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ABSTRACT 

In this paper, a numerical model that considers the spatial variability of the 
soil properties is presented to compute the probability density function (PDF) of the 
ultimate bearing capacity of strip footings resting on spatially random soils. An 
efficient uncertainty propagation methodology was employed in this paper. This 
methodology makes use of a sparse polynomial chaos expansion (SPCE) for the 
system response. The probabilistic numerical results have shown that (i) the 
autocorrelation distance has significant effect on the PDF of the bearing capacity, (ii) 
the probabilistic mean value of the bearing capacity presents a minimum for a given 
value of the ratio of the horizontal and vertical autocorrelation distances, (iii) the 
coefficient of variation of the cohesion parameter has a more significant influence 
than that of the friction angle on the variability of the response and finally (iv) the 
negative correlation between the soil shear strength parameters decreases the response 
variability. 

INTRODUCTION 

In this paper, the probability density function (PDF) of the ultimate bearing 
capacity of a shallow strip foundation resting on a spatially varying soil is computed 
using the sparse polynomial chaos expansion (SPCE) methodology. The deterministic 
model is based on numerical simulations using FLAC3D software. The soil cohesion 
and friction angle are considered as two anisotropic non-Gaussian cross-correlated 
random fields. The methodology proposed by Vořechovsky (2008) is used to generate 
the two random fields. The adaptive algorithm suggested by Blatman and Sudret 
(2010) to build up a SPCE is used to obtain a meta-model (i.e. an approximate 
analytical expression) of the ultimate bearing capacity. Finally, this meta-model is 
employed to perform the probabilistic analysis using Monte Carlo simulation 
technique. The paper is organized as follows: The first two sections aim at presenting 
the method used to generate the two random fields and the SPCE methodology 
employed to determine the analytical expression of the system response. They are 
followed by a presentation and a discussion of the probabilistic numerical results.  
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METHOD OF GENERATION OF ANISOTROPIC CROSS-CORRELATED 
NON-GAUSSIAN RANDOM FIELDS 

Let us consider two anisotropic non-Gaussian cross-correlated random fields 
( , )NG

iZ x y ( ,i c ϕ= ) described by: (i) constant means and standard deviations (μi, 
σi; ,i c ϕ= ), (ii) non-Gaussian marginal cumulative distribution functions Gi 
( ,i c ϕ= ), (iii) a target cross-correlation matrix CNG and (iv) a common square 
exponential autocorrelation function NG

Zρ [(x, y), (x', y')] which gives the values of the 
correlation function between two arbitrary points (x, y) and (x', y'). This 
autocorrelation function is given as follows: 

22
' '[( , ), ( ', ')] exp

Z

NG

x y

x x y yx y x y
a a

ρ
⎛ ⎞⎛ ⎞⎛ ⎞− −⎜ ⎟= − − ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

   (1) 

where ax and ay are the autocorrelation distances along x and y respectively. The 
Expansion Optimal Linear Estimation method (EOLE) and its extension to cover the 
case of correlated non-Gaussian random fields are used herein to generate the two 
random fields of c and φ. Notice that EOLE was first proposed by Li and Der 
kiureghian (1993) for the case of uncorrelated Gaussian fields, and then extended by 
Vořechovsky (2008) to cover the case of correlated non-Gaussian fields. In this 
method, one should first define a stochastic grid composed of q grid points (or nodes) 
{ }1 1( , ), ..., ( , )q qx y x y  for which the values of the field are assembled in a vector 

{ }1 1( , ), ..., ( , )q qZ x y Z x yχ = . Then, one should determine the correlation matrix 

for which each element ( )
,

;
i j

NG

χ χΣ  is calculated as follows: 

( )
,

; ( , ), ( , )
Zi j

NG NG
i i j jx y x yχ χ ρ ⎡ ⎤Σ = ⎣ ⎦       (2) 

The common non-Gaussian autocorrelation matrix 
;

NG
χ χ

Σ  and the target non-Gaussian 
cross-correlation matrix CNG should be transformed into the Gaussian space using 
Nataf model [Nataf (1962)] since the discretization of the random fields using EOLE 
is done in the Gaussian space. As a result, one obtains two Gaussian autocorrelation 
matrices ;

c
χ χΣ  and ;

ϕ
χ χΣ , and a Gaussian cross-correlation matrix C that can be used to 

discretize the two random fields as follows: 

( , );

,

1

( , ) . . ,
Z x y

j

DN
i j i i

i i i ji
j

Z x y µ i c
χ

κ
σ φ ϕ

λ=

= + Σ =∑%      (3)  

where ( , ; ,D
i j i cκ ϕ= ) are two cross-correlated blocks of independent standard normal 

random variables obtained using the Gaussian cross-correlation matrix C between the 
two fields [for more details, the reader may refer to Vořechovsky (2008)]. Notice 
finally that ( , ; ,

j

i i
j i cλ φ ϕ= ) in equation (3) are the eigenvalues and eigenvectors of 

the two Gaussian autocorrelation matrices ;
c
χ χΣ  and ;

ϕ
χ χΣ  respectively, and ( , );Z x y χΣ  

is the correlation vector between the random vector χ and the value of the field at an 
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arbitrary point (x, y). Once the two Gaussian random fields are obtained, they should 
be transformed into the non-Gaussian space by applying the following formula: 

{ }1( , ) ( , ) ,NG
i i iZ x y G Z x y i c ϕ− ⎡ ⎤= Φ =⎣ ⎦
% %      (4) 

where (.)Φ  is the standard normal cumulative density function. 

SPARSE POLYNOMIAL CHAOS EXPANSION (SPCE) METHODOLOGY 

The polynomial chaos expansion (PCE) methodology aims at replacing a 
complex deterministic model (i.e. finite element/finite difference numerical model) 
whose input parameters are modeled by random variables by a meta-model which 
allows one to calculate the system response using an approximate simple analytical 
equation [Huang et al. (2009), Blatman and Sudret (2010)]. The coefficients of the 
PCE are computed herein using a regression approach.  

For a deterministic numerical model with M input uncertain parameters, the 
uncertain parameters should first be represented by independent standard random 
variables { } 1,....,i i M

ξ
=

 gathered in a random vector ξ. The random response Γ of our 
mechanical model can then be expressed by a PCE of order p fixed by the user as 
follows: 

1

0 0
( ) ( ) ( )

P

PCE a aβ β β β
β β

ξ ξ ξ
∞ −

= =

Γ = Ψ ≅ Ψ∑ ∑        (5) 

Where P is the number of terms retained in the truncation scheme, aβ are the unknown 
PCE coefficients to be computed and βΨ  are multivariate (or multidimensional) 
Hermite polynomials which are orthonormal with respect to the joint probability 
distribution function of the standard normal random vector ξ. These multivariate 
polynomials can be obtained from the product of the one-dimensional Hermite 
polynomials [Huang et al. (2009)] as follows: 

1

( )
i

M

i

Hβ α ξ
=

Ψ = ∏          (6) 

where (.)
i

H α  is the αi-th one-dimensional Hermite polynomial and αi are a sequence 

of M non-negative integers{ }1 , ..., Mα α . In practice, one should truncate the PCE 
representation by retaining only the multivariate polynomials of degree less than or 
equal to the PCE order p. For this reason, a classical truncation scheme based on the 
determination of the first order norm is generally adopted in the literature. This first 

order norm is defined as follows: 
1

1

M

i
i

α α
=

=∑ . The classical truncation scheme 

suggests that the first order norm should be less than or equal to the order p of the 
PCE. Using this method of truncation, the number P of the unknown PCE coefficients 

is given by ( )!
! !

M pP
M p
+= . Thus, the number P of the PCE coefficients increases 

dramatically with the number M of the random variables and the order p of the PCE. 
To overcome such a problem, Blatman and Sudret (2010) have shown that the 
number of significant terms in a PCE is relatively small since the multidimensional 
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polynomials βΨ  corresponding to high-order interaction (i.e. those resulting from 
the multiplication of the 

i
H α with increasing αi values) are associated with very small 

values for the coefficients aβ. Thus, a truncation strategy based on this observation 
was developed by Blatman and Sudret (2010) in which the multidimensional 
polynomials βΨ  corresponding to high-order interaction were penalized. This was 
performed by considering the hyperbolic truncation scheme that considers the q-norm 

instead of the first order norm. The q-norm is given by 
1

1

qM
q
iq

i
α α

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑  where q is a 

coefficient (0<q<1). The hyperbolic truncation scheme suggests that the q-norm 
should be less than or equal to the order p of the PCE. In this formula, q can be 
chosen arbitrarily. Blatman and Sudret (2010) have shown that sufficient accuracy is 
obtained for 0.5q ≥ . Below this value, we may risk to reject some significant terms. 
The proposed methodology leads to a sparse polynomial chaos expansion SPCE that 
contains a small number of unknown coefficients which can be calculated from a 
reduced number of calls of the deterministic model. This is of particular interest in the 
present case of random fields which involve a significant number of random 
variables. This strategy will be used in this paper to build up a SPCE of the system 
response.  

The iterative procedure suggested by Blatman and Sudret (2010) for building 
up a SPCE can be described as follows: 
1. Prescribe a target accuracy 2

TARGETR , a coefficient q for the hyperbolic truncation 
scheme, and a maximal order p that the SPCE can reach. In this paper, a target 
accuracy 2 0.999TARGETR = , a coefficient q=0.7, and a maximal order p=5 were used.   
2. Consider a set of K realizations (in our case K=200) of the standard normal random 
vector ξ, called experimental design (ED) and collect the corresponding model 
evaluations in the vector Γ. Consider also an empty matrix A.  
3. Initialization (p=0): add to A the Ψ0 term corresponding to p=0 and which result 
from the multiplication of the Hαi where all the αi (i=0, 1, …, M) are equal to zero. 
4. Enrichment of the PCE basis (p = p+1): Two sub steps are performed within this 
step as follows: 

- Forward step: Add to A one by one the different Ψβ (which have not been 
considered before) that have a q-norm satisfying 1

q
p pα− ≤ ≤  and for which 

a significant increase in the coefficient of determination R2 is obtained. 
- Backward step: Discard from A the Ψβ terms [with a q-norm strictly less 
than p (i.e. 

q
pα < )] that lead to a negligible decrease in the coefficient of 

determination R2. 
One should note that the coefficient of determination R2 is used to check the goodness 
of fit of the SPCE [Blatman and Sudret (2010)]. The value 2 1R =  indicates a perfect 
fit of the true model response Γ, whereas 2 0R =  indicates a nonlinear relationship 
between the true model Γ and the SPCE model SPCEΓ . 

282GeoRisk 2011 © ASCE 2011 



 

5. Go to step 4 to perform an enrichment of the (ED) by adding some realizations of 
the vector ξ (in our case a block of 100 new realizations is added), if the regression 
problem is ill-posed. Otherwise go to step 6. 
6. Stop if either the target accuracy 2

TARGETR is achieved or if p reached the order fixed 
by the user, otherwise go to step 4. 

Once the unknown coefficients of the SPCE are determined, the PDF of the 
ultimate bearing capacity can be estimated. This can be done by simulating a large 
number of realizations (using Monte Carlo technique) of the standard normal 
variables on the meta-model.  

NUMERICAL RESULTS 

The aim of this section is to present the probabilistic results. It should be 
remembered here that the system response involves the ultimate bearing capacity of a 
rough rigid strip footing subjected to a symmetrical vertical load. The footing is 
placed on a weightless spatially varying frictional and cohesive (c, φ) soil with no 
surcharge loading on the ground surface. The friction angle φ is assumed to follow a 
beta distribution, and the cohesion c is assumed to be lognormally distributed. The 
mean values and coefficients of variation of the two random fields are given as 
follows: 20c kPaμ = , 25%cCov = ; 030ϕμ = , 10%Cov ϕ = . The deterministic model is 
based on numerical simulations using the finite difference code FLAC3D. The adopted 
soil domain considered in the analysis is 15m wide by 6m deep. It should be noted 
that the size of a given element in the mesh depends on the autocorrelation distances 
of the soil properties. Der Kiureghian and Ke (1988) have suggested that the length of 
the smallest element in a given direction (horizontal or vertical) should not exceed 0.5 
times the autocorrelation distance in that direction. For the boundary conditions, the 
horizontal movement on the vertical boundaries of the grid is restrained, while the 
base of the grid is not allowed to move in both the horizontal and the vertical 
directions. The rough strip footing of 2m width and 0.5m height is assumed to be 
weightless and it is supposed to follow an elastic linear material. As shown in Fig. 1, 
the spatial variability of the soil properties can produce (for a given realization) a 
non-symmetrical mechanism with a footing rotation although the footing is subjected 
to a symmetrical vertical load.  

Figure 2 presents the PDF of the footing rotation for a reference case 
considered in this paper for which ax=10m, ay=1m, and r(c, φ)=-0.5 where r(c, φ) is 

 
 

Figure 1.  Deformed mesh 
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Figure 2. PDF of the footing rotation 
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the cross-correlation coefficient between the two random fields. This figure shows 
that the footing rotation of a single realization is not null, but the mean value of all 
rotations for the whole realizations is null. The standard deviation is found to be equal 
to 1.6e-4. In the following sections, one examines the effect of the different 
probabilistic governing parameters of the two random fields on the PDF of the 
ultimate bearing capacity of the foundation. 

Effect of the autocorrelation distances ax and a y 

Figure 3 presents the PDF of the ultimate bearing capacity for different values 
of ay (ay=0.5, 0.8, 1, 2, 5, 8m) when ax=10m and r(c, φ)=-0.5.This figure shows that 
the PDF is less spread out when the vertical autocorrelation distance ay decreases. The 
variability of the ultimate bearing capacity decreases with the increase in the soil 
heterogeneity since the zone involved by the possible failure surface will have 
average values of the shear strength parameters close to the mean values of the two 
fields because of the large number of high and small values of the shear strength 
parameters. This leads to close values of the ultimate bearing capacity and thus to a 
smaller variability in the ultimate bearing capacity. Fig. 4 shows that the probabilistic 
mean value of the ultimate bearing capacity presents a minimum. 

 
This minimum was obtained when ay=1m, i.e. when the ratio between the horizontal 
and the vertical autocorrelation distances is equal to 10 for B=2m. When ay decreases 
from 8m to 1m, one can notice that the mean ultimate bearing capacity decreases. 
This can be explained by the fact that increasing the soil heterogeneity introduces 
weakness zones, thus leading to smaller bearing capacity. The increase in the ultimate 
bearing capacity for values of ay smaller than 1m may be explained by the fact that as 
the autocorrelation distance decreases, the weakest path becomes increasingly 
tortuous and its length is also longer. As a result, the failure mechanisms will start to 
look for shorter path cutting through higher values of the shear strength parameters. 
Figure 5 presents the PDF of the ultimate bearing capacity for different values of ax 
(ax=2, 4, 10, 20, 30, 50m) when ay=1m and r(c, φ)=-0.5. The same observations made 
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Figure 3.  Influence of ay on the PDF of 
the bearing capacity in the case where 

r(c, φ)=-0.5 and ax=10m 
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Figure 4. Influence of ay on the 
probabilistic mean in the case where 

r(c, φ)=-0.5 and ax=10m 
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before remain valid in the present case. Notice that beyond a value of ax=20m, the 
horizontal autocorrelation distance have a small effect on the variability of the 
ultimate bearing capacity. The minimum probabilistic mean value of the ultimate 
bearing capacity was obtained at the same ratio ax/ay found before [see Fig. 6]. 

   

Effect of the cross-correlation coefficient and the coefficients of variation of the 
random fields 

Figure 7 presents the PDF of the ultimate bearing capacity for negatively 
cross-correlated r(c, φ)=-0.5 and uncorrelated r(c, φ)=0 random fields when ax=10m 
and ay=1m. This figure shows that the PDF is less spread out in the case of a negative 
correlation between the two random fields. 

The negative correlation decreases the variability of the response because the increase 
of one parameter value implies a decrease in the value of the other parameter. Thus, 
the total shear strength slightly varies. This leads to a reduced variation in the 
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Figure 5.  Influence of ax on the PDF of 
the bearing capacity in the case where 

r(c, φ)=-0.5 and ay=1m 
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Figure 6. Influence of ax on the 
probabilistic mean in the case where 

r(c, φ)=-0.5 and ay=1m 

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

0 200 400 600 800 1000 1200 1400

Ultimate bearing capacity (kPa)

PD
F(

x1
0-3

)

r(c, φ)=-0.5

r(c, φ)=0

 
Figure 7. Influence of r(c, φ) on the 
PDF of the bearing capacity in the 

case where ax=10m and ay=1m 
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ultimate bearing capacity. It should be mentioned that the probabilistic mean value of 
the ultimate bearing capacity slightly increases when a negative correlation between 
the two random fields exists. 
Figure 8 presents the PDF of the ultimate bearing capacity for three configurations of 
the coefficients of variation. Notice that for the three cases, the cross-correlation 
coefficient and the autocorrelation distances are those of the reference case where r(c, 
φ)=-0.5, ax=10m, and ay=1m. Fig.8 shows that the PDF becomes more spread out 
when the coefficients of variation increase. The coefficient of variation of the 
cohesion parameter was found to have a more significant influence than that of φ on 
the variability of the system response. 

CONCLUSIONS 

The effect of the spatial variability of anisotropic cross-correlated non-
Gaussian shear strength parameters on the ultimate bearing capacity of a strip footing 
was studied. The deterministic model was based on numerical simulations using the 
finite difference code FLAC3D. An efficient uncertainty propagation methodology 
was employed in this paper. This methodology makes use of a non-intrusive approach 
to build up a sparse polynomial chaos expansion (SPCE) for the system response. 
This methodology allows one to compute the system response by an analytical 
expression and then determine the PDF of the system response by simulating a large 
number of realizations using the Monte Carlo technique. The main conclusions can be 
summarized as follows: (i) the spatial variability of soil properties produces a non-
symmetrical mechanism with a footing rotation although the footing is subjected to a 
symmetrical vertical load, but the mean value of all rotations for the whole 
realizations is null; (ii) the probabilistic mean of the ultimate bearing capacity 
presents a minimum for a given ratio of the horizontal and vertical autocorrelation 
distances; (iii) the negative correlation between the soil shear strength parameters 
decreases the response variability; (iv) the variability of the cohesion parameter has a 
more significant influence than that of the friction angle on the statistical moments of 
ultimate bearing capacity. 
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