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Abstract: A probabilistic analysis of vertically and obliquely loaded strip footings resting on a spatially varying soil is presented. The system
responses are the footing vertical and horizontal displacements. The deterministic computation of these system responses is based on numerical
simulations using the softwareFLAC3D. Both cases of isotropic and anisotropic random fields are considered for the soil elastic properties. The
uncertainty propagation methodology employed makes use of a nonintrusive approach to build up analytical equations for the two system
responses. Thus, a Monte Carlo simulation approach is applied directly on these analytical equations (not on the original deterministic model),
which significantly reduces the computation time. In the case of the footing vertical load, a global sensitivity analysis has shown that the soil
Young’s modulus E mostly contributes to the variability of the footing vertical displacement, the Poisson ratio being of negligible weight. The
decrease in the autocorrelation distances of E has led to a smaller variability of the footing displacement. On the other hand, the increase in
the coefficient of variation of E was found to increase both the probabilistic mean and the variability of the footing displacement. Finally, in the
inclined loading case, the results of the probability of failure against exceedance of a vertical and/or a horizontal footing displacement are
presented and discussed. DOI: 10.1061/(ASCE)GT.1943-5606.0001046. © 2013 American Society of Civil Engineers.
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Introduction

The effect of the spatial variability of the soil elastic properties
on the behavior of geotechnical structures was investigated by
several authors (Paice et al. 1996; Fenton and Griffiths 2002;
Nour et al. 2002; Jimenez and Sitar 2009; Elachachi et al. 2012,
among others). For the problem of shallow foundations, only the
footing vertical load case was considered in the analysis (see
Paice et al. 1996; Fenton and Griffiths 2002, 2008; Jimenez and
Sitar 2009). Also, only the case of an isotropic autocorrelation
distance of the soil elastic properties is generally adopted although
the soil is, in reality, anisotropic, because of the depositional and
post-depositional processes. The present paper fills these gaps.
It aims at investigating the probabilistic analysis of a strip foot-
ing resting on a spatially varying soil (where the soil Young’s modu-
lus E and Poisson ratio n were considered as anisotropic random
fields with different values for their horizontal and vertical au-
tocorrelation distances) and subjected to a vertical or an inclined
load.

When dealing with a probabilistic analysis that involves spa-
tially varying soil properties, Monte Carlo simulation (MCS)
methodology is generally used to determine the probability density
function (PDF) of the system response. This method is well known
to be a computationally expensive approach. This is because it
requires a great number of calls of the deterministic model (which

is generally based on a FEM or a finite-difference method). To
overcome the inconvenience of the time cost, this paper presents
a more efficient probabilistic approach called sparse polynomial
chaos expansion (SPCE) (Blatman and Sudret 2010), which sig-
nificantly reduces the number of calls of the deterministic model.
Note that the sparse polynomial chaos expansion is an extension of
the polynomial chaos expansion (PCE). A PCE or a SPCE meth-
odology aims at replacing the deterministic model, which may
be an analytical model or a finite-element/finite-difference model
by a metamodel (i.e., a simple analytical equation). Within the
framework of the PCE or the SPCE methodology, the PDF of the
system response and/or the failure probability against a prescribed
threshold can be easily obtained. This is because MCS is no longer
applied on the original computationally expensive deterministic
model, but on the metamodel. The other significant advantage
of the present SPCE methodology is that it allows one to easily
perform a global sensitivity analysis based on Sobol indexes.
These indexes give the contribution of each random field to the
variability of the system response.

In a first stage, the results of the vertical load case are presented:
A global sensitivity analysis based on Sobol indexes was performed
to detect the most influential soil elastic property (E or n) that has
a significant weight in the variability of the system response. Then,
a probabilistic parametric study was undertaken using only the
random field, which has a significant weight in the variability of the
system response. The aim of this study is to determine the effect of
the different governing statistical characteristics (autocorrelation
distances and coefficient of variation) of the most influential
random field on the PDF of the footing vertical displacement.
In a second stage, the numerical results of the inclined load case
where the probabilities of failure against exceedance of prescribed
vertical and/or horizontal footing displacements are presented and
discussed.

The paper is organized as follows. The next section aims at
presenting the probabilistic analysis. It is followed by the numerical
results. The paper ends with a conclusion.
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Probabilistic Analysis

The aim of this section is the probabilistic analysis of vertically
and obliquely loaded strip footings resting on a spatially vary-
ing soil. The system responses are the footing vertical and horizontal
displacements. The deterministic computation of these system re-
sponses is basedonnumerical simulationsusing the softwareFLAC3D.
The soil Young’s modulus E and Poisson ratio n were considered as
two anisotropic random fields. They were characterized by a com-
mon square exponential autocorrelation function (see Popescu et al.
2005) and by two log-normal (LN) probability density functions.
The log-normal distribution forE and n has been selected because of
its mathematical convenience. The expansion optimal linear esti-
mation (EOLE) method proposed by Li and Der Kiureghian (1993)
was used to discretize the two random fields. The SPCE meth-
odology was employed to approximate the system response by an
analytical equation and to perform the probabilistic analysis. Fi-
nally, global sensitivity analysis based on Sobol indexes was
performed to determine the weight of each random field in the
variability of the system response.

Discretization of a Nonisotropic Log-Normal
Random Field

Consider a two-dimensional nonisotropic log-normal random field
ZLN described by a log-normal marginal cumulative distribution
function FG, and a square exponential autocorrelation function
rLNZ ½ðx, yÞ, ðx9, y9Þ� that gives the values of the correlation between
two arbitrary points (x, y) and (x9, y9). Note that this function is given
as follows:

rLNZ
�ðx, yÞ, ðx9, y9Þ� ¼ exp

"
2

�jx2 x9j
ax

�2

2

�jy2 y9j
ay

�2
#

(1)

where ax and ay 5 autocorrelation distances along x and y, re-
spectively. The EOLE method proposed by Li and Der Kiureghian
(1993) to discretize a random field is used herein. In thismethod, one
should first define a stochastic grid composed of s grid points (or
nodes) and determine the log-normal autocorrelation matrix

PLN ,
which gives the correlation between each grid point of the stochastic
mesh and the other grid points of this mesh using Eq. (1). The log-
normal autocorrelation matrix

PLN should then be transformed
into the Gaussian space using the Nataf transformation (see Nataf
1962). As a result, one obtains a Gaussian autocorrelation matrixPG that can be used to discretize the Gaussian random field Z as
follows:

~Zðx, yÞ≅mlnZ þ slnZ
PN
j¼1

jjffiffiffiffi
lj

p .
�
fj

�T
V (2)

where mlnZ and slnZ 5 mean and SD values of the underlying
normal distribution [i.e., lnðZÞ]; (lj,fj) 5 eigenvalues and eigen-
vectors of the Gaussian autocorrelation matrix

PG;V5 correlation
vector between the value of the field at an arbitrary point (x, y) and its
values at the different grid points; jj ð j5 1, . . . ,NÞ 5 vector of
standard normal random variables; and N 5 number of terms
(expansion order) retained in the EOLE method. This number N is
obtained by sorting the eigenvalues lj ð j5 1, . . . , sÞ in a descending
order, and by choosing the number N of eigenmodes leading to
a variance of the error that is smaller than a prescribed tolerance
ɛ (ɛ� 10% in this paper). Note that the variance of the error for
EOLE is given by Li and Der Kiureghian (1993) as follows:

Var
�
Zðx, yÞ2 ~Zðx, yÞ� ¼ s2

lnZ

(
12

PN
j¼1

1
lj

h�
fj

�T
V
i2)

(3)

where Zðx, yÞ and ~Zðx, yÞ 5 exact and approximate values, respec-
tively, of the random fields at a given point (x, y); and ðfjÞT 5 trans-
pose of the eigenvector fj. Note finally that ðfjÞT and V in Eq. (3)
are two vectors of dimensions (13 s) and (s3 1), respectively.

Once the Gaussian random field is obtained, it should be trans-
formed into the log-normal space by exponentiating the approxi-
mated Gaussian random field ~Zðx, yÞ given by Eq. (2).

Methodology Used for the Output Approximation

In this section, one first presents the polynomial chaos expansion
and then its extension, the sparse polynomial chaos expansion. The
polynomial chaos expansion methodology allows one to approxi-
mate a complex deterministic model by an analytical equation
(called hereafter themetamodel). Thus, the system response may be
calculated (when performing the probabilistic analysis by MCS)
using a simple analytical equation (not the original deterministic
model). Within the PCE methodology, the system response G of
a deterministic model withM random variables can be expressed by
an analytical equation as follows:

GPCEðjÞ ¼ P‘
b¼0

abCbðjÞ≅ PP21

b¼0
abCbðjÞ (4)

where P 5 number of terms retained in the truncation scheme;
j5 fjigi51,...,M 5 vector of M independent standard random var-
iables that represent the M random variables; ab 5 unknown
coefficients to be computed; and Cb 5 multivariate Hermite poly-
nomials. These multivariate Hermite polynomials can be obtained
from the product of one-dimensional (1D) Hermite polynomials
as follows:

Cb ¼ ∏
M

i¼1
HaiðjiÞ (5)

whereai ði5 1, . . . ,MÞ5 sequence ofM nonnegative integers; and
Haið. Þ5ath

i 1D Hermite polynomial. The expressions of the 1D
Hermite polynomials are given in Appendix I. The coefficients ab of
the PCEmay be efficiently computed using a nonintrusive technique
where the deterministic calculations are done using, for example,
afinite-element/finite-difference software treated as a black box. The
most used nonintrusive method is the regression approach (e.g.,
Isukapalli et al. 1998; Huang et al. 2009; Blatman and Sudret 2010;
Li et al. 2011;Mollon et al. 2011, 2013;Houmadi et al. 2012;Ahmed
and Soubra 2012; Al-Bittar and Soubra 2013). This method is used
in the present work. The deterministic calculations used in this
method are based (in this paper) on numerical simulations using
FLAC3D software.

In fact, for a PCE of order p, only the multivariate polynomials
Cb of degree# p should be retained. This leads to a number P [see
Eq. (4)] of the unknown PCE coefficients 5 ðM1 pÞ!=M!p!. It
should be noted that the number of the PCE coefficients to be
computed grows dramatically with the size M of the input random
vector and the PCE order p. When dealing with random fields as is
the case in the present paper (and especially when considering small
values of the autocorrelation distances), the discretization of the
random fields by EOLE may lead to a significant number of random
variables, which makes the determination of the PCE coefficients
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unfeasible because of the significant increase in the number of calls
of the deterministic model. To address such a problem, the sparse
polynomial chaos expansion developed by Blatman and Sudret
(2010) is used herein. Indeed, Blatman and Sudret (2010) have
shown that the number of significant terms in a PCE is relatively
small because the multivariate polynomialsCb corresponding to
high-order interaction (i.e., those resulting from the multiplica-
tion of the Hai with increasing ai values) are associated with very
small values for the coefficients ab. Based on this observation,
these authors have proposed a truncation strategy (called the
hyperbolic truncation scheme) which suggests that the q-norm
kakq should be less than or equal to the order p of the PCE. The
q-norm is given by

kakq ¼
"PM
i¼1

ðaiÞq
#1=q

(6)

where q5 coefficient (0, q, 1). In this formula, q can be chosen
arbitrarily. Blatman and Sudret (2010) have shown that sufficient
accuracy is obtained for q$ 0:5.

The proposed SPCE methodology leads to a sparse polynomial
chaos expansion that contains a small number of unknown coef-
ficients, which can be calculated from a reduced number of calls of
the deterministic model with respect to the classical PCE method-
ology. Note that the SPCE methodology as proposed by Blatman
and Sudret (2010) is based on an iterative procedure to arrive to
a minimal number for the SPCE coefficients. This procedure is used
in this paper to build up an SPCE of the system response. For more
details on this iterative procedure, the reader may refer to Blatman
and Sudret (2010) [see also the flowchart presented in Al-Bittar
(2012) and Al-Bittar and Soubra (2013)]. Once the coefficients ab
have been computed, the PDF of the system response and the
corresponding statistical moments (mean, SD, skewness, and kur-
tosis) can be calculated with no additional cost using themetamodel.

Regression Approach
Consider a set of K realizations fjð1Þ 5 ðj1,...,jMÞ, . . . , jðKÞ
5 ðj1, . . . , jMÞg of the standard normal random vector j. These
realizations are called experimental design and can be obtained from
Monte Carlo simulations. It is noted that G5 fGðjð1ÞÞ, . . . ,GðjðKÞÞg
is a vector containing the corresponding values of the response. The
computation of the SPCE coefficients using the regression approach
is performed using the following equation:

a
_ ¼ �

hTh
�21

hTG (7)

where the matrix h is defined by

hib ¼ Cb

	
jðiÞ



, i ¼ 1, . . . ,K, b ¼ 0, . . . , J2 1 (8)

where J 5 number of the retained SPCE coefficients. To ensure the
numerical stability of the treated problem in Eq. (7), the sizeK of the
experimental design must be selected in such a way that the matrix
ðhThÞ21 iswell-conditioned. This implies that the rank of thismatrix
should be larger than or equal to the number of unknown coef-
ficients. This test was systematically performed while solving the
linear system of equations of the regression approach. Note finally
that the quality of the output approximation via an SPCE closely
depends on the SPCE order p. To ensure a good fit between the
metamodel and the true deterministic model (i.e., to obtain the
optimal SPCE order), one successively increases the SPCE order

until a prescribed accuracy was obtained. In this paper, the co-
efficient of determinationQ2 is used (see Blatman and Sudret 2010).
This coefficient of determination is more efficient than the classical
coefficient of determination R2, because it allows one to check the
metamodel’s capability of correctly predicting themodel response at
any point that does not belong to the experimental design.

Global Sensitivity Analysis

Once the SPCE coefficients are determined, a global sensitivity
analysis based on Sobol indexes can be easily performed. Note
that the first-order Sobol index of a given random variable
ji ði5 1, . . . ,MÞ gives the contribution of this variable in the var-
iability of the system response. The first-order Sobol index is given
by Saltelli et al. (2000) and Sobol (2001) as follows:

SðjiÞ ¼
var

�
EðGjjiÞ

�
varðGÞ (9)

whereG5 system response; EðGjjiÞ5 expectation of G conditional
on a fixed value of ji; and var 5 variance. In the present paper, the
system response is represented by an SPCE. Thus, by replacing G in
Eq. (9) with the SPCE expression, one obtains the Sobol index
formula as a function of the different terms of the SPCE (Sudret
2008). This formula is given by

SðjiÞ ¼
P

b2 Ii

�
ab

�2
E
h�
Cb

�2i
PP21

b¼0

�
ab

�2
E
h�
Cb

�2i (10)

whereab 5 obtained SPCE coefficients;Cb 5multivariate Hermite
polynomials; E½. �5 expectation operator; and E½ðCbÞ2� is given by
Sudret (2008) as follows:

E
h�
Cb

�2i ¼ ∏
M

i¼1
ai! (11)

whereai 5 same sequence ofM nonnegative integers fa1, . . . ,aMg
used in Eq. (5). Note, finally, that Ii, which appears in the numerator
of Eq. (10), denotes the set of indexes b for which the corresponding
Cb terms are only functions of the random variable ji (i.e., they only
contain the variable ji). In the present paper where random fields
are involved, the Sobol index of a random field is computed as the
sum of the Sobol indexes of the different variables that represent
this field.

To illustrate the construction of a PCE and the derivation of the
equations providing Sobol indexes, an illustrative example of a PCE
of order p5 3 using only M5 2 random variables (j1 and j2) is
presented in Appendix II.

Numerical Results

Once the coefficients ab have been computed using the regres-
sion approach, the PDF of the system response and/or the failure
probability against a prescribed threshold can be calculated with
no additional cost. This is performed by generating a large number
of realizations of the standard normal random vector ji ði
5 1, . . . ,MÞ and by computing the corresponding system re-
sponses using themetamodel. The following sections are devoted
to the numerical results of both the vertically and obliquely
loaded footings.
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Case of a Vertically Loaded Footing

The aim of this section is to present the probabilistic numerical
results of a shallow strip footing resting on a spatially varying soil
and subjected to a central vertical load (Pv). Both the soil Young’s
modulus and Poisson ratio were firstly considered as random fields
to determine the weight of each random field in the variability of the
system response.Note that the same autocorrelation function (square
exponential) was used for both randomfields. TheYoung’smodulus
E of the soil was assumed to be log-normally distributed. Its mean
value and coefficient of variation (referred to in this paper as ref-
erence values) were taken as mE 5 60 MPa, COVE 5 15%. Simi-
larly, the Poisson ratio y was assumed to be log-normally distributed
with a mean value and a coefficient of variation given as mn 5 0:3,
COVv 5 5%.As for the autocorrelation distances ax and ay of the soil
random fields (E and y), both cases of isotropic (i.e., ax 5 ay) and
anisotropic (i.e., ax#ay) autocorrelation distances will be treated
although the soil is rarely isotropic in reality. For the isotropic case,
a range of 1.5–100 m was considered. For the anisotropic case, El-
Ramly et al. (2003) have shown that ax is within a range of 10–40m,
while ay ranges from 1 to 3 m. These values are in accordance with
those given by Phoon and Kulhawy (1999). In our study, the refer-
ence values adopted for ax and ay were ax 5 10 m and ay 5 1 m
while the wide ranges of 2–50 and 0.5–50 m were considered, re-
spectively, for ax and ay when performing the parametric study. As
may be seen from Fig. 1, for a given soil variability, the variance of
the error decreases with the increase in the numberN of eigenmodes
(i.e., random variables). For the different autocorrelation distances,
the total number N of random variables (or eigenmodes) that should
be used to discretize the two random fields within the prescribed
value of 10% for the variance of the error is presented in Table 1.
As may be seen from this table, the smaller values of the auto-
correlation distance (ax, ay or ax 5 ay) require a greater number of
eigenmodes (random variables) to arrive to the prescribed value of
the variance of the error.

The deterministic model was based on numerical simulations
using the finite-difference code FLAC3D. Even though a service
load is considered, the soil behavior was modeled using a con-
ventional elastic-perfectly plastic model based on aMohr-Coulomb
failure criterion to consider the plasticity that may occur at the
footing corners. Note that the soil cohesion c, the soil angle of
internal friction w, and the soil dilation angle c were assumed to
be deterministic because the footing vertical displacement is not very
sensitive to these variables. Their corresponding values were, re-
spectively, c5 20 kPa, w5 30�, and c5 20�. Concerning the foot-
ing, a weightless strip foundation of 2-m width and 0.5-m height

was used. It was assumed to follow an elastic linear model (E
5 25GPa, n5 0:4). The connection between the footing and the soil
mass was modeled by interface elements having the same mean
values of the soil shear strength parameters to simulate a perfectly
rough soil-footing interface. These parameters have been considered
as deterministic in this study. Concerning the elastic properties of the
interface, they also have been considered as deterministic and their
values were Ks 5 1GPa and Kn 5 1GPa, where Ks and Kn 5 shear
and normal stiffness of the interface, respectively. Finally, note
that the footing was subjected to a vertical applied pressure
qa 5 500 kPa.

As shown in Fig. 2, the adopted soil domain considered in the
analysis is 15 m wide3 6m deep. It should be noted that the size
of a given element in the deterministic mesh depends on the auto-
correlation distances of the soil properties. Der Kiureghian and Ke
(1988) have suggested that the length of the largest element of the
deterministic mesh in a given direction (horizontal or vertical)
should not exceed 0.5 times the autocorrelation distance in that
direction. To respect this criterion for the different autocorrelation
distances studied in this paper, two different deterministic meshes
were considered in FLAC3D: the first one was devoted to the case
of moderate to great values of the autocorrelation distances (i.e.,
when ax $ 10m and ay $ 1m) [see Fig. 2(a)], and the second one

Fig. 1. Number N of eigenmodes needed in the EOLE method: (a) isotropic case; (b) anisotropic case

Table 1. Number of Random Variables Used to Discretize the Random
Field E or y for both Cases of Isotropic and Anisotropic Autocorrelation
Distances

Values of ax and ay

Total number of random variables used
to discretize the Young’s modulus or

the Poisson ratio random field

Isotropic case
ax 5 ay 5 1:5m 35
ax 5 ay 5 1:8m 30
ax 5 ay 5 2m 25
ax 5 ay 5 3m 12
ax 5 ay 5 5m 10
ax 5 ay $ 10m 5

Anisotropic case
ax 5 10m, ay $ 1m 12
ax 5 10m, ay 5 0:8m 15
ax 5 10m, ay 5 0:5m 22
ax 5 4m, ay 5 1m 24
ax 5 2m, ay 5 1m 44
ax $ 10m, ay 5 1m 12

© ASCE 04013043-4 J. Geotech. Geoenviron. Eng.
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for the small values of the autocorrelation distances [i.e., when
1:5m# ax , 10mor 0:5m# ay , 1m; see Fig. 2(b)]. On the other
hand, Li and Der Kiureghian (1993) have shown that the number
of grid points in the stochastic mesh strongly depends on the au-
tocorrelation distances. These authors have shown that a ratio of
about lRF=a5 1=5 provides a sufficient accuracy in terms of the
variance of the error where lRF is the typical element size in the
stochastic grid and a is the autocorrelation distance. This condition
has been considered when constructing the stochastic mesh. For the
boundary conditions of the deterministic mesh, the horizontal
movement on the vertical boundaries of the grid was restrained,
while the base of the grid was not allowed to move in both the
horizontal and the vertical directions.

The procedure used herein to perform the probabilistic analysis is
presented for the reference case study (i.e., when ax 5 10m and
ay 5 1m) considering both the Young’s modulus E and the Poisson
ratio y as random fields. A similar procedure was used when con-
sidering a single random field in the parametric study section. This
procedure can be summarized as follows: one needs to discretize the
two random fields E and y using the EOLE method. An arbitrary
number of realizations K5 200 (for each one of the two random
fields E and y) was performed using theMCS technique to construct
the experimental design. The numberK is an initial (arbitrary) value
because the iterative algorithm by Blatman and Sudret (2010)
suggests to automatically add other simulations (an arbitrary number
of K95 100 realizations was taken in this paper) each time the
regression problem is ill-posed. The use of a relatively large number
of the added points is suggested to avoid several posttreatments
because this becomes time-consuming. The algorithm stops if either
the target accuracyQ2

TARGET is achieved or the SPCE order p reached
a maximal prescribed value fixed by the user. In this paper, a target
accuracy Q2

TARGET 5 0:999, a value of q5 0:7 [in Eq. (6)], and
a maximal SPCE order 5 5 were used. Note that for all the cases

studied hereafter, the algorithmhas stoppedwhen the target accuracy
Q2

TARGET was reached. The corresponding order of the SPCE was
5 3. For some illustrative autocorrelation distances used in the
paper, the number of the classical PCE coefficients, the number of
coefficients retained in the SPCE, and the number of calls of the
deterministic model needed to construct this SPCE (i.e., metamodel)
are presented in Table 2. From this table, one can see that the number
of the retained coefficients increases when the autocorrelation
distance decreases. Thus, the most significant time cost corresponds
to the cases of largely heterogeneous soil masses. As may be seen
from Table 2, a significant reduction in the number of coefficients
(and consequently in the number of calls of the deterministic
model) can be obtained using the SPCE. This greatly facilitates the
solution of the problem of random fields.

Fig. 3 depicts (for the reference case study presented in Table 1
where ax 5 10m and ay 5 1m) the values of Sobol indexes for the
24 random variables (12 random variables per random field). The
first 12 random variables (i.e., ji for i5 1, . . . , 12) correspond to the
Young’s modulus random field and the last 12 random variables
(i.e., ji for i5 13, . . . , 24) are those corresponding to the Poisson
ratio random field. Fig. 3 shows that only three random variables
(j1, j2, and j4) of the Young’s modulus random field are the most
influential (they involve 98.4% of the response variance). The
Poisson ratio random field has a quasi-negligible weight in the
variability of the system response (0.14% of the system variance).
For this reason, it can be considered as deterministic in the fol-
lowing section. This greatly facilitates the probabilistic analysis
because it reduces by half the computation time.

It should be noted that although the three random variables
(j1, j2, and j4) of the Young’s modulus are the most influential, j1
(which corresponds to the first eigenmode) is the most predominant
one because it involves 94% of the response variance. Note that the
first eigenmode is symmetrical with respect to the vertical axis of the
footing. It has its maximal values along this vertical axis (figure not
shown herein). The two other eigenmodes (corresponding to j2 and
j4) provide small additional fluctuations to the first eigenmode and
thus, they do not significantly contribute to the values of theYoung’s
modulus random field at the different points of the soil mass. This
observation can be explained by the fact that the system response
(i.e., the vertical displacement) is a quantity that depends on the
average distribution of the spatially varying Young’s modulus over
the entire domain and it is therefore quite insensitive to the small-
scale fluctuations of the Young’s modulus.

Probabilistic Parametric Study
The aim of this section is to study the effect of the different statistical
governing parameters of the Young’s modulus random field

Fig. 2.Mesh used for the computation of the footing displacement: (a)
for moderate to great values of the autocorrelation distances (ax $ 10m
and ay $ 1m); (b) for small values of the autocorrelation distances
(ax , 10m or ay , 1m)

Table 2. Number of Classical PCE Coefficients, Number of Coefficients Retained in the Sparse Polynomial Chaos Expansion, and Number of Calls of the
Deterministic Model for both Cases of Isotropic and Anisotropic Autocorrelation Distances

Values of ax and ay

Number of the classical PCE
coefficients

Number of coefficients retained in the
sparse polynomial chaos expansion

Number of calls of the deterministic
model

Isotropic
ax 5 ay 5 1:5m 8,436 5,516 8,000
ax 5 ay 5 100m 56 26 200

Anisotropic
ax 5 10m, ay 5 0:5m 2,300 1,340 2,000
ax 5 10m, ay 5 1m 455 186 300
ax 5 10m, ay 5 50m 455 26 200
ax 5 2m, ay 5 1m 16,215 8,500 10,000
ax 5 50m, ay 5 1m 455 147 200

© ASCE 04013043-5 J. Geotech. Geoenviron. Eng.
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(autocorrelation distances and coefficient of variation) on the PDF of
the footing vertical displacement.

Effect of the Autocorrelation Distance of the Young’s
Modulus: Isotropic Case
Fig. 4 provides the PDFs of the footing vertical displacement
for different values of the isotropic autocorrelation distance ax
5 ay ðax 5 ay 5 1:5, 1:8, 2, 3, 5, 10, 50, and 100 mÞ and for the case
of the random variable where the soil is assumed to be homogeneous
with the same value of the coefficient of variation as that of the
random field. Table 3 presents the four statistical moments for the
cases presented in this figure. As expected, the PDF and the sta-
tistical moments corresponding to a great value of the autocorre-
lation distance (ax 5 ay 5 100m) are similar to those given by the
case of random variable. This is because the case of a random
variable can be considered as the limiting case of a random field
with an infinite value of the autocorrelation distance.

Fig. 4 shows that the PDF is less spread out when the auto-
correlation distance decreases. For the very large values of the
isotropic autocorrelation distance ax 5 ay 5 100m, the coefficient of
variation of the footing vertical displacement tends to a constant
maximal value (see Table 3), which is the value corresponding to
the case of a random variable. In this case, the different values of
the Young’s modulus of a given realization are perfectly correlated.
This means that for a given simulation, a single value of the Young’s
modulus affects the entire soil domain [see Fig. 5(a)]. This value is
chosen according to the prescribed PDFof theYoung’smodulus and
thus it may vary in the range of values imposed by this PDF. This
leads to a large variability of the footing vertical displacement. The
large value of the variability is because one obtains a large variety of
low, intermediate, and high values of the soil Young’smodulus from
simulation to another one. The decrease in the autocorrelation
distances from infinity to a finite value (moderate or small where
ax 5 ay # 10m) limits the correlation (in a given simulation) to
afinite zone,which leads to several zoneswith different values of the
Young’s modulus over the entire soil domain. This means that in
a single simulation, one obtains a set of weak and strong zones for
which the position may change from simulation to another one [see
Fig. 5(b)]. The case of moderate-to-small values of ax 5 ay leads to

Fig. 3. Sobol indexes of the two random fields [the Young’s modulus
for jiði5 1, . . . , 12Þ and the Poisson ratio for jiði5 13, . . . , 24Þ] Fig. 4. Influence of the isotropic autocorrelation distance ax 5 ay on

the PDF of the footing vertical displacement

Table 3. Effect of Isotropic Autocorrelation Distance ax 5 ay on
Statistical Moments (m, s, du, and ku) of Footing Vertical Displacement

Values of ax and ay

m3 1023

(m)
s3 1023

(m) COV% du ku

ax 5 ay 5 1:5m 29.4 1.8 6.12 0.0929 0.0121
ax 5 ay 5 1:8m 29.4 2.0 6.80 0.1877 0.0515
ax 5 ay 5 2m 29.4 2.2 7.48 0.2301 0.0737
ax 5 ay 5 3m 29.4 2.8 9.52 0.3268 0.1493
ax 5 ay 5 5m 29.5 3.5 11.86 0.3909 0.2760
ax 5 ay 5 10m 29.5 4.1 13.90 0.4344 0.3279
ax 5 ay 5 50m 29.5 4.4 14.92 0.4682 0.4054
ax 5 ay 5 500m 29.5 4.4 14.92 0.4684 0.4103
Random variable 29.5 4.4 14.92 0.4680 0.4100

Fig. 5. Typical realizations of the Young’s modulus random field for
three values of the isotropic autocorrelation distance: (a) ax 5 100 m
and ay 5 100 m; (b) ax 5 3 m and ay 5 3 m; (c) ax 5 1:5 m and
ay 5 1:5 m

© ASCE 04013043-6 J. Geotech. Geoenviron. Eng.
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a decrease in the variability of the footing vertical displacement
because the cases of very high or very small footing vertical dis-
placement are now absent, and because the presence of the soil
heterogeneity (zones of weak and strong soil) will produce
a somewhat close global behavior of the footing movement be-
cause of the averaging phenomenon over the zone influenced by the
footing [see Fig. 5(c)]. The decrease in the variability of the footing
vertical displacement becomes the most significant for the case of
a very small value of the autocorrelation distance because the rapid
change in the values of the Young’s modulus from one element to
another one of the soil mesh leads to quasi-similar footing dis-
placements for all the realizations. The soil can be considered as an
homogeneous medium in this case.

Table 3 shows that the probabilistic mean value of the footing
vertical displacement does not exhibit a minimum and it remains
constant regardless of the value of the autocorrelation distance
ax 5 ay (this mean value is found to be slightly greater than the
deterministic value of 28.8 mm, which makes it more critical). The
nonpresence of a minimum is contrary to the probabilistic results of
the ultimate bearing capacity problem (see Fenton and Griffiths
2003) where a minimum exists for a given value of the autocor-
relation distance. This phenomenon can be explained by the fact that,
under the service loads, the applied footing pressure qa 5 500 kPa is
not sufficiently high to induce or initiate a failure mechanism, which
may pass through the weakest zones for a given value of the au-
tocorrelation distance. Thus, in the present analysis, there is no
particular value of the autocorrelation distance for which the soil
exhibits some weakness with respect to the other values of the
autocorrelation distance. Table 3 also gives the impact of the au-
tocorrelation distance ax 5 ay on both the skewness and the kurtosis
of the PDF. For small values of ax 5 ay, the skewness and kurtosis of
the response are close to zero, which means that the PDF of the
response is not far from a Gaussian one in these cases. Note,
however, that these moments increase when ax 5 ay increases,
which means that for great values of ax 5 ay, the shape of the PDF
of the output becomes far from a Gaussian one.

Effect of the Autocorrelation Distances of the Young’s
Modulus: Anisotropic Case
Fig. 6 presents the PDFs of the footing vertical displacement
for different values of ay (ay 5 0:5, 0:8, 1, 2, 5, 8, and 50 m) when
ax 5 10 m, and for the case of a 1D horizontal random field when
ax 5 10 m. Table 4 presents the corresponding four statistical
moments. Similarly, Fig. 7 presents the PDFs of the footing vertical
displacement for different values of ax (ax 5 2, 4, 10, 20, 30, and
50 m) when ay 5 1m, and for the case of a 1D vertical random
field when ay 5 1m. Table 5 presents the corresponding four
statistical moments.

For the very large values of the autocorrelation distance ax or
ay, the coefficient of variation of the footing vertical displacement
tends to a constant maximal value, which corresponds to the value
obtained in the case of a 1D (vertical or horizontal) random field as
may be seen from Tables 4 and 5. In this case, the Young’s modulus
is perfectly correlated in a single direction (horizontal or vertical);
in contrast, the other direction is allowed to exhibit variations in the
value of the Young’s modulus according to the value of the auto-
correlation distance fixed for that direction. This leads to a horizontal
or a vertical multilayer, as may be seen from Figs. 8(a and b). Al-
though the case of a vertical multilayer is not a practical case, it is
presented herein:
1. In the aim to check the validity of the obtained solutions by

showing that for great values of ay, one obtains the case of a 1D
random field; and

2. To facilitate the interpretation of the obtained results, as will be
shown in the next section.

The values of 14.24 and 8.16 (see Tables 4 and 5) concerning the
variability of the 1D randomfields are smaller than the value of 14.92
(see Table 3), corresponding to the case of random variable. This is
because, contrarily to the random variable case where the Young’s

Fig. 6. Influence of the vertical autocorrelation distance ay on the PDF
of the footing vertical displacement in the case where ax 5 10 m

Table 4. Effect of Vertical Autocorrelation Distance ay on Statistical
Moments (m, s, du, and ku) of Footing Vertical Displacement When
ax 5 10 m

ay (m)
m3 1023

(m)
s3 1023

(m) COV% du ku

0.5 29.3 1.6 5.46 0.1712 0.0329
0.8 29.4 2.0 6.80 0.2077 0.0581
1 29.4 2.2 7.48 0.2443 0.0841
2 29.4 3.0 10.20 0.3312 0.2111
5 29.5 3.8 12.88 0.4098 0.3094
8 29.4 4.1 13.95 0.4178 0.3101
50 29.5 4.2 14.24 0.4480 0.3374
1D random field 29.5 4.2 14.24 0.4480 0.3370

Fig. 7. Influence of the horizontal autocorrelation distance ax on the
PDF of the footing vertical displacement in the case where ay 5 1m
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modulus of each simulation is chosen from the PDF where small,
high, and intermediate values of the Young’smodulus lead to a large
variability, in the present case of 1D random field the horizontal or
vertical strong layers prevent the large footingmovement and lead to
quasi-similar smaller footing displacement and thus to a smaller
variability of this displacement. Finally, the decrease in the auto-
correlation distance from infinity (i.e., from the case of a 1D random
field) to afinite value [see Fig. 8(c)] recreates variation in the value of
the Young’s modulus, which reduces once again the value of the
variability of this displacement. On the other hand, Tables 4 and 5
show that the probabilistic mean value of the footing vertical dis-
placement is constant regardless of the value of the autocorrelation
distance (ax or ay). The same explanation done for the isotropic case
remains valid herein. Tables 4 and 5 also show the impact of the
increase in ay or ax on both the skewness and the kurtosis of the PDF.
As in the case of the isotropic autocorrelation distance, the PDF
of the response is not far from a Gaussian one for small values of
ay or ax.

Effect of the Coefficient of Variation of the Young’s Modulus
Fig. 9 presents the PDFs of the footing vertical displacement for
four different values of the coefficient of variation of the Young’s
modulus random field. Note that for these four configurations, ax
5 10 m and ay 5 1m. Table 6 presents (for the four configurations)
the four statistical moments of the footing vertical displacement. As
expected, Fig. 9 shows that the variability of the footing vertical
displacement increases when the coefficient of variation of the

Young’s modulus random field increases (see also Table 6). The mean
value of the footing vertical displacement was found to significantly
increase when the coefficient of variation of the Young’s modulus
random field increases. This is of particular interest, because the
probabilistic mean value obtained for the reference case where
COVE 5 15% becomes unconservative and no longer valid when
the variability of the input random field significantly increases.
Table 6 also gives that for the smallest value of COVE (i.e.,
COVE 5 10%), the skewness and kurtosis of the response are
equal to zero, which means that the PDF of the response is Gaussian
in this case. Note, however, that when COVE increases, the shape of
the PDF of the output becomes far from a Gaussian one.

Case of an Obliquely Loaded Footing

The aim of this section is to present the probabilistic numerical
results obtained from the analysis of a shallow strip footing resting
on a spatially varying soil and subjected to an inclined load. Only the
reference case (i.e., ax 5 10 m, ay 5 1m, and COVE 5 15%) was
considered in the analysis. Note that the same deterministic values
that were used in the vertical loading case were also used herein. The
footingwas subjected to an inclined loadPa 5 400 kN=m.The value
of the inclination angle considered in this section was equal to 10�
with respect to the vertical axis of the footing.

Figs. 10(a and b) present the PDFs of the footing vertical and
horizontal displacements obtained by making use of the SPCE
expressions (i.e., the metamodels) of the footing vertical and hor-
izontal displacements. The metamodels of the footing vertical and
horizontal displacements have also been used in this section to

Table 5. Effect of Horizontal Autocorrelation Distance ax on Statistical
Moments (m, s, du, and ku) of Footing Vertical Displacement When
ay 5 1m

ax (m)
m3 1023

(m)
s3 1023

(m) COV% du ku

2 29.4 1.6 5.44 0.0914 0.0167
4 29.4 1.9 6.46 0.1611 0.0475
10 29.4 2.2 7.48 0.2443 0.0841
20 29.4 2.4 8.16 0.2632 0.0952
30 29.4 2.4 8.16 0.2667 0.0981
50 29.4 2.4 8.16 0.2538 0.0999
1D random field 29.4 2.4 8.16 0.2600 0.1230

Fig. 8. Typical realizations of the Young’s modulus random field for
three values of the anisotropic autocorrelation distance: (a) ax 5 100 m
and ay 5 1m; (b) ax 5 1m and ay 5 100 m; (c) ax 5 5 m and ay 5 1m

Fig. 9. Influence of the coefficient of variation COVE on the PDF of the
footing vertical displacement in the case where ax 5 10 m and ay 5 1m

Table 6. Effect of Coefficient of Variation (COVE) of the Random Field E
on the Statistical Moments (m, s, du, and ku) of Footing Vertical
Displacement when ax 5 10 m, ay 5 1m

COVE (%) m3 1023 (m) s3 1023 (m) COV% du ku

10 29.0 1.5 5.17 0 0
20 29.8 3.0 10.07 0.3222 0.1456
30 31.1 4.7 15.11 0.4883 0.4070
40 32.9 6.6 20.06 0.6534 0.7791

© ASCE 04013043-8 J. Geotech. Geoenviron. Eng.
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compute the probability of exceeding of admissible horizontal and/
or vertical displacements. In the following, the probability of ex-
ceeding the admissible horizontal displacement umax and the ad-
missible vertical displacement vmax will be denoted, respectively, by
Pu and Pv. The probability of exceeding the admissible horizontal
or vertical displacement will be referred to here as the system failure
probability, and will denoted Psys.

Fig. 11 shows the variation of Pu and Pv with the corresponding
maximal displacement (i.e., umax or vmax). In this figure, each curve
represents a single mode of failure (i.e., exceeding of a prescribed
horizontal displacement or exceeding of a prescribed vertical dis-
placement). Fig. 12 depicts the variation of Psys with vmax for four
different values of umax. For the very small values of vmax, the system
failure probabilityPsys was found equal toPv. For the small values of
vmax, the resulting number of simulations that respect the criterion
v. vmax is relatively large, the number of simulations that corre-
spond to u. umax being negligible. In these cases, the failure mode
corresponding to Pv is predominant. As the value of vmax increases,
the number of simulations corresponding to v. vmax was found to
diminish. Furthermore, the value of Psys was found to diminish
until reaching a value of ðPsysÞcr, beyond which the system failure
probability remains constant. This may be explained by the
predominance of the mode of failure corresponding toPu for these

cases. The reason why Psys becomes constant is the constant value
considered for themaximal horizontal displacementumax.Note that the
value of vmax for which one obtains ðPsysÞcr depends on the value of
umax. This value of vmax increases with the increase in umax (see, for
instance, the three values of umax 5 2, 2:2, and 2:4 mm and the
corresponding values of vmax 5 9:7, 10:5, and 11:1mm). For the
large value of umax(umax 5 2:8 mm), the system failure probability
is equal to Pv, which means that a unique mode of failure cor-
responding to Pv is predominant in this case.

Conclusions

A probabilistic analysis of vertically and obliquely loaded strip
footings, which considers the spatial variability of the soil elastic
properties, was herein presented. The soil Young’s modulus and
Poisson ratio were modeled by random fields. The deterministic
model was based on numerical simulations using FLAC3D. An
efficient uncertainty propagation methodology that makes use of a
nonintrusive approach to build up analytical equations for the
footing displacements was employed. In the case of a vertically
loaded footing, a global sensitivity analysis was performed to detect
the most influential soil elastic property that has a significant weight
in the variability of the footing vertical displacement. It was shown

Fig. 10. PDF of (a) footing vertical displacement; (b) footing horizontal displacement in the case of an inclined load

Fig. 11. Probability of exceeding a maximum vertical displacement
(denoted Pv) or a maximum horizontal displacement (denoted Pu)

Fig. 12. Probability of exceeding a maximum vertical or horizontal
displacement (denoted Psys)

© ASCE 04013043-9 J. Geotech. Geoenviron. Eng.
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that the soil Young’s modulusEmostly contributes to the variability
of the footing vertical displacement, the Poisson ratio being of neg-
ligible weight. Thus, only the Young’s modulus was considered as
a random field in the parametric study.

The probabilistic parametric study has shown that the variability
and the probabilistic mean value of the footing vertical displacement
increase with the increase in the coefficient of variation of the soil
Young’s modulus. With a decrease in the autocorrelation distance
(ax or ay or ax 5 ay) of the Young’s modulus, a less spread-out PDF
of the footing vertical displacement was obtained; however, the
probabilistic mean value of the vertical displacement was found to
remain constant regardless of the value of the autocorrelation distance
in both the isotropic and the anisotropic cases. Small values of the
autocorrelation distances lead to small values of skewness and kur-
tosis of the system response. Thus, a PDF of the system response that
is not far fromaGaussianonewasobtained in these cases.On theother
hand, it was shown in the inclined loading case that the probability of
failure against exceedance of a vertical and/or a horizontal footing
displacement may be obtained with a reduced computation cost using
the obtained SPCE expressions of the system responses. Finally, it
should be mentioned that the present probabilistic analysis has the
limitation of not considering the variability of the soil properties in
the out-of-plane direction. This additional variability significantly
increases the number of random variables and thus the number of
calls of the deterministic model. Consequently, a more advanced
probabilistic approach is needed in this case.

Appendix I. 1D Hermite Polynomials

The 1D Hermite polynomials are given by

H0ðjÞ ¼ 1,

H1ðjÞ ¼ j,

H2ðjÞ ¼ j2 2 1,

H3ðjÞ ¼ j32 3j,

H4ðjÞ ¼ j42 6j2 þ 3,

H5ðjÞ ¼ j52 10j3 þ 15j,

H6ðjÞ ¼ j62 14j4 þ 45j22 15,

«

HnðjÞ ¼ jHn22ðjÞ2Hn21ðjÞ

Appendix II. Illustrative Example

To illustrate the PCE theory in a simplemanner, a PCEof order p5 3
using onlyM5 2 random variables (j1 and j2) will be considered in

this illustrative example. As may be easily seen from Table 7, the
PCE basis contains P5 10 terms whose expressions Cbðb
5 0, . . . , 9Þ are computed using Eq. (5).

ByusingTable 7, one canwrite the PCE as a function of the input
random variables (j1 and j2) as follows:

GPCEðjÞ ¼ a0C0 þ a1C1 þ . . .þ a9C9

¼ a0 þ a1j1 þ a2j2 þ a3j1j2þa4
�
j21 2 1

�þ a5
�
j222 1

�
þ a6

�
j212 1

�
j2 þ a7j1

�
j222 1

�þ a8
�
j312 3j1

�
þ a9

�
j322 3j2

�
(12)

where the unknown coefficients can be computed using Eq. (7).
Once the PCE coefficients are computed, the first-order Sobol in-
dexes for the two random variables (j1 and j2) can be easily obtained
using Eq. (10). The only additional step is to compute E½ðCbÞ2�
corresponding to these two random variables. Table 7 provides the
values of E½ðCbÞ2� computed using Eq. (11) for the different Cb

terms. The expressions of the first-order Sobol indexes of the two
random variables j1 and j2 can thus be written as follows:

Sðj1Þ ¼
a21 þ 2a24 þ 6a28

a21 þ a22 þ a23 þ 2a24 þ 2a25 þ 2a26 þ 2a27 þ 6a28 þ 6a29
,

Sðj2Þ ¼
a22 þ 2a25 þ 6a29

a21 þ a22 þ a23 þ 2a24 þ 2a25 þ 2a26 þ 2a27 þ 6a28 þ 6a29
(13)

where I1 5 ð1,4,8Þ; and I2 5 ð2,5,9Þ.
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