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ABSTRACT: The static and seismic bearing capacity problem of shallow strip footings is investigated. Two
kinematically admissible failure mechanisms M1 and M2 are considered in the framework of the upper-bound
method of the limit analysis theory. The M1 mechanism is symmetrical, and it permits the calculation of the
bearing capacity in the case of no-seismic loading. It is composed of a triangular active wedge under the footing
and two radial shear zones composed of a sequence of rigid triangles. The M2 mechanism is nonsymmetrical and
is composed of a single radial shear zone. This mechanism permits the calculation of the bearing capacity in the
presence of seismic loading. Quasi-static representation of earthquake effects using the seismic coefficient concept
is adopted. The solutions obtained are rigorous upper-bound ones in the framework of the limit analysis theory.
The numerical results of the static and seismic bearing capacity factors are presented in the form of design charts
for practical use in geotechnical engineering. These results are compared with results of other authors.
INTRODUCTION

The bearing capacity of strip footings in no-seismic areas has
been extensively studied by several investigators [Terzaghi
(1943), Caquot and Kérisel (1953), Meyerhof (1963), Vesic
(1973), and Chen (1975) among others]. However, very few
attempts have been made to study the effect of an earthquake
on the bearing capacity of foundations. The few studies avail-
able in the literature describing the seismic effect on the bearing
capacity concern the work of Meyerhof (1951) and Shinohara
et al. (1960). Both approaches are pseudostatic: horizontal and
vertical accelerations are applied to the center of gravity of the
structure and the problem is reduced to a static case of bearing
capacity with inclined eccentric loads. However, in these solu-
tions, the inertia of the soil mass is not included. Sarma and
Iossifelis (1990) and Richards et al. (1993) suggested more rig-
orous approaches for calculating the seismic bearing capacity
of strip footings in seismic areas by considering the inertia
forces on all parts of the soil-structure system (soil and foun-
dation). The theoretical approaches they used are based on the
limit-equilibrium method. It is well known that this method
gives an approximate solution of the failure load and that the
solution cannot be said to be an upper- or a lower-bound one
with respect to the exact solution. Recently, Dormieux and
Pecker (1995) and Soubra (1997) used the upper-bound method
of the limit analysis theory and developed upper-bound solu-
tions of the seismic bearing capacity factors. These solutions
are rigorous upper-bound ones with respect to the exact solu-
tions for an associated flow rule Coulomb material.

In this paper, both the static and seismic bearing capacity
problems are investigated by the upper-bound method of the
limit analysis theory using respectively symmetrical and non-
symmetrical failure mechanisms. These mechanisms allow the
slip surface to develop more freely in comparison with the
available mechanisms given by Chen (1975) and Soubra
(1997); hence, they lead to smaller upper-bound solutions of
the bearing capacity problem.

UPPER AND LOWER BOUND THEOREMS OF LIMIT
ANALYSIS

The upper-bound theorem, which assumes a perfectly plastic
soil model with an associated flow rule, states that the internal
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power dissipated by any kinematically admissible velocity
field can be equated to the power dissipated by the external
loads and so enables a strict upper-bound on the true limit
load to be deduced. A kinematically admissible velocity field
is one that satisfies compatibility, the flow rule, and the ve-
locity boundary conditions. To provide solutions that are use-
ful in practice, the upper-bound theorem is often used in tan-
dem with the lower-bound theorem. The latter also assumes a
perfectly plastic soil model with an associated flow rule and
states that any statically admissible stress field (which satisfies
equilibrium and the stress boundary conditions and nowhere
violates the yield criterion) will furnish a lower-bound estimate
of the true limit load. By using these two theorems, the exact
limit load can often be bracketed with an accuracy that is
sufficient for design purposes.

In this paper, only the upper-bound theorem of limit analysis
is applied to the static and seismic bearing capacity problem
using kinematically admissible velocity fields. It should be
noted here, that the upper-bound theorem gives an unsafe es-
timate of the ultimate bearing capacity. The aim of this work
is to improve the best available upper-bound solutions given
by Chen (1975) in the symmetrical failure mechanism and by
Soubra (1997) in the nonsymmetrical mechanism.

THEORETICAL ANALYSIS OF STATIC AND SEISMIC
BEARING CAPACITY PROBLEM

A soil-foundation system with translational movement is as-
sumed. Two distinct translational failure mechanisms, referred
to as the M1 and M2 mechanisms, are utilized in the analysis.
In the following investigation, the terms ‘‘mechanism’’ and
‘‘velocity field’’ will be used interchangeably. Note that the
velocity fields used are composed of rigid blocks that move
with constant velocities. Since no general plastic deformation
of the soil mass is permitted to occur, the power is dissipated
solely at the interfaces between adjacent blocks, which con-
stitute velocity discontinuities.

The soil is homogeneous and isotropic. It is assumed to be
an associated flow rule Coulomb material obeying Hill’s max-
imal work principle. The consequence of applying the nor-
mality condition to a frictional soil with its angle of internal
friction equal to f will be a necessary occurrence of a volume
expansion with C = f during the plastic flow. However, fric-
tional soils are found experimentally to dilate at increments
considerably less than those predicted by the normality con-
dition, that is, C < f. Hence, real soils do not obey the as-
sociative flow rule. Furthermore, it is well known that a non-
associative material cannot be stronger than the associative
one. On the other hand, it should be mentioned that in trans-
lational failure mechanisms, the energy balance approach for
evaluation of the limit load is always equivalent to the equi-
librium of forces approach, because the energy balance equa-
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tion can be interpreted as an expression of the virtual rate of
work principle. This observation has often been made (Davis
1968; Mroz and Drescher 1969; Michalowski 1989; Salençon
1990; De Buhan and Salençon 1993; Drescher and Detournay
1993). The equivalence of the two approaches plays a key role
in the derivations of the limit loads for nonassociative mate-
rials. Recent theoretical considerations made on translational
failure mechanisms (Drescher and Detournay 1993; Michal-
owski and Shi 1995, 1996) allow one to conclude that for a
nonassociative material, the limit load can be obtained by the
use of the flow rule associated with a new yield condition in
which c and f are replaced by c* and f* as follows:

cos C sin f
tan f* = (1)

1 2 sin C sin f

cos C cos f
c* = c (2)

1 2 sin C sin f

Hence, the results presented in the present paper can be used
for nonassociative material provided the internal friction angle
f and the cohesion c are replaced with f* and c* calculated
from (1) and (2), respectively.

Failure Mechanisms

M1 Mechanism

The M1 mechanism is shown in Fig. 1. This mechanism is
symmetrical, and it permits the calculation of the bearing ca-
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pacity in the case of no-seismic loading. The wedge ABC is
translating vertically as a rigid body with the same initial
downward velocity as the footing. The downward movement
of the footing and wedge is accommodated by the lateral
movement of the adjacent soil as indicated by the two radial
shear zones. The angles u, ai, and bi (i = 1, . . . , n) are as yet
unspecified. Since the movement is symmetrical about the
footing, it is only necessary to consider the movement on the
right-hand side of Fig. 1.

The radial shear zone BCD is composed of n triangular rigid
blocks. As shown in Fig. 2(a), all the triangles move as rigid
bodies in directions that make an angle f with the disconti-
nuity lines di (i = 1, . . . , n). The velocity of each triangle is
determined by the condition that the relative velocity between
the triangles in contact must have the direction that makes an
angle f to the contact surface. The velocity hodographs are
shown in Fig. 2(b). The velocities so determined constitute a
kinematically admissible velocity field.

As shown in Fig. 3, the external forces contributing to the
incremental external work consist of the foundation load, the
weight of the soil mass, and the surcharge q on the foundation
level. The incremental external work for the different external
forces can be easily obtained; the calculations are presented in
Appendix I.

Energy is dissipated at the discontinuity surfaces di (i = 1,
. . . , n) between the material at rest and the material in motion
and at the discontinuity surfaces li (i = 1, . . . , n) within the
radial shear zone. The incremental energy dissipation per unit
FIG. 2. (a) Velocity Field of M1 Mechanism; (b) Velocity Hodographs

FIG. 1. Failure Mechanism M1 for Static Bearing Capacity Analysis
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FIG. 3. Free-Body Diagram for M1 Failure Mechanism
length along a velocity discontinuity or a narrow transition
zone can be expressed as

DD = cDV cos f (3)L

where DV = incremental displacement or velocity that makes
an angle f with the velocity discontinuity according to the
associated flow rule of perfect plasticity; and c = cohesion
parameter. Calculations of the incremental internal energy dis-
sipation along the different velocity discontinuities are given
in Appendix I.

Equating the total rate at which work is done by the force
on the foundation, the soil weight in motion, and the surcharge
loading [(26) in Appendix I] to the total rate of energy dissi-
pation along the lines of velocity discontinuities [(33) in Ap-
pendix I], it is found, after some simplifications, that an upper
bound on the bearing capacity of the soil is

P BS 0
q = = g N (u, a , b ) 1 qN (u, a , b ) 1 cN (u, a , b )cS gS i i qS i i cS i i

B 20

(4)

in which the static bearing capacity factors ai, bi),N (u,gS

NqS(u, ai, bi), and NcS(u, ai, bi) can be expressed in terms of
the (2n 1 1) as yet unspecified angles (u, ai, bi). They are
given as follows:

N = 2( f 1 f ) (5)gS 1 2

N = 2f (6)qS 3

N = 2( f 1 f 1 f ) (7)cS 4 5 6

The ultimate static bearing capacity of the foundation is ob-
tained by minimization of qcS [(4)] with regard to the mech-
anism’s parameters. However, in practice, the minimum values
of the three factors ai, bi), NqS(u, ai, bi), and NcS(u, ai,N (u,gS

bi) are determined independently of each other, and therefore
their use errs on the safe side (see Static Bearing Capacity
Factors in the fourth section).

M2 Mechanism

The M2 mechanism is shown in Fig. 4. This mechanism is
nonsymmetrical, and it permits the calculation of the bearing
capacity in the presence of seismic loading. As is well known,
an earthquake has two possible effects on a soil-foundation
system. One is to increase the driving forces, and the other is
to decrease the shearing resistance of the soil. In this paper,
only the reduction of the bearing capacity due to the increase
in driving forces is investigated under seismic loading condi-
tions. The shear strength of the soil is assumed to remain un-
affected by the seismic loading. On the other hand, the earth-
quake acceleration for both the soil and the structure is
assumed to be the same: Only the horizontal seismic coeffi-
cient Kh is considered, the vertical seismic coefficient often
being disregarded. Finally, the earthquake load on the structure
is represented by the base shear load acting at the foundation
JOURNAL OF GEOTECH
FIG. 4. Failure Mechanism M2 for Seismic Bearing Capacity
Analysis

FIG. 5. (a) Velocity Field of M2 Mechanism; (b) Velocity Hodo-
graph

level and an eccentricity for the vertical foundation load. The
moment due to the seismic load on the structure is not con-
sidered. Only the base shear load will be taken into account.

Except for the triangular area directly below the base of the
footing, the M2 nonsymmetrical mechanism is similar to the
right-hand side of the M1 mechanism. Wedge ABC is trans-
lating as a rigid body with a downward velocity V1 inclined
at an angle f to the discontinuity line AC (Fig. 5). The foun-
dation is assumed to move with the same velocity as wedge
ABC (i.e., V1). The rest of the mechanism is similar in form
to the right-hand side of the M1 mechanism.

As shown in Fig. 6, the external forces contributing to the
incremental external work consist of the force acting on the
footing, the weight of soil in motion, the surcharge loading,
and the different inertia forces. These inertia forces concern
NICAL AND GEOENVIRONMENTAL ENGINEERING / JANUARY 1999 / 61



FIG. 6. Free-Body Diagram for M2 Failure Mechanism

the base shear load, the inertia forces of the soil in motion,
and the surcharge loading. Energy is dissipated along the lines
li (i = 1, . . . , n 2 1) and di (i = 1, . . . , n). Calculations of
the incremental external work and the internal energy dissi-
pation along the different velocity discontinuities are given in
Appendix II.

Equating the total external rate of work [(44) in Appendix
II] to the total internal rate of energy dissipation [(49) in Ap-
pendix II], it is found that the value of the upper bound on
the bearing capacity is

P BE 0
q = = g N (a , b ) 1 qN (a , b ) 1 cN (a , b ) (8)cE gE i i qE i i cE i i

B 20

in which the seismic bearing capacity factors bi),N (a ,gE i

NqE(ai, bi), and NcE(ai, bi) can be expressed in terms of the
(2n) as yet unspecified angles (ai, bi). They are given as fol-
lows:

1
N = 2 (g 1 K g ) (9)gE 1 h 2sin(b 2 f) 1 K cos(b 2 f)1 h 1

1
N = 2 (g 1 K g ) (10)qE 3 h 4sin(b 2 f) 1 K cos(b 2 f)1 h 1

1
N = (g 1 g ) (11)cE 5 6sin(b 2 f) 1 K cos(b 2 f)1 h 1

From these equations, it is clear that only the factor in-NgE

cludes the soil inertia. The NqE factor includes the inertia of
the foundation load and the surcharge loading; however, the
NcE factor only includes the inertia of the foundation load and
thus corresponds to the case of a footing subject to an inclined
load.

As in the static case, the minimum value of qcE gives the
ultimate seismic bearing capacity of the foundation. However,
in practice, the minimum values of the three factors N (a ,gE i

bi), NqE(ai, bi), and NcE(ai, bi) are determined independently
of each other, and therefore their use errs on the safe side.

NUMERICAL RESULTS

The most critical bearing capacity factors can be obtained
by minimization of these factors [(5)–(7) and (9)–(11)] with
regard to the mechanism’s parameters. The minimization pro-
cedure can be performed using the optimization tool available
in most spreadsheet software packages. In this paper, one uses
the Solver optimization tool of Microsoft Excel. Two computer
programs using the Visual Basic programming language that
resides in Microsoft Excel have been written to define the
static and seismic bearing capacity factors as function of the
mechanism’s parameters [(5)–(7) and (9)–(11)]. Initial values
need to be assigned to the different angular parameters. The
solver tool is then invoked to ‘‘minimize’’ the bearing capacity
factor ‘‘by changing’’ the angular parameters, ‘‘subject to’’ the
constraints {u 1 ai = p (cf. Fig. 1) and ai 1 bi $n( bi=1 i11

[cf. Fig. 2(b)]} for the M1 mechanism and ai = p (cf.n{(i=1
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FIG. 7. Critical Slip Surface for f = 45& and n = 12

TABLE 1. NgS Value versus Number of Rigid Blocks n for f =
45& from M1 Symmetrical Mechanism

n
(1)

NgS

(2)

Reduction
(%)
(3)

2 741.93 —
3 447.94 39.6
4 384.28 14.2
5 359.50 6.4
6 347.19 3.4
7 340.16 2.0
8 335.76 1.3
9 332.82 0.9

10 330.77 0.6
11 329.27 0.5
12 328.14 0.3
13 327.27 0.3
14 326.59 0.2

Fig. 4) and ai 1 bi $ [cf. Fig. 5(b)]} for the M2 mech-bi11

anism. The method of minimization used is the general re-
duced gradient method. Additional information on Solver op-
tions and algorithms can be found in the Microsoft Excel
Solver’s help file and at the website www.frontsys.com.

In the following sections, we present and discuss in succes-
sion (1) the static bearing capacity factors NqS, and NcSN ,gS

given by both the M1 and M2 mechanisms; and (2) the seismic
bearing capacity factors NqE, and NcE given by the M2N ,gE

nonsymmetrical mechanism.

Static Bearing Capacity Factors

First, the results given by the M1 symmetrical mechanism
will be presented and compared to those given by other ex-
isting solutions. Second, the results of the M2 nonsymmetrical
mechanism for Kh = 0 will be presented and compared to those
given by the M1 symmetrical mechanism. This permits us to
estimate the difference between results when considering a
nonsymmetrical mechanism for a centrally loaded footing.

Table 1 presents the factor obtained from the M1 mech-NgS

anism for f = 457 and for various values of n (the number of
the triangular rigid blocks). It can be observed that the upper-
bound solution can be improved by increasing the number of
rigid blocks. The reduction in the value decreases with theNgS

n-increase and attains 0.2% for n = 14. It should be mentioned
that the same trend is also observed for the NqS and NcS factors.

Fig. 7 shows the critical slip surface obtained from the nu-
merical minimization of the factor for f = 457 and for nNgS

= 12. It can be observed that the critical failure mechanism
obtained by the computer program is composed of two radial
shear zones sandwiched between an active triangular wedge
under the footing and a Rankine passive wedge. It should be
noted that the radial shear zones are not bounded by log-spiral
slip surfaces as is the case of the Prandtl mechanism. Finally,
note that all subsequent calculations are made for n = 14.

Table 2 presents the NqS, and NcS factors obtained fromN ,gS

the computer program for f ranging from 0 to 507.
To check the effect of the superposition method, one cal-

culates the ultimate load Pdirect obtained by direct numerical
minimization of PS [(4)] and compares it to the one obtained
by the superposition method Psuperposition using the NqS, andN ,gS

NcS factors. For f = 307, c = 10 kPa, q = 10 kPa, B0 = 1 m,
and g = 18 kN/m3, one obtains Pdirect = 726.13 kN/m and
EERING / JANUARY 1999



TABLE 2. NqS, and NcS Values from M1 Symmetrical Mech-N ,gS

anism

f
(1)

NgS

(2)
NqS

(3)
NcS

(4)

0 — 1.00 5.15
1 — 1.09 5.38
2 — 1.20 5.64
3 — 1.31 5.91
4 — 1.43 6.19
5 — 1.57 6.50
6 — 1.72 6.82
7 — 1.88 7.17
8 — 2.06 7.54
9 — 2.26 7.93

10 — 2.47 8.36
11 — 2.71 8.81
12 — 2.98 9.30
13 — 3.27 9.82
14 1.62 3.59 10.39
15 1.95 3.95 10.99
16 2.32 4.34 11.65
17 2.75 4.78 12.36
18 3.25 5.27 13.13
19 3.82 5.81 13.96
20 4.49 6.41 14.86
21 5.26 7.08 15.85
22 6.15 7.84 16.92
23 7.19 8.68 18.09
24 8.40 9.62 19.37
25 9.81 10.69 20.77
26 11.46 11.88 22.32
27 13.39 13.23 24.01
28 15.67 14.76 25.88
29 18.35 16.49 27.95
30 21.51 18.46 30.24
31 25.26 20.70 32.79
32 29.71 23.26 35.62
33 35.02 26.19 38.79
34 41.37 29.56 42.34
35 49.00 33.44 46.33
36 58.21 37.93 50.82
37 69.35 43.13 55.91
38 82.91 49.19 61.68
39 99.48 56.27 68.25
40 119.84 64.58 75.77
41 144.99 74.36 84.40
42 176.23 85.95 94.35
43 215.27 99.73 105.87
44 264.39 116.20 119.29
45 326.59 135.99 134.99
46 405.97 159.91 153.46
47 508.04 189.00 175.31
48 640.42 224.59 201.32
49 813.64 268.44 232.49
50 1,042.48 322.88 270.09

Psuperposition = 680.58 kN/m, which indicates that the superpo-
sition effect errs on the safe side.

Comparison of Results with Existing Solutions

NgS Factor. As is well known, there are a great many
solutions for in the literature based on different methodsNgS

and the differences among them are sometimes substantial.
Because of the great sensibility of the factor to the frictionNgS

angle, particularly for f > 307, the tendency today, in practice,
is to use the values given by Caquot and Kérisel (1953), Mey-
erhof (1963) [cf. (12)], and Vesic (1973) [cf. (13)]

N (Meyerhof) = (N 2 1)tan 1.4f (12)gS qS

N (Vesic) = 2(N 1 1)tan f (13)gS qS

where NqS is given as follows:

p f2N = exp(p tan f)tan 1 (14)qS S D4 2
JOURNAL OF GEOTECHN
TABLE 4. Comparison of Present Factor with Other Upper-NgS

Bound Solutions

f
(1)

Present
solution (M1)

(2)

Chen (1975)

Prandtl1
(3)

Prandtl2
(4)

Prandtl3
(5)

15 1.9 2.7 2.3 2.1
20 4.5 5.9 5.2 4.6
25 9.8 12.4 11.4 10.9
30 21.5 26.7 25.0 31.5
35 49.0 60.2 57.0 138.0
40 119.8 147.0 141.0 1,803.0

FIG. 8. Comparison of Present Factor with Results ofNgS

Other Authors

TABLE 3. Comparison of Present Factor with that of OtherNgS

Authors

f
(1)

Present
solution (M1)

(2)

Caquot and
Kérisel (1953)

(3)

Meyerhof
(1963)

(4)

Vesic
(1973)

(5)

20 4.49 4.97 2.87 5.39
25 9.81 10.4 6.77 10.88
30 27.51 21.8 15.67 22.4
35 49.0 48.0 37.15 48.03
40 119.84 113.0 93.69 109.41
45 326.59 297.0 262.74 271.76

The values given by Caquot and Kérisel and the expression
suggested by Vesic are being increasingly used. Table 3
and Fig. 8 show the comparison with the aforementioned au-
thors. The maximal difference between the present solution
and that of Caquot and Kérisel is smaller than 10% for f #
457.

On the other hand, rigorous upper-bound solutions for an
associated flow rule Coulomb material are proposed in the
literature. Chen (1975) considered three symmetrical failure
mechanisms referred to as Prandtl1, Prandtl2, and Prandtl3 and
gave rigorous upper-bound solutions in the framework of the
limit analysis theory. Prandtl1 is composed of a triangular ac-
tive wedge under the footing, two radial log-spiral shear zones
and two triangular passive wedges. Prandtl2 differs from
Prandtl1 only in that an additional rigid body zone has been
introduced. Finally, Prandtl3 resembles closely the Prandtl1
mechanism; however, each shear zone is now bounded by a
circular arc. The upper-bound solutions given by the present
M1 mechanism and those given by the three aforementioned
mechanisms proposed by Chen are presented in Table 4. It is
clear that the present upper-bound solutions are better than
ICAL AND GEOENVIRONMENTAL ENGINEERING / JANUARY 1999 / 63



TABLE 5. NqS, NcS Values from M2 Nonsymmetrical Mech-N ,gS

anism

f
(1)

NgS

(2)
NqS

(3)
NcS

(4)

0 — 1.00 5.15
1 0.03 1.09 5.38
2 0.07 1.20 5.64
3 0.11 1.31 5.91
4 0.17 1.43 6.19
5 0.25 1.57 6.50
6 0.33 1.72 6.82
7 0.43 1.88 7.17
8 0.55 2.06 7.54
9 0.69 2.26 7.93

10 0.85 2.47 8.36
11 1.03 2.71 8.81
12 1.24 2.98 9.30
13 1.49 3.27 9.82
14 1.77 3.59 10.39
15 2.10 3.95 11.00
16 2.47 4.34 11.65
17 2.91 4.78 12.36
18 3.41 5.26 13.13
19 3.99 5.81 13.96
20 4.67 6.41 14.87
21 5.45 7.08 15.85
22 6.35 7.84 16.92
23 7.40 8.68 18.09
24 8.63 9.62 19.38
25 10.06 10.69 20.78
26 11.73 11.88 22.32
27 13.68 13.23 24.02
28 15.98 14.76 25.89
29 18.69 16.49 27.96
30 21.88 18.46 30.25
31 25.67 20.70 32.80
32 30.16 23.25 35.63
33 35.52 26.18 38.80
34 41.93 29.55 42.36
35 49.62 33.43 46.35
36 58.90 37.91 50.84
37 70.13 43.11 55.93
38 83.78 49.17 61.71
39 100.47 56.24 68.28
40 120.96 64.55 75.80
41 146.27 74.33 84.44
42 177.70 85.91 94.40
43 216.97 99.68 105.94
44 266.35 116.13 119.37
45 328.88 135.91 135.09
46 408.65 159.81 153.58
47 511.22 188.86 175.45
48 644.19 224.42 201.50
49 818.14 268.22 232.70
50 1,047.90 322.59 270.36

those of Chen (1975); the improvement attains 15% for f =
407.

NqS and NcS Factors. Based on the upper-bound method
of the limit analysis theory, the bearing capacity factors ob-
tained from Prandtl mechanism are given by (14) for NqS and
by (15) for NcS [cf. Chen (1975)]

N = (N 2 1)cot f (15)cS qS

It should be mentioned here that Chen (1975) has also
shown that the bearing capacity factors NcS and NqS as
given by (14) and (15) are also lower bounds and hence are
the exact solutions in the framework of the limit analysis the-
ory.

The comparison of the present factors with those given by
(14) and (15) has shown that the present solutions are very
close to the exact solutions; the error does not exceed 1.2%.
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FIG. 9. Comparison of Bearing Capacity Factors given by M1
and M2 Mechanisms

TABLE 6. Seismic Bearing Capacity Factor NgE

Kh

(1)

f

15
(2)

20
(3)

25
(4)

30
(5)

35
(6)

40
(7)

45
(8)

0 2.10 4.67 10.06 21.88 49.62 120.96 328.88
0.05 1.51 3.57 7.91 17.43 39.69 96.48 259.93
0.1 1.01 2.61 6.04 13.59 31.23 75.92 203.11
0.15 0.58 1.80 4.45 10.35 24.14 58.94 156.98
0.2 0.26 1.13 3.14 7.67 18.32 45.12 120.05
0.25 0.04 0.62 2.09 5.51 13.61 34.05 90.85
0.3 — 0.26 1.28 3.80 9.89 25.31 68.05
0.35 — — 0.69 2.49 6.99 18.51 50.44
0.4 — — 0.28 1.51 4.77 13.29 36.99
0.45 — — 0.04 0.81 3.12 9.34 26.82
0.5 — — — 0.35 1.92 6.40 19.19
0.55 — — — 0.07 1.08 4.24 13.54
0.6 — — — — 0.51 2.69 9.38

Comparison of Results with Solutions of M2 Mechanism

The NqS, and NcS factors given by the M2 nonsym-N ,gS

metrical mechanism for Kh = 0 are presented in Table 5 and
compared to those given by the M1 mechanism in Fig. 9.
While the NqS and NcS factors are practically identical in both
mechanisms, the M2 mechanism gives greater upper-bound
solutions than the M1 mechanism for the factor. Notice,NgS

however, that the maximal difference does not exceed 4% for
f $ 207.

Seismic Bearing Capacity Factors

Earthquakes have the unfavorable effect of decreasing the
bearing capacity of foundations. To investigate how the bear-
ing capacity factors NqE, and NcE are affected, extensiveN ,gE

numerical results based on the M2 failure mechanism are pre-
sented in Tables 6–8. All results are given for n = 14, which
means that the minimization procedure is made with regard to
28 angular parameters.

Fig. 10 shows the critical slip surfaces obtained from the
numerical minimization of the factor for f = 307 and forNgE

three values of Kh (Kh = 0, 0.15, and 0.3). It can be observed
that the critical slip surface becomes shallower as the accel-
eration intensity increases.

Charts relating bearing capacity factors NqE, and NcE toN ,gE

various governing parameters are presented in Figs. 11–13.
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TABLE 7. Seismic Bearing Capacity Factor NqE

Kh

(1)

f

15
(2)

20
(3)

25
(4)

30
(5)

35
(6)

40
(7)

45
(8)

0 3.95 6.41 10.69 18.46 33.43 64.55 135.91
0.05 3.52 5.72 9.51 16.35 29.44 56.39 117.46
0.1 3.07 5.02 8.35 14.34 25.70 48.89 100.85
0.15 2.59 4.32 7.24 12.44 22.25 42.08 86.05
0.2 2.07 3.62 6.17 10.67 19.08 35.96 73.00
0.25 1.46 2.94 5.17 9.04 16.22 30.52 61.60
0.3 — 2.25 4.22 7.54 13.65 25.73 51.71
0.35 — 1.46 3.33 6.19 11.37 21.53 43.21
0.4 — — 2.47 4.97 9.36 17.89 35.93
0.45 — — 1.56 3.86 7.59 14.74 29.75
0.5 — — — 2.85 6.04 12.04 24.51
0.55 — — — 1.86 4.69 9.72 20.09
0.6 — — — — 3.49 7.75 16.36

TABLE 8. Seismic Bearing Capacity Factor NcE

Kh

(1)

f

15
(2)

20
(3)

25
(4)

30
(5)

35
(6)

40
(7)

45
(8)

0 11.00 14.87 20.78 30.25 46.35 75.80 135.09
0.05 10.26 13.79 19.14 27.64 41.95 67.84 119.27
0.1 9.50 12.69 17.50 25.09 37.74 60.38 104.74
0.15 8.72 11.60 15.91 22.64 33.76 53.46 91.56
0.2 7.96 10.54 14.37 20.32 30.06 47.12 79.70
0.25 7.21 9.51 12.91 18.14 26.63 41.36 69.14
0.3 6.48 8.53 11.53 16.12 23.50 36.18 59.81
0.35 5.79 7.61 10.25 14.26 20.67 31.56 51.62
0.4 5.14 6.75 9.07 12.58 18.12 27.47 44.49
0.45 4.54 5.96 8.00 11.05 15.85 23.86 38.29
0.5 3.98 5.23 7.02 9.68 13.83 20.69 32.94
0.55 3.47 4.58 6.14 8.46 12.04 17.93 28.33
0.6 3.01 3.98 5.36 7.37 10.48 15.53 24.37

FIG. 10. Critical Slip Surfaces for f = 30& and Kh = 0, 0.15, and 0.3
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FIG. 11. Design Chart for NgE

FIG. 12. Design Chart for NqE

FIG. 13. Design Chart for NcE

Comparison of Results with Existing Solutions

To see the validity of the present upper-bound solution, the
seismic bearing capacity factors are calculated and compared
with other solutions. The differences between them are dis-
cussed.

Soubra (1997) considered two nonsymmetrical failure
mechanisms and gave rigorous upper-bound solutions in the
framework of the limit analysis theory. One mechanism is
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TABLE 9. Comparison of Present Seismic Bearing Capacity
Factors with Upper-Bound Solutions Given by Soubra (1997) for
f = 40&

Kh

(1)

NgE

Present
solution

(2)

Soubra
(1997)

(3)

NqE

Present
solution

(4)

Soubra
(1997)

(5)

NcE

Present
solution

(6)

Soubra
(1997)

(7)

0 121.0 140.5 64.6 64.2 75.8 75.3
0.1 75.9 88.4 48.9 48.7 60.4 60.1
0.2 45.1 53.0 36.0 35.9 47.1 46.9
0.3 25.3 30.1 25.7 25.7 36.2 36.1
0.4 13.3 16.0 17.9 17.9 27.5 27.4
0.5 6.4 7.8 12.0 12.0 20.7 20.7
0.6 2.7 3.3 7.8 7.7 15.5 15.5

FIG. 14. Comparison of Present Factor with that of Rich-NgE

ards et al. (1993) for f = 30&

FIG. 15. Comparison of Present NqE Factor with that of Rich-
ards et al. (1993) for f = 30&

composed of a triangular active wedge under the footing, one
radial log-spiral shear zone, and one triangular passive wedge.
The other closely resembles the previous mechanism; how-
ever, the shear zone is now bounded by a circular arc. In the
spirit of the upper-bound approach, the lesser of these two
solutions was given in the form of design charts [cf. Soubra
(1997)]. The upper-bound solutions given by the present M2
mechanism and those given by Soubra (1997) are presented
in Table 9. It is clear that the present upper-bound solutions
are better than those of Soubra (1997) for the factor; theNgE

improvement exceeds 15% for Kh = 0.3. However, the NqE and
NcE factors are practically identical.

On the other hand, Figs. 14–16 show the comparison be-
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FIG. 16. Comparison of Present NcE Factor with that of Rich-
ards et al. (1993) for f = 30&

tween the present results and those given by Richards et al.
(1993). From Fig. 14, it can be observed that the solutions
given by Richards et al. (1993) slightly overestimate the NgE

factor with regard to the present upper-bound solutions. Con-
cerning the NqE factor (cf. Fig. 15), the maximal difference
with Richards et al. (1993) does not exceed 14%. However,
for the NcE factor (cf. Fig. 16), the difference is equal to 11%
for f = 307 and Kh = 0 and attains 40% for Kh = 0.3. This
difference may be explained by the fact that Richards et al.
(1993) have used (15) to calculate the seismic factor NcE with-
out any real justification as they mentioned in their paper.

CONCLUSIONS

Two failure mechanisms have been considered for the anal-
ysis of the static and seismic bearing capacity factors using
the upper-bound method of the limit analysis theory. The so-
lutions presented are rigorous upper-bound ones in the frame-
work of the limit analysis theory. The numerical results ob-
tained lead to the following conclusions.

For the static case, both the M1 symmetrical and the M2
nonsymmetrical mechanisms give the exact solution of the
static NqS and NcS factors. For the factor, the M2 mecha-NgS

nism gives greater upper-bound solutions than the M1 mech-
anism. Notice, however, that the maximal difference does not
exceed 4% for f $ 207. The present upper-bound solutions
are better than those of Chen (1975) since one obtains smaller
upper-bound solutions; the improvement attains 15% for f =
407. On the other hand, the comparison between the present
solutions and the currently accepted values of Caquot and Kér-
isel has shown that the maximal difference between the results
is smaller than 10% for f # 457.

For the seismic case, the present upper-bound solutions
given by the M2 nonsymmetrical mechanism are better than
those of Soubra (1997) for the factor, the improvementNgE

exceeds 15% when f = 407 and Kh = 0.3. However, the NqE

and NcE factors are practically identical to those given by
Soubra (1997). On the other hand, the comparison with the
solutions given by Richards et al. (1993) using the limit-equi-
librium method has shown that the present upper-bound so-
lutions are in agreement with regard to the results of Richards
et al. for the and NqE factors. However, for the NcE factor,NgE

the difference between the present solution and that of Rich-
ards et al. attains 40% for f = 307 and Kh = 0.3. The present
numerical results are presented in the form of design charts
for practical use in geotechnical engineering.
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APPENDIX I. M1 Mechanism

In this appendix, we present the different expressions for
the incremental external work of mechanism M1, together with
the internal energy dissipation from the same mechanism.

Geometry

For the triangular block i, the lengths li and di, and the
surface Si are given as follows:

i21
B sin b0 j

l = (16)i P2 cos u sin(a 1 b )j jj=1

i21
B sin a sin b0 i j

d = (17)i P2 cos u sin(a 1 b ) sin(a 1 b )i i j jj=1

i212 2B sin a sin b sin b0 i i j
S = (18)i P2 22 4 cos u sin(a 1 b ) sin (a 1 b )i i j jj=1

Incremental External Work

The different elements of the incremental external work for
the M1 mechanism can be calculated as follows.

1. Incremental external work due to self-weight of triangle
ABC1

2gB0
DW = [ f (a , b , u)]V (19)ABC 1 i i 01 2

where

tan u
f = (20)1 2

2. Incremental external work due to self-weights of the re-
maining 2n triangular blocks

2n 2gB0[DW ] = [ f (a , b , u)]V (21)j 2 i i 0O 2j=1

where

cos(u 2 f)
f =2 22 cos u sin(b 2 2f)1

n i21
sin a sin bi i

? sin b 2 u 2 a 2 fi jO F S O Dsin(a 1 b )i ii=1 j=1

i21 2sin b sin(a 1 b 2 2f)j j j
?P G2sin (a 1 b )sin(b 2 2f)j j j11j=1 (22)

3. Incremental external work due to the foundation load

DW = P V (23)P S 0S

4. Incremental external work due to the surcharge loading

DW = qB f (a , b , u)V (24)q 0 3 i i 0

where
n21

cos(u 2 f) sin bn
f = sin b 2 u 2 a 2 f3 n jS O Dcos u sin(b 2 2f) sin(a 1 b )1 n n j=1

n21
sin b sin(a 1 b 2 2f)j j j

?P sin(a 1 b )sin(b 2 2f)j j j11j=1 (25)

The total incremental external work is the summation of
these four contributions, that is, (19), (21), (23), and (24)

2n

[DW ] = DW 1 [DW ] 1 DW 1 DW (26)ext ABC j P qO O1 S
j=1
JOURNAL OF GEOTECHN
Incremental Internal Energy Dissipation

1. Along BC

DD = cB f (a , b , u)V (27)BC 0 4 i i 0

where

cos f cos(b 2 u 2 f)1
f = (28)4 2 cos u sin(b 2 2f)1

2. Along lines di (i = 1, . . . , n)

DD = cB f (a , b , u)V (29)d (i=1,.. . ,n) 0 5 i i 0i

where

cos(u 2 f)cos f
f =5 2 cos u sin(b 2 2f)1

n i21
sin a sin b sin(a 1 b 2 2f)i j j j

?O F P Gsin(a 1 b ) sin(a 1 b )sin(b 2 2f)i i j j j11i=1 j=1 (30)

3. Along the radial lines li (i = 2, . . . , n)

DD = cB f (a , b , u)V (31)l (i=2,.. . ,n) 0 6 i i 0i

where

cos(u 2 f)cos f
f =6 2 cos u sin(b 2 2f)1

n i21
sin(b 2 b 1 a ) sin bi21 i i21 j

?O F Psin(b 2 2f) sin(a 1 b )i j ji=2 j=1

i22
sin(a 1 b 2 2f)j j

?P Gsin(b 2 2f)j11j=1 (32)

The total incremental energy dissipation is twice the summa-
tion of these three parts, that is, (27), (29), and (31)

[DD] = 2(DD 1 DD 1 DD ) (33)BC d (i=1,.. . ,n) l (i=2,.. . ,n)O i i

APPENDIX II. M2 Mechanism

In this appendix, we present the different expressions for
the incremental external work of mechanism M2, together with
the internal energy dissipation for the same mechanism.

Geometry

For the triangular block i, the lengths li and di, and the
surface Si are given as follows:

i
sin b sin b1 j

l = B (34)i 0 Psin(a 1 b ) sin(a 1 b )1 1 j jj=2

i
sin b sin a sin b1 i j

d = B (35)i 0 Psin(a 1 b ) sin b sin(a 1 b )1 1 i j jj=2

i2 2 2B sin b sin a sin(a 1 b ) sin b0 1 i i i j
S = (36)i P2 22 sin (a 1 b ) sin b sin (a 1 b )1 1 i j jj=2

Incremental External Work

The different elements of the incremental external work for
the M2 mechanism can be calculated as follows.

1. Incremental external work due to self-weights and inertia
forces of the n triangular rigid blocks

2gB0
DW = [g (a , b ) 1 K g (a , b )]V (37)soil 1 i i h 2 i i 12

where
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n i212sin b sin a sin(a 1 b )1 i i i
g = sin b 2 f 2 a1 i jOF S O D2sin (a 1 b ) sin b1 1 ii=1 j=1

i i212sin b sin(a 1 b 2 2f)j j j
?P P G2sin (a 1 b ) sin(b 2 2f)j j j11j=2 j=1 (38)

n i212sin b sin a sin(a 1 b )1 i i i
g = cos b 2 f 2 a2 i jOF S O D2sin (a 1 b ) sin b1 1 ii=1 j=1

i i212sin b sin(a 1 b 2 2f)j j j
?P P G2sin (a 1 b ) sin(b 2 2f)j j j11j=2 j=1 (39)

2. Incremental external work due to the foundation load and
the corresponding inertia force

DW = P [sin(b 2 f) 1 K cos(b 2 f)]V (40)P E 1 h 1 1E

3. Incremental external work due to the surcharge loading
and the corresponding inertia force

DW = qB [g (a , b ) 1 K g (a , b )]V (41)q 0 3 i i h 4 i i 1

where
n21

sin b1
g = sin b 2 f 2 a3 n jS O Dsin(a 1 b )1 1 j=1

n n21
sin b sin(a 1 b 2 2f)j j j

?P Psin(a 1 b ) sin(b 2 2f)j j j11j=2 j=1 (42)
n21

sin b1
g = cos b 2 f 2 a4 n jS O Dsin(a 1 b )1 1 j=1

n n21
sin b sin(a 1 b 2 2f)j j j

?P Psin(a 1 b ) sin(b 2 2f)j j j11j=2 j=1 (43)

The total incremental external work is the summation of these
contributions, that is, (37), (40), and (41)

[DW ] = DW 1 DW 1 DW (44)ext soil P qO E

Incremental Internal Energy Dissipation

1. Along lines di (i = 1, . . . , n)

DD = cB g (a , b )V (45)d (i=1,.. . ,n) 0 5 i i 1i

where
n i

sin b cos f sin a sin b1 i j
g =5 O F Psin(a 1 b ) sin b sin(a 1 b )1 1 i j ji=1 j=2

i21
sin(a 1 b 2 2f)j j

?P Gsin(b 2 2f)j11j=1 (46)

2. Along the radial lines li (i = 1, . . . , n 2 1)

DD = cB g (a , b )V (47)l (i=1,.. . ,n21) 0 6 i i 1i

where
n21 i

sin b cos f sin(b 2 b 1 a ) sin b1 i i11 i j
g =6 O F Psin(a 1 b ) sin(b 2 2f) sin(a 1 b )1 1 i11 j ji=1 j=2

i21
sin(a 1 b 2 2f)j j

?P Gsin(b 2 2f)j11j=1 (48)

The total incremental energy dissipation is the summation of
these two parts, that is, (45) and (47)

[DD] = DD 1 DD (49)d (i=1,.. . ,n) l (i=1,.. . ,n21)O i i
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APPENDIX IV. NOTATION

The following symbols are used in this paper:

B0 = width of footing;
c = cohesion;

c* = residual cohesion due to nonassociativeness;
di, li = discontinuity lines;

Kh = horizontal seismic coefficient;
NqE, NcEN ,gE = seismic bearing capacity factors;
NqS, NcSN ,gS = static bearing capacity factors;

n = number of rigid blocks in failure mechanisms;
PE = seismic ultimate load;
PS = static ultimate load;
q = surcharge loading;

qcE = seismic bearing capacity of footing;
qcS = static bearing capacity of footing;
Si = area of block i;
V0 = initial downward velocity of footing for M1

mechanism;
V1, V2, . . . , Vn = velocities of blocks 1, 2, . . . , n;

g = unit weight of soil;
DV = velocity along velocity discontinuity;

u, ai, bi = angular parameters of failure mechanisms;
f = angle of internal friction of soil;

f* = residual friction angle due to nonassociative-
ness; and

C = dilatancy angle.
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