), http://dx.doi.org/10.1016/j.strusafe.20
the origin by the classical MCS as shown in Fig. 1) by a conditional
simulation [Harbitz [11] and Yonezawa et al. [19]] in which the
realizations are generated outside a hypersphere of a given radius
Rh as shown in Fig. 2. Based on this conditional simulation, the fail-
ure probability P(F1) corresponding to the first level is calculated as
follows [Harbitz [11] and Yonezawa et al. [19]]:

PðF1Þ ¼ ð1� vMðR
2
hÞÞ

1
Ns

XNs

k¼1

IF1 ðskÞ ð10Þ

where vM is the chi-square distribution with M degrees of freedom
(M being the number of random variables) and IF1 ðskÞ ¼ 1 if sk 2 F1

and IF1 ðskÞ ¼ 0 otherwise.
The advantage of using the conditional simulation is to generate

realizations in the proximity of the limit state surface leading to a
reduction in the number of realizations required to reach this sur-
face. Notice finally that similar to the classical SS approach, the
realizations of the remaining levels of the iSS approach are gener-
ated using the Markov chain method based on Metropolis–
Hastings algorithm.

As mentioned before, this paper aims at employing the iSS ap-
proach for the computation of the failure probability in the case
of a spatially varying soil property. To achieve this purpose, a link
between the iSS approach and the K–L expansion through the stan-
dard normal random variables is performed. This link is somewhat
similar to that presented in Ahmed and Soubra [1] and Ahmed and
Soubra [2] except the fact that the generation of samples of the first
step of the SS approach was performed outside a hypershpere of a
given radius. It is presented herein for completeness. Based on this
link, the algorithm of the iSS approach for the case of a spatially
varying soil property can be described as follows:

(1) Generate a vector of M standard normal random variables
{n1, . . ., ni, ..., nM} by MCS methodology. This vector must sat-
isfy the condition that its norm is larger than a prescribed
radius Rh of a hypersphere centered at the origin of the stan-
dard space.

(2) Substitute the vector {n1, . . ., ni, ..., nM} in the K–L expansion
to obtain the first realization of the random field. Then, use
the deterministic model to calculate the corresponding sys-
tem response.

(3) Repeat steps 1 and 2 until obtaining a prescribed number Ns

of realizations and their corresponding system response val-
ues. Then, evaluate the corresponding values of the perfor-
mance function to obtain the vector G0 ¼ fG1

0; :::;G
k
0; :::;G

Ns
0 g.

Notice that the values of the performance function of the
t the serviceability limit state of two neighboring strip footings resting on a
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different realizations are arranged in an increasing order in
the vector G0. Notice also that the subscript ‘0’ refers to
the first level (i.e. level 0).

(4) Evaluate the first failure threshold C1 of the failure region F1

as the ½ðNs � �p0Þ þ 1�th value in the increasing list of elements
of the vector G0 where �p0 is a prescribed value that repre-
sents the ratio between the number of realizations for which
G < C1 and the number of realizations Ns (i.e. the term
1

Ns

PNs
k¼1IF1 ðskÞ in Eq. 10). Thus, among the Ns realizations,

there are ½Ns � �p0� ones whose values of the performance
function are less than C1 (i.e. they are located in the failure
region F1).

(5) Evaluate the conditional failure probability of the first level
P(F1) using Eq. (10).

(6) Prescribe an intermediate constant conditional failure prob-
ability PðFj Fj�1

�� Þ for all the remaining failure regions Fj where
(j = 2, 3, . . ., m-1). Although the PðFj Fj�1

�� Þ value can be arbi-
trary chosen, it is recommended to be chosen equal to the
value of �p0 used in step 4 to facilitate the implementation
of the iSS approach. Notice that, for simplicity in notation,
PðFj Fj�1

�� Þ for j = 2, 3, . . ., m-1 will be referred to as p0 in the
remaining sections of this paper.

(7) The different vectors of random variables {n1, . . ., ni, ..., nM}
corresponding to the realizations that are located in the fail-
ure region F1 (from step 4) are used as ‘mother vectors’ to
generate additional [(1�p0) � Ns] vectors of random vari-
ables {n1, . . ., ni, ..., nM} using the Markov chain method based
on Metropolis–Hastings algorithm. These new vectors are
substituted in the K–L expansion to obtain the correspond-
ing random field realizations. Thus, one obtains the Ns real-
izations of level 1.

(8) The values of the performance function corresponding to the
realizations of level 1 are listed in an increasing order and
are gathered in the vector of performance function values
G1 ¼ fG1

1; :::;G
k
1; :::;G

Ns
1 g.

(9) Evaluate the second failure threshold C2 as the [(Ns -
� p0) + 1]th value in the increasing list of elements of the
vector G1.

(10) Repeat steps 7 and 8 to evaluate the failure thresholds C3, C4,
. . ., Cm corresponding to the failure regions F3, F4, . . ., Fm by
using each time the vectors of random variables {n1, . . ., ni,
..., nM} corresponding to the realizations that are located in
the failure region Fj as mother vectors to generate the addi-
tional vectors in this region. Notice that contrary to all other
thresholds, the last threshold Cm is negative. Thus, Cm is set
to zero and the conditional failure probability of the last
level [P(Fm/Fm�1)] is calculated as:
Please
spatia
PðFm Fm�1j Þ ¼ 1
Ns

XNs

k¼1

IFm ðskÞ ð11Þ
where IFm ¼ 1 if the performance function G(sk) is negative
and IFm ¼ 0 otherwise.

(11) Finally, the failure probability P(F) is evaluated according to
Eq. (2) in which P(F1) is calculated using Eq. (10) and the fail-
ure probability of the last level is calculated using Eq. (11).

Notice that, a normal PDF was used as a target probability den-
sity function Pt. However, a uniform PDF was chosen as a proposal
probability density function Pp. The intermediate failure probabil-
ity p0 was chosen equal to 0.1.
Fig. 3. Soil domain and mesh used in the numerical simulations.
5. Probabilistic analysis of two neighboring strip footings

The efficiency of the iSS approach is illustrated in this paper
through the probabilistic analysis of two neighboring strip footings
cite this article in press as: Ahmed A, Soubra A-H. Probabilistic analysis a
lly random soil. Struct Saf (2013), http://dx.doi.org/10.1016/j.strusafe.20
resting on a soil with a spatially varying Young’s modulus and sub-
jected to equal vertical loads. Indeed, due to the soil spatial vari-
ability, the two footings exhibit a differential settlement d. The
differential settlement d was used to represent the system re-
sponse. It is calculated as follows: d ¼ d1 � d2jj where d1 and d2

are the settlements (computed at the footing centers) of the two
footings. The Young’s modulus was modeled by a random field
and it was assumed to follow a log-normal probability density
function. Its mean value and coefficient of variation are respec-
tively lE = 60 MPa and COVE = 15%. The random field was discret-
ized using K–L expansion. It was assumed to follow an
exponential covariance function. Although an isotropic random
field is often assumed in literature, a two-dimensional (2D) aniso-
tropic random field with horizontal and vertical autocorrelation
lengths (denoted by lln x and lln y, respectively) was used herein.
This is because the horizontal autocorrelation length tends to be
larger than the vertical autocorrelation length. A ratio of lln x to
lln y of 1 to 10 for these autocorrelation lengths is usually found
in practice [4]. Notice however that a wide range of values of the
autocorrelation lengths was considered herein in order to explore
some interesting features related to the autocorrelation lengths.
The performance function used to calculate the probability Pe of
exceeding a tolerable differential settlement is defined as follows:

G ¼ dmax � d ð12Þ

where dmax is a prescribed tolerable differential settlement and d is
the computed differential settlement due to the soil spatial
variability.

In the following subsections, the deterministic model used to
calculate the differential settlement will be presented. Then, the
validation of the iSS approach in the case of random fields will
be performed by comparison of its results with those obtained by
MCS methodology. Finally, the effect of the autocorrelation lengths
on the Pe value in both cases of isotropic and anisotropic random
fields will be presented and discussed.

5.1. Deterministic model

The deterministic model used to calculate the differential set-
tlement d is based on numerical simulations using FLAC. For this
computation, two footings (each of width b = 2 m) were considered
in the analysis (Fig. 3). Each footing is subjected to a central vertical
load Pa = 1000 kN/m (i.e. a uniform vertical applied pressure
qa = 500 kN/m2). The two footings’ centers are separated by a dis-
tance D = 4 m. This small distance was chosen in order to obtain
a small soil domain that requires relatively small computation
time. The small computation time helps to validate the results ob-
tained by the iSS approach by comparison with those obtained by
MCS methodology using a large number of calls of the determinis-
tic model. An optimal non-uniform but symmetrical mesh com-
posed of 1290 zones was employed. For the displacement
boundary conditions, the bottom boundary was assumed to be
t the serviceability limit state of two neighboring strip footings resting on a
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fixed and the vertical boundaries were constrained in motion in
the horizontal direction. The soil behavior was modeled by a con-
ventional elastic-perfectly plastic model based on Mohr–Coulomb
failure criterion in order to take into account the possible plastifi-
cation that may take place near the footing edges even under the
service loads. The strip footings were modeled by a linear elastic
model. They are connected to the soil via interface elements. The
values of the different parameters of the soil, footings and inter-
faces are given in Table 1 where w is the dilation angle, E and m
are the Young’s modulus and Poisson ratio and Kn and Ks are the
normal and shear stiffness of the interface.

In order to calculate the differential settlement for a given ran-
dom field realization, (i) the coordinates of the center of each ele-
ment of the mesh were calculated; then, the K–L was used to
calculate the value of the Young’s modulus at each element center,
(ii) geostatic stresses were applied to the soil, (iii) the obtained dis-
placements were set to zero in order to obtain the footings dis-
placements due to only the footings applied loads and finally,
(iv) the service loads were applied to the footings and the vertical
displacements at the footings centers (d1 and d2) due to these loads
are calculated. The differential settlement is calculated as the abso-
lute difference between d1 and d2.

5.2. Validation of the iSS approach

This section presents a validation of the proposed iSS approach.
Notice that for all the probabilistic analyses performed in this pa-
per, the tolerable differential settlement dmax was assumed equal
to 3.5 � 10�3 m. Notice also that the horizontal and vertical auto-
correlation lengths lln x and lln y were normalized with respect to
the distance D between the centers of the two footings (i.e.
Lln x = lln x/D and Lln y = lln y/D). The numerical results have shown
that this assumption is valid when the ratio D/b is constant where
b is the footing width. Notice finally that, for the small values of
Lln x and Lln y used in this paper [(Lln x = Lln y = 1 in case of isotropic
random field) and (Lln x = 0.5, Lln y = 0.25 in case of anisotropic ran-
dom field)], 100 terms of K–L expansion were used. This number
was necessary to achieve an error estimate less than 15%
(Fig. 4a). For only one case where Lln x = Lln y = 0.25, a number of
500 terms was required to achieve such an error estimate (Fig. 4b).

5.2.1. Selection of the optimal number Ns of realizations per level of iSS
approach

In order to determine the optimal number of realizations Ns to
be used per level, different values of Ns were considered. For each
Ns value, the failure thresholds C1, C2, etc. were calculated and pre-
sented in Table 2 when the radius Rh of the hypersphere is equal to
zero (i.e. for the classical SS approach). This table shows that the
failure threshold value decreases with the successive levels until
reaching a negative value at the last level. Table 3 presents the Pe

values and the corresponding values of the coefficient of variation
for the different number of realizations Ns. As expected, the coeffi-
cient of variation of Pe decreases with the increase in the number of
realizations Ns. It should be noted that for each Ns value presented
Table 1
Shear strength and elastic properties of soil, footing, and interface.

Variable Soil Footing Interface

c 20 kPa N/A 20 kPa
u 30� N/A 30�
w = 2/3 u 20� N/A 20�
E 60 MPa 25 GPa N/A
m 0.3 0.4 N/A
Kn N/A N/A 1 GPa
Ks N/A N/A 1 GPa

Please cite this article in press as: Ahmed A, Soubra A-H. Probabilistic analysis a
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in Table 2, Pe corresponding to each level j was calculated by the iSS
approach as follows:

PðFjÞ ¼ PðF1Þ � PðF2 F1j Þ � ::: � PðFj Fj�1

�� Þ ð13Þ

These Pe values were compared to those computed by the crude
MCS methodology using a number N = 30,000 of realizations
(Fig. 5). Notice that at a given level j, the Pe value is calculated by
MCS methodology as follows:

PðFjÞ ¼
1
N

XN

k¼1

IFðGkÞ ð14Þ

in which, Gk is the value of the performance function at the kth real-
ization and IF = 1 if Gk < Cj and IF = 0 otherwise. The comparison has
shown that for Ns P 1000 realizations, the Pe value computed by the
iSS approach at the different levels is very close to that computed by
the crude MCS methodology (Fig. 5a and b). Thus, Ns = 1000 realiza-
tions will be used in all the probabilistic analyses performed in this
paper. Notice that when Ns = 1000 realizations, the coefficient of
variation of Pe by the iSS approach is COVPe = 31.5%. A quasi similar
value of COV (COV = 31.3%) was obtained by MCS methodology (but
when using 30,000 realizations).

As was explained before, the optimal Ns value was determined
by comparing the values of Pe obtained by both iSS and MCS. It
should be mentioned here that although the computation time of
the 30,000 realizations by MCS is significant (about 145 days), this
number of realizations remains insufficient to assure an accurate Pe

value with a small value of COVPe. As an alternative approach to
MCS, one may determine the optimal Ns value by successively
increasing Ns and comparing the Pe values given by the iSS ap-
proach for each Ns value. The Ns value beyond which Pe converges
(i.e. slightly varies with the increase of Ns) is the optimal one. In the
present analysis, it was found that Pe converges when Ns = 1000
realizations. This is because the final Pe values (corresponding to
C = 0) are equal to 3.65 � 10�4 and 3.67 � 10�4 for Ns = 1000 and
1200 realizations, respectively. As a conclusion, this alternative
procedure seems to work well for the determination of the optimal
Ns value.

5.2.2. Selection of the optimal radius Rh of the hypersphere
When Rh = 0, four levels were required to reach the limit state

surface G = 0. This means that a total number of Nt = 1000 +
(900 � 3) = 3700 realizations were required to calculate Pe with
the iSS approach. Thus, for the same accuracy, the number of realiza-
tions (and consequently, the computation time) is reduced by 87.7%
with respect to MCS when Rh = 0 (i.e. when the classical SS is used).
This number can again be reduced by increasing Rh (i.e. by using iSS).
Table 4 shows that, when Rh increases, the total number of realiza-
tions decreases. When Rh = 11.5, only two levels are required. Thus,
the total number of realizations is Nt = 1000 + 900 = 1900 realiza-
tions. As a conclusion, the number of realizations (and consequently,
t the serviceability limit state of two neighboring strip footings resting on a
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Table 2
Evolution of the failure threshold with the different levels of the iSS approach and with the number of realizations Ns (Rh = 0, Lln x = 2.5 and Lln y = 0.25).

Failure threshold Cj for each level j Number of realizations Ns per level

200 400 600 800 1000 1200

C1 0.00191 0.00199 0.00189 0.00204 0.00191 0.00195
C2 0.00103 0.00099 0.00096 0.00110 0.00102 0.00103
C3 0.00041 0.00032 0.00021 0.00037 0.00036 0.00034
C4 �0.00009 �0.00051 �0.00036 �0.00037 �0.00039 �0.00038

Table 3
Values of Pe and COVPe versus the number Ns of realizations per level.

Number of realizations Ns per level

200 400 600 800 1000 1200

Pe � (10�4) 1.85 3.48 4.63 2.36 3.65 3.67
COVPe 0.669 0.505 0.385 0.348 0.315 0.285

Fig. 5. Comparison between Pe computed by iSS and that computed by MCS
methodology at each level of iSS (Rh = 0, Lln x = 2.5 and Lln y = 0.25).
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the computation time) required by the SS approach could be reduced
by 48.6% by employing the iSS approach.

It is to be mentioned here that the radius Rh should be carefully
chosen. If Rh is very small, the number of levels of the iSS approach
will be equal to the number of levels of the classical SS approach
and consequently the time cost will remain constant. On the other
hand, if Rh is very large, the hypershpere might overlap with the
failure region F leading to unsampled area in the failure region
which leads to inaccurate value of the failure probability. This issue
can be overcome (i) by calculating an approximate value of the fail-
ure probability using a simple and fast approach and then (ii) by
computing the corresponding approximate value of the radius Rh

to be used in the iSS approach.
In this paper, the approximate value Peapp of the probability of

exceeding a tolerable differential settlement was calculated by
the Collocation-based Stochastic Response Surface Method
(CSRSM) using a small number of random variables and a small
Polynomial Chaos Expansion (PCE) order [Huang et al. [13] and
Huang and Kou [12]]. It should be mentioned here that a high order
of the PCE is not necessary herein since an approximate Pe value is
sought. A second order PCE was thus used to approximate the sys-
tem response. Concerning the number of standard normal random
variables (number of terms in the K–L expansion), a small number
Table 4
Effect of the radius of the hypersphere on the number of realizations required to calculate

MCS Rh = 0 (Classic

Pe (�10�4) 3.40 3.65
Number of levels – 4
Number of realizations 30000 3700
Computation time (minutes) 210000 25900
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was firstly selected and the corresponding Peapp value was calcu-
lated. This number was then successively increased until Peapp con-
verges to a constant value as shown in Table 5. This table indicates
that Peapp converges to a value of 6.46 � 10�4 when the number of
standard normal random variable is equal to 6. In this case, the
number of collocation points is equal to 28 according to the con-
cept of matrix invertibility by Sudret [17].

After the determination of Peapp , the corresponding approximate
radius Rhapp of the hypershere can be determined. Notice that Rhapp

represents the distance between the origin and the last failure re-
gion corresponding to Cm. This means that only the first level of the
iSS approach will likely be required to reach the last failure thresh-
old. Thus, Peapp can be supposed equal to P(F1) and C1 = Cm = 0. Con-
sequently, one obtains:

Peapp ¼ PðF1Þ ¼ ð1� vMðR
2
hÞÞ

1
Ns

XNs

k¼1

IF1 ðskÞ ð15Þ

where IF1 ðskÞ ¼ 1 if GðskÞ 6 0 and IF1 ðskÞ ¼ 0 otherwise. Since the
term ½ 1Ns

PNs
k¼1IF1 ðskÞ� in Eq. (15) is equal to �p0 as mentioned before

in Section 4 (see step 4), Eq. (15) can be rewritten as follows:

vMðR
2
happ
Þ ¼ 1�

Peapp

�p0
ð16Þ

from which:

Rhapp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v�1

M 1�
Peapp

�p0

� �s
ð17Þ

in which v�1
M ð:Þ is the inverse of the chi-square CDF. By using Eq.

(17), for the case studied herein where �p0 ¼ 0:1 and M = 100, the
approximate radius Rhapp corresponding to the approximate value
of Peapp = 6.46 � 10�4 is equal to 11.77. After the determination of
Rhapp , the iSS approach can be used with Rh slightly smaller than
Rhapp and M = 100 terms to rigorously discretize the random field.

5.3. Parametric study

This section aims at presenting a parametric study showing the
effect of the autocorrelation lengths on the Pe value in both cases of
isotropic and anisotropic random fields.

5.3.1. Effect of the autocorrelation length on Pe in the case of isotropic
random field

Fig. 6 shows the effect of the autocorrelation length on the Pe

value in the case of an isotropic random field. This figure indicates
Pe (Lln x = 2.5 and Lln y = 0.25).

al SS) iSS

Rh = 10 Rh = 11 Rh = 11.5

3.58 3.36 3.45
3 3 2
2800 2800 1900
19600 19600 13300

t the serviceability limit state of two neighboring strip footings resting on a
13.08.001

http://dx.doi.org/10.1016/j.strusafe.2013.08.001


Table 5
Effect of the number of standard normal random variables on Peapp value for the case
where Lln x = 2.5 and Lln y = 0.25.

Number of standard normal
random variables M

Peapp Number of collocation points
according to Sudret [17]

3 0.00 10
4 8.63 � 10�5 15
5 8.73 � 10�9 21
6 6.46 � 10�4 28
7 5.98 � 10�4 36

Fig. 6. Effect of the autocorrelation length on Pe (isotropic random field).

Fig. 8. Effect of Lln x on Pe when Lln y = 0.25.
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that Pe presents a maximum value when Lln x = Lln y = 1 (i.e. when
the autocorrelation length is equal to the distance between the
centers of the two footings). This can be explained by the fact that
when the autocorrelation length is very small, one obtains a highly
heterogeneous soil in both the vertical and the horizontal direc-
tions with a great variety of high and small values of the Young’s
modulus beneath the footings (Fig. 7a). In this case, the soil under
the footings contains a mixture of stiff and soft soil zones. Due to
the high rigidity of the footings, their movements are resisted by
the numerous stiff soil zones in the soil mass; the numerous soft
soil zones being of negligible effect on the footings displacements.
This leads to small values of the footings displacements (i.e. to a
small differential settlement) and thus, to a small value of Pe. On
the other hand, when the autocorrelation length is large, the soil
tends to be homogenous (Fig. 7b). This means that the differential
settlement tends to be very small (close to zero) which leads to a
very small value of Pe. For the intermediate values of the autocor-
relation length, there is a high probability that one footing rests on
Fig. 7. Grey-scale representation of the random field to show the effect of Lln x = Lln y

in case of isotropic random field.
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a stiff soil zone and the other on a relatively soft soil zone (Fig. 7c).
This leads to a high differential settlement and thus to a high Pe va-
lue. In this case, Pe presents a maximum.
5.3.2. Effect of the autocorrelation lengths on Pe in the case of
anisotropic random field

Fig. 8 shows the effect of Lln x on Pe when Lln y = 0.25. This figure
shows that Pe presents a maximum value when the autocorrelation
length is equal to the distance between the two footings centers
(i.e. when Lln x = 1). This observation can be explained as follows:

For the very small values of Lln x compared to Lln y, one obtains a
vertical multilayer composed of thin sub-layers where each sub-
layer may have a high or a small value of the Young’s modulus
(Fig. 9a). The sub-layers with high values of the Young’s modulus
prevent the movements of both footings and thus lead to a small
value of Pe. On the other hand, when Lln x is very large compared
to Lln y, one obtains a horizontal multilayer (i.e. the soil tends to
the case of a one-dimensional vertical random field) for which each
sub-layer may have a high or a small value of the Young’s modulus
(Fig. 9b). This leads to the same displacement for both footings and
thus to a very small value of Pe. Finally, for intermediate values of
Lln x (cf. Fig. 9c), the horizontally extended stiff layers of Fig. 9b be-
come less extended leading to a high probability that the footings
rest on soil zones with different values of the Young’s modulus.
This leads to a greater differential settlement and consequently a
greater value of Pe.

The effect of Lln y is presented in Fig. 10 when Lln x = 2.5. This figure
also presents the Pe value corresponding to the case of a one-
dimensional horizontal random field with Lln x = 2.5. In this case,
the soil was considered to be spatially varying only in the horizontal
Fig. 9. Grey-scale representation of the random field to show the effect of Lln x in
case of anisotropic random field.

t the serviceability limit state of two neighboring strip footings resting on a
13.08.001

http://dx.doi.org/10.1016/j.strusafe.2013.08.001


Fig. 10. Effect of Lln y on Pe when Lln x = 2.5.

Fig. 11. Grey-scale representation of the random field to show the effect of Lln y in
case of anisotropic random field.
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direction while it was considered to be homogeneous in the vertical
direction. Fig. 10 shows that the Pe value increases with the increase
in Lln y. This can be explained as follows: when Lln y is very small, the
two footings rest on a horizontal multilayer composed of thin sub-
layers where each sub-layer may have a high or a small value of
the Young’s modulus (Fig. 11a). This means that d1 and d2 are almost
equal. Thus, the differential settlement d is very small which results
in a small value of Pe. On the other hand, when Lln y is very large, the
soil tends to the case of a one-dimensional horizontal random field.
In this case, one obtains vertically extended stiff sub-layers adjacent
to vertically extended soft sub-layers (Fig. 11b). For the chosen value
of Lln x, there is a high probability that one footing rests on a vertical
stiff layer and the other one rests on a vertical soft layer which leads
to a high differential settlement and thus to a great value of Pe.

6. Conclusion

This paper presents an efficient method, called improved subset
simulation (iSS), to perform a probabilistic analysis of geotechnical
structures that involve spatial variability of the soil properties. This
method is an improvement of the subset simulation approach pre-
sented by Ahmed and Soubra [2] in the case of a spatially varying
soil. It allows one to calculate the small failure probabilities using
a reduced number of calls of the deterministic model. This was made
possible by generating the samples of the first step of the SS ap-
proach outside a hypersphere whose radius was determined by a
simple fast and approximate approach. The iSS approach was illus-
trated through the probabilistic analysis at SLS of two neighboring
strip footings resting on a soil with spatially varying Young’s modu-
lus. The differential settlement between the two footings was used
to represent the system response. The probability Pe (i.e. the proba-
bility of exceeding a tolerable differential settlement) calculated by
Please cite this article in press as: Ahmed A, Soubra A-H. Probabilistic analysis a
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the improved subset simulation approach was found very close to
that computed by Monte Carlo Simulation methodology or the sub-
set simulation approach with a significant reduction in the number
of calls of the deterministic model. The use of the iSS approach has
reduced the number of calls of the deterministic model by about
50% with respect to the SS approach by Ahmed and Soubra [2].

A parametric study to investigate the effect of the autocorrela-
tion lengths on Pe in both cases of isotropic and anisotropic random
fields has shown that:

(1) In case of an isotropic random field, the probability Pe of
exceeding a tolerable differential settlement presents a max-
imum value when the autocorrelation length is equal to the
distance D that separates the two footings centers.

(2) In case of an anisotropic random field, Pe significantly
increases with the increase of the vertical autocorrelation
length (for a given value of the horizontal autocorrelation
length) and then, it attains an asymptote which corresponds
to the case of a horizontal one-dimensional random field. On
the other hand, for a given value of the vertical autocorrela-
tion length, Pe presents a maximum when the horizontal
autocorrelation length is equal to the distance D that sepa-
rates the two footings centers.
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