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Probabilistic analysis of strip footings resting on a spatially random soil using subset simulation

approach

Ashraf Ahmed and Abdul-Hamid Soubra*

Department of Civil Engineering, University of Nantes, Saint-Nazaire Cedex, France

(Received 2 June 2011; final version received 19 March 2012)

The failure probability of geotechnical structures with spatially varying soil properties is generally computed
using Monte Carlo simulation (MCS) methodology. This approach is well known to be very time-consuming
when dealing with small failure probabilities. One alternative to MCS is the subset simulation approach. This
approach was mainly used in the literature in cases where the uncertain parameters are modelled by random

variables. In this article, it is employed in the case where the uncertain parameters are modelled by random fields.
This is illustrated through the probabilistic analysis at the serviceability limit state (SLS) of a strip footing resting
on a soil with a spatially varying Young’s modulus. The probabilistic numerical results have shown that the

probability of exceeding a tolerable vertical displacement (Pe) calculated by subset simulation is very close to that
computed by MCS methodology but with a significant reduction in the number of realisations. A parametric
study to investigate the effect of the soil variability (coefficient of variation and the horizontal and vertical

autocorrelation lengths of the Young’s modulus) on Pe was presented and discussed. Finally, a reliability-based
design of strip footings was presented. It allows one to obtain the probabilistic footing breadth for a given soil
variability.

Keywords: subset simulation; Monte Carlo simulation; random field; spatial variability; Karhunen-Loeve

expansion

Introduction

During the recent years, much effort has been paid

for the probabilistic analysis of geotechnical struc-

tures. Some simplified methods have modelled the

different uncertain parameters by random variables

where the soil is considered as a uniform material.

However, in nature, the soil parameters (shear

strength parameters, elastic properties, etc.) vary

spatially in both the horizontal and the vertical

directions as a result of depositional and post-

depositional processes. This leads to the necessity of

representing the soil parameters as random fields

characterised not only by their marginal probability

density functions (as is the case of random vari-

ables), but also by their autocorrelation functions.

In this regard, more advanced probabilistic ap-

proaches were proposed in the literature. These

approaches are generally based on the finite element

or the finite difference method. In these approaches,

one needs to discretise the random field into a finite

number of random variables. Once the random field

is discretised into a finite number of random

variables, the failure probability can be determined.

In the framework of these approaches, Monte

Carlo simulation (MCS) is generally used to per-
form the probabilistic analyses.

Notice that MCS methodology is not suitable for
the computation of a small failure probability be-
cause the number of simulations required becomes
very large in this case. Au and Beck (2001) proposed
an efficient approach (called subset simulation) to
calculate the small failure probabilities in case where
the uncertain parameters are modelled by random
variables. In this approach, the failure probability is
expressed as a product of conditional probabilities of
some chosen intermediate failure events. Thus, the
problem of evaluating a small failure probability in
the original probability space is replaced by a
sequence of events in the conditional probability
space. Except Au et al. (2010) and Santoso et al.
(2010) who applied the subset simulation approach to
one-dimensional (1D) random field problems, the
subset simulation method was mainly applied in the
literature to problems where the uncertain parameters
were modelled by random variables.

In this article, the subset simulation method was
employed to perform a probabilistic analysis at the
serviceability limit state (SLS) of a rigid strip footing
resting on a soil with a two-dimensional (2D) spatially
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varying Young’s modulus. The footing is subjected to
a central vertical load (P). Notice that most previous
studies that considered the soil spatial variability have
modelled the uncertain parameters by isotropic ran-
dom fields (e.g. Fenton and Griffiths 2003, Popescu
et al. 2005, Griffiths et al. 2006, and Babu et al. 2006
for the ultimate limit state (ULS) analysis and Fenton
and Griffiths 2002, 2005, Fenton et al. 2003 for the
SLS analysis). However, due to the layered nature of
soils, their parameters generally exhibit a larger
autocorrelation length in the horizontal direction
compared to that in the vertical direction. Thus, the
Young’s modulus is considered in this article as an
anisotropic random field. The Karhunen-Loeve (K-L)
expansion is used to discretise the random field. The
deterministic model employed for the computation of
the system response is based on numerical simulations
using the commercial software FLAC. It should be
emphasised here that the soil spatial variability causes
uneven footing displacement. Due to its high rigidity,
the footing undergoes a linear vertical displacement.
Thus, the average value of the footing displacement is
considered herein to represent the system response.
This average is equal to the displacement at the footing
centre.

After a brief description of the K-L expansion and
the subset simulation method, the implementation of
the subset simulation approach in the case of a random
field problem is presented. Then, the probabilistic
analysis of a strip footing resting on a spatially varying
soil and the corresponding results are presented and
discussed. This article ends with a conclusion.

Karhunen-Loeve expansion

In this article, the Young’s modulus E is modelled by
a random field E(X, u) where X denotes the spatial
coordinates and u indicates the random nature of the
Young’s modulus. If m is the mean of the Young’s
modulus, then the random field can be approximated
by the K-L expansion as follows (Spanos and
Ghanem 1989):

E ðX; hÞ � l þ
XM
i¼1

ffiffiffiffi
ki

p
fiðXÞniðhÞ (1)

where M is the size of the series expansion, li and fi

are the eigenvalues and eigenfunctions of the covar-
iance function C(X1, X2), and ji(u) is a vector of
standard uncorrelated random variables. The choice
of the number of terms M of the K-L expansion
depends on the desired accuracy of the problem
being treated. The error estimate orr(X) of the K-L

expansion with M terms can be calculated as follows
(Sudret and Beveiller 2008):

errðXÞ ¼ 1 � ð1=sÞ
XM
i¼1

ki/
2
i ðXÞ (2)

The random field E was assumed to follow a log-
normal probability density function so that ln(E) is a
normal random field with mean value mln and
standard deviation sln. The choice of a log-normal
probability density function is motivated by the fact
that the Young’s modulus is strictly non-negative
(Fenton and Griffiths 2002). For a lognormal random
field, Equation (1) becomes (Cho 2010, Cho and Park
2010):

E ðX; hÞ � exp lln þ
XM
i¼1

ffiffiffiffi
ki

p
fiðXÞniðhÞ

" #
(3)

On the other hand, it was assumed that the Young’s
modulus follows an exponential covariance function.
In the case of a log-normal random field, the
exponential covariance function is given by:

C x1; y1ð Þ; x2; y2ð Þ½ � ¼ r2
In exp � x1 � x2j j

lIn x

� y1 � y2j j
lIn y

 !

(4)

where (x1, y1) and (x2, y2) are the coordinates of two
arbitrary points in the domain D over which the
random field is defined, and lln x and lln y are
respectively the horizontal and vertical lengths over
which the values of log-elastic modulus are highly
correlated. Notice that in the case of an exponential
covariance function, the eigenvalues and eigenfunc-
tions are given analytically. Their solutions are
presented in Spanos and Ghanem (1989).

Subset simulation

Subset simulation was proposed by Au and Beck
(2001) to compute the small failure probabilities in
the case where the different uncertain parameters are
modelled by random variables. This method was
found to be an efficient tool for the computation of
small failure probabilities compared to the crude MCS
methodology. The basic idea of subset simulation is
that the small failure probability can be expressed as a
product of larger conditional failure probabilities. This
is explained in more details in the following subsection.

Basic idea of subset simulation

Consider a failure region F defined by the condition
GB0 where G is the performance function and let

Georisk 189

D
ow

nl
oa

de
d 

by
 [

B
ib

lio
th

eq
ue

 U
ni

ve
rs

ita
ir

e]
, [

A
bd

ul
-H

am
id

 S
ou

br
a]

 a
t 0

0:
25

 1
3 

Se
pt

em
be

r 
20

12
 



(s1, . . ., sk, . . ., sNt
) be Nt samples located in the space

of the uncertain variables where ‘s’ is a vector of
random variables. It is possible to define a sequence
of nested failure regions F1, . . ., Fj,..., Fm of decreas-
ing size where F1 
 . . . 
 Fj 
 . . . 
 Fm ¼ F (Figure
1). An intermediate failure region Fj can be defined by
GjBCj where Cj�0. Thus, there is a decreasing
sequence of positive numbers C1, . . ., Cj,..., Cm

corresponding respectively to F1, . . ., Fj, . . ., Fm where
C1�. . .�Cj�. . .�Cm�0. The Nt samples (s1, . . .,
sk, . . ., sNt

) will be divided into groups with equal
number Ns of samples (s1, . . ., sk, . . ., sNs

). Thus,
Nt�m�Ns where m is the number of failure regions.
The first Ns samples are generated according to MCS
methodology following a target PDF (Pt). The next
Ns samples of the different subsequent failure regions
are obtained using Markov chain method based on
Metropolis-Hastings (M-H) algorithm according to a
proposal PDF (Pp) as will be explained in the next
subsection. The conditional failure probability corre-
sponding to an intermediate failure region Fj is
calculated as follows:

P Fj Fj�1

��	 

¼ 1

Ns

XNs

k¼1

IFj
ðskÞ (5)

where IFj
¼ 1 if s 2 Fj and IFj

¼ 0 otherwise. The
failure probability P(F)�P(Fm) of the failure region
F can be calculated from the sequence of conditional
failure probabilities as follows:

PðFÞ ¼ PðFmÞ ¼ P FmjFm�1ð Þ � P Fm�1jFm�2ð Þ �
P Fm�2jFm�3ð Þ � . . . � P F2jF1ð Þ � PðF1Þ

(6)

This equation can be regarded as a system consisting
of m components (related to the m failure regions

F1, . . ., Fj, . . ., Fm) connected in parallel. Conse-
quently, the failure probability of the failure region F
is the intersection of all conditional failure probabil-
ities of the failure regions F1, . . ., Fj, . . ., Fm. Thus, the
failure probability P(F) is:

PðFÞ ¼ P \m
j¼1Fj

� �
(7)

where

P \m
j¼1Fj

� �
¼ P Fm \m�1

j¼1 Fj

���� �
� P \m�1

j¼1 Fj

� �
¼ P Fm Fm�1jð Þ � P \m�1

j¼1 Fj

� �
¼ . . .

¼ PðF1Þ
Ym
j¼2

P Fj Fj�1

��	 

(8)

Metropolis-Hastings algorithm

The Metropolis�Hastings algorithm is a Markov
chain Monte Carlo (MCMC) method. It is used to
generate a sequence of random samples from existing
samples (that were generated with a target PDF called
‘Pt’) by using a proposal PDF called ‘Pp’. Let sk �Fj be
a current sample which follows a target PDF ‘Pt’.
Using the proposal PDF ‘Pp’, a next sample sk�1 �Fj

that follows the target PDF ‘Pt’ can be simulated
from the current sample sk as follows:

Step a: a candidate sample ŝ is generated using the
proposal PDF (Pp). The candidate sample ŝ is

centered at the current sample sk.
Step b: using the deterministic model, evaluate the
value of the performance function G(ŝ) correspond-

ing to the candidate sample ŝ. If G(ŝ)BCj (i.e. ŝ is
located in the failure region Fj), set sk�1�ŝ; other-
wise, reject ŝ and set sk�1�sk (i.e. the current sample

sk is repeated).
Step c: if G(ŝ)BCj in the preceding step, calculate the
ratio r1�Pt(ŝ)/Pt(sk) and the ratio r2�Pp(skjŝ)/
Pp(ŝjsk), then compute the value r�r1r2.

Step d: if r]1 (i.e. ŝ is distributed according to the
Pt), one continues to retain the sample sk�1 obtained
in step b; otherwise, reject ŝ and set sk�1�sk (i.e. the

current sample sk is repeated).

Notice that in step b, if the candidate sample ŝ does
not satisfy the condition G(ŝ)BCj, it is rejected and
the current sample sk is repeated. Also in step d, if the
candidate sample ŝ does not satisfy the condition r]1
(i.e. ŝ is not distributed according to the Pt), it is
rejected and the current sample sk is repeated. The
presence of several repeated samples is not desired
as it leads to high probability that the chain of
samples remains in the current state. This means
that there is high probability that the next failureFigure 1. Nested failure domain.
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threshold Cj�1 is equal to the current failure thresh-
old Cj which decreases the efficiency of the subset
simulation approach. To overcome this inconveni-
ence, Santoso et al. (2010) have proposed to modify
the classical M-H algorithm as follows:

Step a: a candidate sample ŝ is generated using the
proposal PDF (Pp). The candidate sample ŝ is
centered at the current sample sk.
Step b: calculate the ratio r1�Pt(ŝ)/Pt(sk) and the

ratio r2�Pp(skjŝ)/Pp(ŝjsk), then compute the value
r�r1r2.
Step c: if r]1, set sk�1�ŝ; otherwise, another

candidate sample is generated. Candidate samples
are generated randomly until the condition r]1 is
satisfied.

Step d: using the deterministic model, evaluate the
value of the performance function G(sk�1) of the
candidate sample that satisfies the condition r]1. If
G(sk�1)BCj (i.e. sk�1 is located in the failure region

Fj), one continues to retain the sample sk�1 obtained
in step c; otherwise, reject ŝ and set sk�1�sk (i.e. the
current sample sk is repeated).

These modifications reduce the repeated samples and
allow one to avoid the computation of the system
response of the rejected samples. This becomes
important when the time cost for the computation
of the system response is expensive (i.e. for the finite
element or finite difference models).

Finally, it should be mentioned that this modified
M-H algorithm is employed in this article to increase
the efficiency of the subset simulation approach.

Implementation of subset simulation approach in case

of a spatially varying soil property

As mentioned previously, this article aims at employ-
ing the subset simulation methodology for the
computation of the failure probability in the case of
a spatially varying soil property. In order to achieve
this purpose, a link between the subset simulation
approach and the K-L expansion was performed. It
should be emphasised here that the K-L expansion
includes two types of parameters (deterministic and
stochastic). The deterministic parameters are the
eigenvalues and eigenfunctions of the covariance
function. The role of these parameters is to ensure
the correlation between the values of the random field
at the different points in the space. However, the
stochastic parameters are represented by the vector of
the standard normal random variablesfnigi¼1;...; M.
The role of these parameters is to ensure the random
nature of the uncertain parameter. The link between
the subset simulation approach and the K-L expan-
sion was performed through the vector fnigi¼1;...;M.

This ensures that the subset simulation technique

does not affect the correlation structure of the

random field.
The basic idea of the link is that for a given

random field realisation obtained by the K-L expan-

sion, the vector fnigi¼1; ...;M represents a sample ‘s’ of

the subset simulation method for which the system

response is calculated in two steps. The first step is to

substitute the vector fnigi¼1; ...;M in Equation (3) to

calculate the value of the random field at each point

in the space according to its coordinates. The second

step is to use the deterministic model to calculate the

corresponding system response. The algorithm of

subset simulation in case of a spatially varying soil

property can thus be described as follows:

Step 1: choose the number M of terms of the K-L
expansion. This number must be sufficient to accu-
rately represent the target random field.

Step 2: generate a vector of standard normal random
variables {j1, . . ., ji,. . ., jM} by direct MCS.
Step 3: substitute the vector {j1, . . ., ji,..., jM} in the

K-L expansion (Equation 3) to obtain the first
realisation of the random field. Then, use the
deterministic model to calculate the corresponding

response.
Step 4: repeat steps 2 and 3 until obtaining
a prescribed number Ns of realisations of the
random field and their corresponding responses.

Then, evaluate the corresponding values of
the performance function to obtain the vector
G0 ¼ fG1

0; :::;G
k
0; :::;G

Ns

0 g. Notice that the subscripts

‘0’ refer to the first level (level 0) of subset simulation.
Step 5: prescribe a constant intermediate failure
probability P(Fj) for all the failure regions Fj and

evaluate the first failure threshold C1 which corre-
sponds to the failure region F1 where C1 is equal to
the [(Ns�P(Fj))�1]th value in the increasing list of
elements of the vector G0. This ensures that the value

of P(F1) will be equal to the prescribed value of P(Fj).
Step 6: among the Ns realisations, there are
[Ns�P(Fj)] ones whose values of the performance

function are less than C1 (i.e. they are located in the
failure region F1). The corresponding vectors {j1, . . .,
ji,..., jM} of these realisations are used as ‘mother

vectors’ to generate additional [(1�P(Fj))Ns] vectors
of {j1, . . ., ji,..., jM} using Markov chain method
based on M-H algorithm. These new vectors are

substituted in Equation (3) to obtain the random
field realisations of level 1.
Step 7: the values of the performance function
corresponding to the realisations obtained from

step 6 are listed in an increasing order and
are gathered in the vector of performance functions
G1 ¼ fG1

1; :::;G
k
1; :::;G

Ns

1 g.

Step 8: evaluate the second failure threshold C2 as the
[(Ns�P(Fj))�1]th value in the increasing list of the
vector G1.
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Step 9: repeat steps 6�8 to evaluate the failure
thresholds C3, C4, . . ., Cm corresponding to the
failure regions F3, F4, . . ., Fm. Notice that contrary

to all other thresholds, the last failure threshold Cm is
negative. Thus, Cm is set to zero and the conditional
failure probability of the last level [P(FmjFm�1)] is

calculated as:

PðFm Fm�1j Þ ¼ 1

Ns

XNs

k¼1

IFm
ðskÞ (9)

where IFm
¼ 1 if the performance function G(sk) is

negative and IFm
¼ 0 otherwise.

Step 10: Finally, the failure probability P(F) is
evaluated according to Equation (6).

It should be mentioned that, in this article, a
normal PDF was used as a target probability
distribution Pt (i.e. it was used to generate the Ns

realisations of the first level of the subset simulation,
i.e., level 0). However, a uniform PDF was used as a
proposal probability distribution Pp (i.e. for generat-
ing Ns realisations for each one of the subsequent
levels 1, . . ., j, . . ., m). The intermediate failure
probability P(Fj) of a given level j (j�0, . . ., m) was
chosen equal to 0.1. Notice that the choice of the
value of P(Fj) affects the number of levels m required
to reach the limit state surface G�0 but its effect on
the total number Nt of realisations required to
calculate the failure probability is very small. If
P(Fj) is large, the sequence of failure thresholds C1,
. . ., Cj, . . . Cm will decrease slowly and a large number
of levels will be required to reach the target failure
region F. In this case, the required number of
relisations per level is small. On the contrary, if the
P(Fj) value is small, the sequence of failure thresholds
C1, . . ., Cj, . . . Cm will reach the target failure region F
quickly and a small number of levels will be required.
In this case, the required number of realisations per
level is large. As a conclusion, an arbitrary value of
P(Fj) can be considered for the probabilistic analysis
with a small effect on the computational time.

Probabilistic analysis of strip footings

The probabilistic analysis of shallow foundations
resting on a spatially varying soil has been extensively
considered in the literature (e.g. Fenton and Griffiths
2003, Popescu et al. 2005, Babu et al. 2006, Griffiths
et al. 2006 and Soubra et al. 2008 at ULS and Fenton
and Griffiths 2002, 2005 and Fenton et al. 2003 at
SLS). These authors have used MCS methodology to
perform the probabilistic analysis. In these studies,
the mean value and the standard deviation of the
system response were extensively investigated. This
was not the case for the failure probability because

MCS methodology requires a large number of calls of
the deterministic model to accurately calculate a small
failure probability.

This article presents a probabilistic analysis at
SLS of a strip footing resting on a spatially random
soil using subset simulation approach. The objective
is the computation of the probability Pe of exceeding
a tolerable vertical displacement under a prescribed
footing load. A footing of breadth b�2 m and
subjected to a central vertical load P�1000 kN/m
(i.e. an applied uniform vertical pressure qa�500 kN/
m2) was considered in the analysis. The Young’s
modulus was modelled by a random field and it was
assumed to follow a log-normal probability density
function. The mean value and the coefficient of
variation of the Young’s modulus were respectively
mE�60 MPa and COVE�15%. An exponential
covariance function (Equation 4) was used in this
article to represent the correlation structure of the
random field. The random field was discretised using
the K-L expansion. Although an isotropic random
field is often assumed in the literature (e.g. Fenton
and Griffiths 2002, 2005, Fenton et al. 2003), the
vertical autocorrelation length tends to be shorter
than the horizontal one due to the geological soil
formation process for most natural soil deposits (Cho
and Park 2010). A common ratio of about 1�10 for
these autocorrelation lengths can be used (Baecher
and Christian 2003). Notice, however, that in this
article, other values of this ratio were studied and
analysed in order to explore some interesting features
related to the autocorrelation lengths.

The performance function used to calculate the
probability Pe of exceeding a tolerable vertical
displacement was defined as follows:

G ¼ vmax � v (10)

where vmax is a prescribed tolerable vertical displace-
ment of the footing centre and v is the vertical
displacement of the footing centre due to the applied
pressure qa. The deterministic model used to calculate
the footing vertical displacement v was based on the
commercial numerical code FLAC. For this calcula-
tion, a footing of width b that rests on a soil domain of
width B and depth H was considered in the analysis
(Figure 2). In contrast to the case of random variables
where only one-half of the soil domain (and conse-
quently one-half of the footing) shown in Figure 2 may
be considered in the analysis, the entire soil domain
shown in Figure 2 was considered in this article. This is
because the random field creates non-symmetrical soil
movements. An optimal non-uniform but symmetrical
mesh composed of 750 zones was employed. In order
to accurately calculate the footing displacement, the

192 A. Ahmed and A.-H. Soubra

D
ow

nl
oa

de
d 

by
 [

B
ib

lio
th

eq
ue

 U
ni

ve
rs

ita
ir

e]
, [

A
bd

ul
-H

am
id

 S
ou

br
a]

 a
t 0

0:
25

 1
3 

Se
pt

em
be

r 
20

12
 



mesh was refined near the footing edges where high
stress gradient may occur. For the displacement
boundary conditions, the bottom boundary was
assumed to be fixed and the vertical boundaries were
constrained in motion in the horizontal directions.
Although this article presents an SLS analysis, the soil
behaviour was modelled by a conventional elastic-
perfectly plastic model based on Mohr-Coulomb
failure criterion in order to take into account the
possible plastification that may occur near the edges of
the foundation even under the service loads. The strip
footing was modelled by a linear elastic model. It is
connected to the soil via interface elements. The values
of the different parameters of the soil, footing and
interface are given in Table 1.

In order to calculate the footing vertical displace-
ment for a given realisation, (1) the vertical and
horizontal coordinates of the centre of each element
of the mesh were calculated; then, Equation (3) was
used to calculate the value of the Young’s modulus at
the centre of each element, (2) geostatic stresses were
applied to the soil, (3) the obtained displacements
were set to zero in order to obtain the footing
displacement due to only the footing applied pressure
and (4) the uniform vertical pressure was applied to
the footing and the vertical displacement at the
footing centre due to this pressure was calculated.

Numerical results

This section aims at presenting the probabilistic

numerical results. It is organised as follows: (1) the

minimal number M of terms of the K-L expansion

corresponding to a prescribed accuracy was deter-

mined, (2) the optimal number of realisations Ns per

level of subset simulation was chosen, (3) a parametric

study to investigate the effect of the horizontal and

vertical autocorrelation lengths of the random field

and the coefficient of variation of this random field on

Pe was presented and discussed and (4) a reliability-

based design and analysis of strip footings based on

some fragility curves was presented and discussed.
It should be mentioned that all subsequent

probabilistic results are presented based on non-

dimensional autocorrelation lengths Lln x and Lln y

where Lln x�lln x/b and Lln y�lln y/b. The non-

dimensionality of Lln x and Lln y was verified numeri-

cally for different cases and was found to be valid

when the ratio between the footing width and the

depth of the soil domain b/H is constant.

Optimal size of the K-L expansion

As mentioned earlier, the accuracy of the approxi-

mated random field depends on the size of the K-L

expansion (i.e. the number of terms M). Figure 3

presents the error estimate of the approximated

random field for the most critical configurations of

Lln x and Lln y used in this article, that is, for those

requiring greater number of terms in the K-L

expansion. These configurations correspond (as

will be shown later) to [(Lln x�5 and Lln y�0.25)

and (Lln x�2.5 and Lln y�0.5)] in case of anisotropic

random field and [(Lln x�Lln y�0.5) and (Lln x

�Lln y�1.5)] in case of isotropic random field.

Figure 3 indicates that the error estimate decreases

with the increase in the number of terms of the

K-L expansion. From this figure, for M�100

terms, the error estimate is less than 13% for the

previously mentioned cases except for the case of

Lln x�Lln y�0.5 where M:500 terms are required to

obtain such a small error. Notice that the

configurations used in this article correspond to

Lln x and Lln y values equal to or greater than the

aforementioned configurations. As a conclusion, the

number of terms of the K-L expansion will be set to

M�100 terms for all the probabilistic calculations

presented in this article except for the case of the

isotropic random field when Lln x and Lln y are less

than 1.5 where M will be set equal to 500 terms. This

ensures that for all the configurations considered in

this article, the error will be less than 13%.

Table 1. Shear strength and elastic properties of soil,

footing, and interface.

Variable Soil Footing Interface

C 20 kPa N/A 20 kPa

8 308 N/A 308
cs�2/3 8 208 N/A 208
E 60 MPa 25 GPa N/A

n 0.3 0.4 N/A
Kn N/A N/A 1 GPa
Ks N/A N/A 1 GPa

Figure 2. Soil domain and mesh used in the numerical
simulation.
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Selection of the optimal number of realisations Ns per
level of subset simulation

The number of realisations Ns to be used per level of

subset simulation should be sufficient to accurately

calculate the Pe value. This number should be greater

than 100 to provide a small bias in the calculated Pe

value (Honjo 2008). In order to determine the optimal

number of realisations Ns to be used per level,

different values of Ns (50, 100, 150, 200 and 250

realisations) were considered to calculate Pe. For each

Ns value, Pe computed by subset simulation was

compared to that obtained by MCS methodology

using N�20,000 realisations. The comparison was

carried out in Figure 4 at the different levels, that is,

at the different failure threshold Cj of the subset

simulation approach). A random field with Lln x�5

and Lln y�0.5 (called hereafter the reference case)

was considered herein. Notice that the failure thresh-

olds Cj of the different levels of the subset simulation

were calculated and presented in Table 2 for the

aforementioned values of Ns. This table indicates that

the failure threshold decreases with the successive

levels until reaching a negative value at the last level

which means that the realisations generated by the

subset simulation successfully progress towards the

limit state surface G�0. Notice that for a given Ns

value, the computation of Pe at a given level j of the

subset simulation is performed by using Equation (6).

However, in order to calculate Pe at this level by MCS

methodology, the performance function is set equal

to the corresponding failure threshold Cj. In this case,

the failure region is defined as G 5 Cj and the safety

region is defined as G�Cj. Thus, the value of Pe at a
given level j can be calculated as:

PðFjÞ ¼
1

N

XN
k¼1

IFj
ðGkÞ (11)

where Gk is the value of the performance function
corresponding to the kth realisation of MCS, IF ¼ 1 if
GkB Cj and IF ¼ 0 otherwise.

Figure 4a shows that for the case where Ns�50
realisations, Pe calculated by subset simulation is
different from that computed by MCS for the
different levels of subset simulation. This observation
is in conformity with the recommendation by Honjo
(2008) who suggested that Ns value should be at least
equal to 100. The difference between the Pe values
calculated by subset simulation and those computed
by MCS becomes smaller for larger Ns values (Figure
4b�e). For the cases where Ns]200 realisations
(Figure 4d,e), the failure probabilities calculated by
subset simulation were found to be very close to those
computed by MCS methodology for the different
levels of subset simulation. Consequently, Ns�200
realisations will be considered in the subsequent
probabilistic calculations. In this case, the final Pe

value [i.e. P(Fm) which corresponds to C�0 was
equal to 3.78�10�4]. This value is to be compared to
the value of 3.8�10�4 given by MCS. It should
be mentioned here that, since P(Fj) was chosen to be
equal to 0.1, four levels of subset simulation were
found necessary to arrive at the limit state surface
G�0 as may be seen from Table 2. Therefore, when
Ns�200 realisations, a total number of realisations
Nt�200�4�800 realisations were required to cal-
culate the final Pe value. In this case, the coefficient of
variation of Pe computed by subset simulation was
determined using the following equation:

COVPe
¼
Xm
j¼1

½COVPðFjÞ�
2

(12)

where COVPðFjÞ is the coefficient of variation at an
intermediate level j. Details on the computation of
COVPðFjÞ may be found in Au and Beck (2001, 2003).
When using 800 realisations, the COV of Pe

computed by subset simulation is equal to 0.51.
However, if one uses MCS with the same number of
realisations (i.e. 800 realisations), the value of COV of
Pe is equal to 1.81. This means that for the same
computational effort, the subset simulation approach
provides a smaller value of COVPe

than MCS.
Although the computation time of the 20,000

realisations by MCS is significant (about 70 days),

Figure 3. Error estimate versus the number of eigenmodes
for different values of Lln x and Lln y when H/b �3.
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this number of realisations remains insufficient to

assure an accurate Pe value with a small value of

COVPe
. In this article, the COVPe

for 20,000

realisations by MCS was found approximately 0.4.

As an alternative approach, one may determine the

optimal Ns value by comparing the Pe values given by

Figure 4. Comparison between the Pe values obtained by subset simulation and those obtain by MCS for five values of
Ns (vmax/b �2�10�2 and qa�500 kN/m2).
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subset simulation for increasing Ns values. The Ns

value beyond which Pe converges (i.e. slightly varies
with the increase of Ns) is the optimal Ns value. In the
present analysis, it was found that Pe converges when
Ns�200 realisations. This is because the final Pe

values (corresponding to C�0) are respectively equal
to 3.78�10�4 and 3.81�10�4 for Ns�200 and 250
realisations. The corresponding values of COVPe

are
equal to 0.51 and 0.43 which indicates (as expected)
that the COVPe

decreases with the increase in the
number of realisations. As a conclusion, this alter-
native procedure is recommended to determine the
optimal Ns value for the probabilistic analysis based
on subset simulation approach.

Parametric study

In this section, a parametric study is performed to
investigate the effect of the soil variability (coefficient
of variation and autocorrelation lengths of the
Young’s modulus) on Pe.

Figure 5 shows the effect of the autocorrelation
length on Pe in the case of an isotropic random field.
This figure also shows (for the same value of the
coefficient of variation) the value of Pe corresponding
to the case of a homogeneous soil. In this case, Pe was
calculated based on the assumption that, for a given
realisation, each element of the deterministic grid was
affected the same random value of the Young’s
modulus (i.e. the Young’s modulus was modelled as
a random variable and not as a random field). Figure
5 indicates that the increase in the autocorrelation
length (Lln x�Lln y) increases the Pe value. However,
the rate of increase decreases for the large autocorre-
lation lengths. This is because the random field tends
to the case of a homogeneous soil for great values of
the autocorrelation lengths (Lln x�Lln y�50) as
shown in Figure 6a. For smaller values of the
autocorrelation length, one obtains a soil heteroge-
neity which results in a variety of values of the
Young’s modulus beneath the footing (Figure 6b). In
this case, the soil under the footing contains some
zones with high values of the Young’s modulus and

other zones with small values of the Young’s modulus

(i.e. a mixture of stiff zones and soft zones). Due to

the high footing rigidity, the footing displacement is

resisted by the stiff soil zones under it; the soft soil

zones under the footing being of little effect in this

case. This leads to a small value of the footing vertical

displacement and consequently to a small value of Pe.

As a conclusion, for a given value of the coefficient of

variation, modelling the Young’s modulus as a

random variable rather than a random field is

conservative (Fenton and Griffiths 2002, 2005). This

is because the settlement predicted when assuming a

homogeneous soil is larger than that of a real soil for

which the parameters vary spatially.
In order to investigate the effect of the anisotropy

of the random field, Pe was computed and plotted

versus the horizontal and the vertical autocorrelation

lengths (Lln x and Lln y) in Figure 7 and 8, respectively.

Both figures show that Pe presents a maximum value

at a certain ratio of Lln x to Lln y. This observation can

be explained as follows:
Referring to Figure 7, the very small value of Lln x

creates a vertical multilayer composed of thin

Table 2. Evolution of the failure threshold Cj with the different levels j of the subset simulation and with the number of

realisations (Ns) per level

Number of realisations per level (Ns)

Failure threshold Cj for each level j 50 100 150 200 250

C1 0.0086 0.0077 0.0080 0.0076 0.0076
C2 0.0058 0.0048 0.0050 0.0041 0.0040
C3 0.0044 0.0015 0.0019 0.0011 0.0011

C4 0.0017 �0.0019 �0.0007 �0.0020 �0.0018
C5 �0.0015 � � � �

Figure 5. Effect of the autocorrelation length on Pe in case
of an isotropic random field (vmax/b �2�10�2 and qa�500
kN/m2).
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sub-layers each of which may have either a high or a
small value of the Young’s modulus (Figure 9a). This
variety of sub-layers leads to a small footing displace-
ment and consequently to a small value of Pe. The
small footing displacement occurs because the rigid
footing is resisted by the sub-layers having high
values of Young’s modulus beneath it; the sub-layers
having small values of Young’s modulus being of
little effect in this case. However, when Lln x is very
large, the problem becomes similar to that of the 1D
vertical random field. In this case, the Pe value is
smaller than that of the 2D case. This is because, for
large values of Lln x, one obtains a horizontal multi-
layer for which each sub-layer may have either a high
or a small value of the Young’s modulus (Figure 9b).
The sub-layers having high values of Young’s mod-
ulus reduce the footing displacement and thus lead to
smaller values of Pe. To check the fact that Pe tends
to that corresponding to a 1D random field as Lln x

gets larger and approaches infinity, the Pe corre-
sponding to the 1D vertical random field and that
corresponding to Lln x�5000 were calculated for the
three cases considered in Figure 7 (i.e. for Lln y�0.5,
1 and 1.5). These Pe values were compared to those

corresponding to the 2D random field in Table 3.

These results confirm that Pe tends to the value

corresponding to the 1D case as Lln x gets larger and

approaches infinity. Finally, for medium values of

Lln x, the soil contains a number of stiff zones

adjacent to a number of soft zones whose areas are

less extended than those corresponding to the case of

small and high values of Lln x (Figure 9e). This leads

to a larger footing displacement. As a result, Pe

reaches its maximum value for these intermediate

values of Lln x.
Referring to Figure 8, when Lln y is very small, one

obtains a horizontal multilayer composed of thin sub-

layers (Figure 9c). However, the large value of Lln y

creates a vertical multilayer and makes the random

field tend to the case of 1D horizontal random field

(Figure 9d). For medium values of Lln y, the soil is

composed of some zones with high values of Young’s

modulus and other zones with small values of Young’s

modulus (Figure 9e). For the three cases of small,

intermediate or high values of Lln y, the same explana-

tion given before for Figure 7 remains valid herein.

Figure 6. Gray-scale representation of the random field for two values of the autocorrelation length in case of an isotropic

random field.

Figure 7. Effect of the horizontal autocorrelation length on
Pe for different values of Lln y (vmax/b �2�10�2 and
qa�500 kN/m2).

Figure 8. Effect of the vertical autocorrelation length on Pe

for different values of Lln x (vmax/b �2�10�2 and qa�500
kN/m2).
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As a conclusion, the soil configuration gradually

changes from a vertical to a horizontal multilayer as

Lln x increases. Similarly, the soil configuration gra-

dually changes from a horizontal to a vertical multi-

layer as Lln y increases. The footing vertical

displacement is the largest for medium values of

Lln x or Lln y where the soil movements may occur

more easily. Consequently, the Pe presents a max-

imum value in this case.
Notice that the ratio of Lln x/Lln y for which Pe is

maximum depends on the values of the soil and

footing parameters (i.e. mE, n, c, 8, b). For the case

studied herein, this ratio is equal to 10. Notice finally

that for the same ratio of Lln x/Lln y but greater values

Figure 9. Gray-scale representation of the random field for different values of the autocorrelation lengths in case of an
anisotropic random field.

Table 3. Effect of Lln x on Pe for different values of Lln y.

Pe

Lln x Lln y�0.5 Lln y�1.0 Lln y�1.5

2.50 1.80�10�6 � �
4.00 1.79�10�4 � �
5.00 3.41�10�4 1.65�10�4 1.35�10�4

10.00 2.15�10�4 24.00�10�4 1.60�10�3

15.00 1.55�10�4 7.95�10�4 5.40�10�3

20.00 1.15�10�4 4.23�10�4 3.80�10�3

25.00 8.55�10�5 2.75�10�4 2.10�10�3

30.00 6.65�10�5 1.85�10�4 1.20�10�3

40.00 5.15�10�5 1.19�10�4 8.20�10�4

50.00 4.90�10�5 9.88�10�5 7.40�10�4

5000.00 3.20�10�5 5.85�10�5 3.65�10�4

One-dimensional 2.45�10�5 4.75�10�5 2.45�10�4
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of Lln x and Lln y, the maximum value of Pe was found
to be higher (Figure 7 and 8). This is due to the
simultaneous increase of the autocorrelation lengths
in both the vertical and the horizontal directions
which makes the Pe tend to that corresponding to the
case of the random homogeneous soil that does not
exhibit spatial variability. In this case, the Pe value is
equal to 2.41�10�2 (Figure 5). This value is greater
by more than one order of magnitude with respect to
the maximum value of Pe given in Figures 7 and 8
which is equal to 5.4�10�3. This clearly illustrates
the benefit of considering the soil spatial variability in
the analysis. The numerical results of Figures 7 and 8
also indicate that Pe is more sensitive to the vertical
autocorrelation length. This is because the rate of
change in Pe (i.e. rate of increase or decrease) when
increasing the vertical autocorrelation length by a
certain percentage is larger than that when increasing
the horizontal autocorrelation length by the same
percentage. For example, the increase of the vertical
autocorrelation length by 100% with respect to the
reference case (i.e. Lln x�5 and Lln y�0.5) decreases
the value of Pe by 51.6%. However, the increase of
the horizontal autocorrelation length by 100% with
respect to the reference case decreases the value of Pe

by only 36.9%.
The effect of the coefficient of variation of the

Young’s modulus on Pe was presented in Figure 10.
This figure indicates that, for both cases of isotropic
and anisotropic random fields, the increase in the
coefficient of variation of the Young’s modulus from
10% to 15% significantly increases the value of Pe.
The increase is greater than one order of magnitude
for both cases of isotropic and anisotropic autocor-
relation lengths. This means that careful experimental

investigations concerning the variability of this para-
meter are necessary to lead to reliable results.

Reliability-based design and analysis of strip footings

The probability that a certain level of damage (toler-
able vertical displacement) will be exceeded under a
given applied footing pressure can be expressed in the
form of fragility curves (e.g. Popescu et al. 2005).
Figure 11a presents several fragility curves corre-
sponding to three values of Poisson’s ratio (0.25, 0.3
and 0.35) and to three levels of damage [(1) minor
damage for which vmax/b�1.5�10�2, (2) medium
damage for which vmax/b�2.0�10�2 and (3)
major damage for which vmax/b�2.5�10�2] for the
reference case (i.e. Lln x�5 and Lln y�0.5). In this
figure, the footing pressure was normalised with
respect to the mean value of the Young’s modulus

Figure 10. Effect of COVE on the Pe value in case of (1)
anisotropic random field with Lln x�5 and Lln y�0.5 and
(2) isotropic random field with Lln x�Lln y�5.

Figure 11. Fragility curves for different values of Poisson’s
ratio and different values of the damage level.
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and the three damage levels were normalised with
respect to the footing breadth. The curves of Figure
11a can be employed to perform either an SLS
probabilistic analysis or an SLS probabilistic design
of strip footings. For the probabilistic analysis, this
figure allows one to determine the probability of
exceeding a tolerable vertical displacement corre-
sponding to a given value of the applied footing
pressure, to a given value of mE, to a given value of
Poisson’s ratio and to a given value of the prescribed
damage level. Concerning the footing design, Figure
11a can be employed to determine the footing pressure
(and consequently the footing breadth b) for a given
load, for a given mE value, for a given value of
Poisson’s ratio, for a prescribed damage level and
for a target probability of exceeding this damage level.
Figure 11a was plotted in a semi-log scale in Figure
11b to clearly identify the small Pe values at the
distribution tail. As an application example of these
curves, if mE�60 MPa, n�0.3 and a medium damage
with a target Pe value of 10�3 is allowed, qa/
mE�0.00833. Consequently, the footing pressure is
qa�0.00833�60�103�500 kN/m2. Hence the prob-
abilistic footing breadth required to support a given
footing service load Ps can be calculated as b�Ps/qa.

Conclusion

This article aims at presenting a probabilistic analysis
at SLS of a strip footing resting on a soil with
spatially varying Young’s modulus using subset
simulation approach. The footing is subjected to a
central vertical load. Compared to MCS methodol-
ogy, the use of subset simulation approach has
significantly reduced the number of calls of the
deterministic model. The main findings of this article
can be summarised as follows:

(1) � In case of isotropic random fields:
. The probability Pe of exceeding a tolerable

vertical displacement increases with the
increase of the autocorrelation length. For
large autocorrelation lengths, Pe was found
too close to that of a homogeneous random
soil (i.e. that corresponding to the case of a
random variable).

(2) � In case of anisotropic random fields:
. Pe presents a maximum value for a given

ratio of Lln x/Lln y. For greater values of
Lln x and Lln y, this maximum value of Pe

was found to be higher. At the limit, when
both Lln x and Lln y tend to infinity, one
obtains the Pe value corresponding to the
case of a random homogeneous soil.

. Pe is more sensitive to the vertical auto-
correlation length than the horizontal one.

(3) The increase of the coefficient of variation of
the Young’s modulus was found to signifi-
cantly increase the Pe value in both cases of
isotropic and anisotropic random fields. The
increase is greater than one order of magnitude
for both cases of isotropic and anisotropic
random fields when COVE increases from
10% to 15%. This means that careful experi-
mental investigations concerning the variability
of this parameter are necessary to lead to
reliable results.

References

Au, S.K. and Beck, J.L., 2001. Estimation of small failure

probabilities in high dimensions by subset simulation.

Probabilistic Engineering Mechanics, 16, 263�277.

Au, S.K. and Beck, J.L., 2003. Subset simulation and its

application to seismic risk based on dynamic analysis.

Journal of Engineering Mechanics, ASCE, 129 (8),

901�917.
Au, S.K., Cao, Z.J., and Wang, Y., 2010. Implementing

advanced Monte Carlo simulation under spreadsheet

environment. Structural Safety, 32 (5), 281�292.

Babu, S.G.L., Srivastava, A., and Murthy, D.S.N., 2006.

Reliability analysis of the bearing capacity of a shallow

foundation resting on cohesive soil. Canadian Geotech-

nical Journal, 43, 217�223.
Baecher, G.B. and Christian, J.T., 2003. Reliability and

statistics in geotechnical engineering. New York: Wiley.
Cho, S.E., 2010. Probabilistic assessment of slope stability

that considers the spatial variability of soil properties.

Journal of Geotechnical and Geoenvironmental Engi-

neering, ASCE, 136 (7), 975�984.
Cho, S.E. and Park, H.C., 2010. Effect of spatial variability

of cross-correlated soil properties on bearing capacity

of strip footing. International Journal for Numerical

and Analytical Methods in Geomechanics, 34, 1�26.
Fenton, G.A. and Griffiths, D.V., 2002. Probabilistic

foundation settlement on a spatially random soil.

Journal of Geotechnical and Geoenvironmental Engi-

neering, ASCE, 128 (5), 381�390.

Fenton, G.A. and Griffiths, D.V., 2003. Bearing capacity

prediction of spatially random c-f soils. Canadian

Geotechnical Journal, 40 (1), 54�65.
Fenton, G.A. and Griffiths, D.V., 2005. Three-dimensional

probabilistic foundation settlement. Journal of Geo-

technical and Geoenvironmental Engineering, ASCE,

131 (2), 232�239.

Fenton, G.A., Zhuo, H., Jaksa, M.B., and Griffiths, D.V.

2003. Reliability analysis of a strip footing designed

against settlement. In: A. Der Kiureghian, S. Madanat,

and J.M. Pestana, eds. Applications of statistics and

probability in civil engineering, Millpress, Rotterdam,

ISBN: 90 5966 004 8, 1971�1977.

200 A. Ahmed and A.-H. Soubra

D
ow

nl
oa

de
d 

by
 [

B
ib

lio
th

eq
ue

 U
ni

ve
rs

ita
ir

e]
, [

A
bd

ul
-H

am
id

 S
ou

br
a]

 a
t 0

0:
25

 1
3 

Se
pt

em
be

r 
20

12
 



Griffiths, D.V., Fenton, G.A., and Manoharan, N., 2006.
Undrained bearing capacity of two-strip footings on
spatially random soil. International Journal of

Geomechanics, 6 (6), 421�427.
Honjo, Y., 2008. Monte Carlo simulation in reliability

analysis. In: K.K. Phoon, ed. Reliability-based design

in geotechnical engineering: computations and
applications. Oxford: Taylor & Francis, 169�171.

Popescu, R., Deodatis, G., and Nobahar, A., 2005. Effect of
random heterogeneity of soil properties on bearing

capacity. Probabilistic Engineering Mechanics, 20,
324�341.

Santoso, A.M., Phoon, K.K., and Quek, S.T. 2010. Modified

Metropolis-Hastings algorithm with reduced chain-
correlation for efficient subset simulation. Probabilistic
Engineering Mechanics, 26 (2011), 331�341.

Soubra, A.-H., Youssef Abdel Massih, D., and Kalfa, M.

2008. Bearing capacity of foundations resting on a

spatially random soil. Proceedings of GeoCongress

2008, 9�12 March 2008, Orleans, Louisiana: Geotech-

nical Special Publication No. 178, Sponsored by GEO

Institute of ASCE.
Spanos, P.D. and Ghanem, R., 1989. Stochastic finite

element expansion for random media. Journal of

Engineering Mechanics ASCE, 115 (5), 1035�1053.
Sudret, B. and Berveiller, M., 2008. Stochastic finite

element methods in geotechnical engineering. In:

K.K. Phoon, ed. Reliability-based design in geotechni-

cal engineering: computations and applications. Oxford:

Taylor & Francis, 260�296.

Georisk 201

D
ow

nl
oa

de
d 

by
 [

B
ib

lio
th

eq
ue

 U
ni

ve
rs

ita
ir

e]
, [

A
bd

ul
-H

am
id

 S
ou

br
a]

 a
t 0

0:
25

 1
3 

Se
pt

em
be

r 
20

12
 




