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Seismic bearing capacity of shallow
strip footings in seismic conditions

A.-H. Soubra

j The seismic bearing capacity factors of
shallow strip footings are calculated. The
approach used is pseudo-static, where the
seismic effects are considered by taking into
account static inertia forces. The upper-
bound method of limit analysis is used. Two
failure mechanisms, referred to as the M1
and M2 mechanisms, are considered for the
calculation schemes. These mechanisms are
non-symmetrical. M1 consists of a log
sandwich composed of a triangular active
wedge, a log-spiral radial shear zone and a
triangular passive wedge. M2 consists of an
arc sandwich composed of a triangular
active wedge, a circular radial shear zone
and a triangular passive wedge. The solu-
tions obtained are rigorous upper-bound
ones in the framework of the limit analysis
theory for an associated ¯ow rule Coulomb
material. For the static case, the numerical
results of the bearing capacity factors show
that the M1 mechanism gives the exact well-
known solutions of both the NcS and NqS

factors. This is not the case with the M2
mechanism. However, for the NãS factor, the
lowest upper-bound solutions are obtained
from the M1 mechanism for ö. 308 and
from the M2 mechanism for ö, 308. For the
seismic case, the lowest upper-bound solu-
tions of the seismic bearing capacity factors
obtained from both the M1 and M2 me-
chanisms are presented in the form of
design charts for practical use in geotech-
nical engineering. These results are com-
pared with other authors' results.

Notation
B0 width of footing
c cohesion
ÄDAC, ÄDCD, ÄDDE incremental internal energy dissi-

pation along AC, CD and DE,
respectively

ÄDL incremental internal energy dissi-
pation

ÄDrad incremental internal energy dissi-
pation along the radial lines of the
log spiral or the circular shear
zone BCD

ÄV velocity along a velocity disconti-
nuity

ÄWABC, ÄWBCD,
ÄWBDE

incremental external work of re-
gions ABC, BCD and BDE, re-
spectively

ÄWP, ÄWq incremental external work due to
the foundation load and surcharge
loading, respectively

f 1, . . . f 11 non-dimensional intermediate
functions

g1, . . . g11 non-dimensional intermediate
functions

Kh horizontal seismic coef®cient
NãS, NcS, NqS static bearing capacity factors
NãE, NcE, NqE seismic bearing capacity factors
P ultimate foundation load
q surcharge loadings
qc ultimate bearing capacity
r, è polar coordinates of the surface CD
r0 initial ray of the log-spiral surface,

i.e. BC
Ó[ÄD] total incrementalenergydissipation
Ó[ÄW ]ext total incremental external work
V velocity
V1 velocity of the triangle ABC
V2 velocity of the triangle BDE
W ABC, W BDE weights of regions ABC and BDE,

respectively
dW elementary weight in the radial

shear zone BCD
á, â angular parameters of the failure

mechanisms
ö angle of internal friction of the soil
ã unit weight of the soil

Introduction
While the investigation of bearing capacity in
non-seismic areas has been reported at length in
the literature,

1ÿ7
the seismic bearing capacity of

strip footings has not been studied in detail in
the past. The traditional method for evaluating
the effect of an earthquake load on the stability
of a soil-foundation system is the so-called
`pseudo-static method'. This method continues to
be used by consulting geotechnical engineers
because it is required by the building codes; it is
easy to apply and gives satisfactory results. The
very few studies available in the literature
describing the seismic effect on the bearing
capacity of foundations concern the work of
Meyerhof

8
and Shinohara et al.

9
Both ap-

proaches are pseudo-static: horizontal and ver-
tical accelerations are applied to the centre of
gravity of the structure and the problem is
reduced to a static case of bearing capacity with
inclined eccentric loads. However, in these
solutions, the inertia of the soil mass is not
included. Recently, Sarma and Iossifelis

10
have

suggested a method for calculating the seismic
bearing capacity of strip footings in seismic areas
by considering the inertia forces on all parts of
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the soil-structure system (soil and foundation).
Their method is based on an approach which
they have been using for the analysis of slopes;
it is a limit equilibrium method based on an a
priori assumption concerning the inter-slice
forces. It is well known that this category of
methods gives approximate solutions of the
failure load and that the solution cannot be said
to be an upper- or a lower-bound one with
respect to the exact solution. In this paper we
present an upper-bound limit analysis method.
This method allows us to get a rigorous upper-
bound solution with respect to the exact solution
for an associated ¯ow rule Coulomb material
obeying Hill's maximal work principle. This
method is detailed in the following section.

Assumptions
2. An earthquake has two possible effects

on a soil-foundation system. One is to increase
the driving forces. The other is to reduce the
shearing resistance of the soil. The reduction in
the shearing resistance of a soil occurs only
when the magnitude of the earthquake exceeds
a certain limit and the ground conditions are
favourable for such a reduction. In this paper,
only the reduction of the bearing capacity
factors due to the increase in driving forces is
investigated under seismic loading conditions.
The shear strength of the soil is assumed to
remain unaffected by the seismic loading. The
assumptions made in the analysis can be sum-
marized as follows.

(a) The soil is homogeneous and isotropic. It is
assumed to be an associated ¯ow rule
Coulomb material obeying Hill's maximal
work principle.

(b) The effect of pore water pressure is not
included.

(c) A one-sided failure mechanism is assumed
to occur.

(d) Only the reduction of the bearing capacity
due to the increase in driving forces is
investigated under seismic loading condi-
tions. The shear strength of the soil is
assumed to remain unaffected by the
seismic loading.

(e) As was mentioned before, all inertias of the
soil-structure system are considered.

( f ) The earthquake acceleration for both the
soil and the structure is assumed to be the
same. Only the horizintal seismic coef®cient
Kh is considered, the vertical seismic coef-
®cient being often disregarded.

(g) The earthquake load on the structure is
represented by the base shear load acting at
the foundation level and an eccentricity for
the vertical foundation load. The moment
due to the seismic load on the structure is
not considered. Only the base shear load
will be taken into account.

The upper-bound theorem of limit
analysis

3. The upper-bound theorem of limit analy-
sis states that, for a kinematically admissible
velocity ®eld, an upper-bound of the exact
collapse load can be obtained by equating the
power dissipated internally to the power ex-
pended by the external loads. A kinematically
admissible velocity ®eld is one that satis®es the
¯ow rule, the velocity boundary conditions and
compatibility. During plastic ¯ow, power is
assumed to be dissipated by general plastic
yielding of the soil mass, as well as by sliding
along velocity discontinuities where jumps in
the normal and tangential velocities may occur.
Note that the velocity ®eld at collapse is often
modelled by a mechanism of rigid blocks that
move with constant velocities. Since no general
plastic deformation of the soil mass is permitted
to occur, the power is dissipated solely at the
interfaces between adjacent blocks, which con-
stitute velocity discontinuities. This kind of
velocity ®eld will be used here. Finally, it should
be noted that in the case of the bearing capacity
problem, the upper-bound theorem gives an
unsafe estimate of the failure load.

Failure mechanisms
4. As was mentioned above, to obtain upper-

bound solutions for the bearing capacity pro-
blem, a kinematically admissible failure mech-
anism must be considered. According to the
normality condition for an associated ¯ow rule
Coulomb material, for a kinematically admissible
failure mechanism the velocity along a plastic-
ally deformed surface must make an angle ö
with this velocity discontinuity. If the kine-
matically admissible mechanism is chosen, the
work equation is obtained by equating the rate
of external work done by the external forces to
the rate of internal energy dissipation along the
plastically deformed surfaces. Finally, the critical
failure load is then obtained after extremization
of the `potential' failure load.

5. In a previous paper, Soubra and Rey-
nolds

11
have presented a rotational non-sym-

metrical failure mechanism for the seismic
bearing capacity of strip footings on slopes. The
results obtained overestimate the currently
accepted results in the static and seismic cases.
In this paper, the traditional translational mech-
anisms proposed by Terzaghi

1
and Chen

6
will

be used by applying the upper-bound method of
limit analysis in order to obtain rigorous upper-
bound solutions. Two translational failure
mechanisms, referred to as the M1 and M2
mechanisms, are considered for the calculation
schemes.

M1 mechanism
6. This mechanism has been used by

Dormieux and Pecker
12

to calculate the seismic
bearing capacity factor NãE of a cohesionless
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soil. As shown in Fig. 1 this mechanism is
composed of a triangular active wedge ABC, a
log-spiral radial shear zone BCD and a trian-
gular passive wedge BDE. It is a log-sandwich
mechanism and will be referred to here as the
M1 mechanism. The log-spiral slip surface CD
is assumed to be a tangent to lines AC and DE
at C and D, respectively. This mechanism is
de®ned by the two angular parameters á and â.

7. The triangular wedge ABC is assumed to
be rigid. It moves with velocity V1, which makes
an angle ö with the discontinuity line AC in
order to respect the normality condition for an
associated ¯ow rule Coulomb material. The
foundation is assumed to move with the same
velocity as the wedge ABC (i.e. V1); hence
there is no dissipation of energy along the soil-
structure interface.

8. The radial log-spiral shearing zone BCD
is bounded by a log-spiral curve CD, where the
equation for the curve in polar coordinates
(r, è) is r � r0 exp (è tanö); the centre of this
log-spiral CD is at point B and the radius r0 is
the length of the line BC. Note that in this
mechanism we have assumed that the line AC
is a tangent to the log-spiral curve at point C;
hence there is no velocity discontinuity along
BC.

9. The radial shear zone BCD may be
considered to be composed of a sequence of
rigid triangles, as in the investigations by Chen

6

using the symmetrical Hill and Prandtl's mech-
anisms. All the small triangles move as rigid
bodies in directions which make an angle ö
with the discontinuity line CD. The velocity of
each small triangle is determined by the con-
dition that the relative velocity between the
triangles in contact has the direction which
makes an angle ö to the contact surface. It has
been shown

6
that the velocity V of each triangle

is V (è) � V1 exp (è tanö). The log-spiral curve
CD is assumed to be tangent to line DE at D;
hence there is no velocity discontinuity along
line BD.

10. Finally, the triangular wedge BDE is
assumed to be rigid, moving with velocity
V2 � V (â) � V1 exp (â tanö). Therefore, the
velocities so determined constitute a kinematic-
ally admissible velocity ®eld. Having established
the velocity ®eld of the kinematically admissible
failure mechanism, the different terms of the
work equation can be calculated as described
below.

11. Calculations of incremental external
work. The incremental external work due to an
external force is the external force multiplied by
the corresponding incremental displacement or
velocity. The incremental external work due to
self-weight in a region is the vertical component
of the velocity in that region multiplied by the
weight of the region. As shown in Fig. 2, the
external forces contributing to the incremental

external work consist of the foundation load, the
weight of the soil mass, the surcharge q on the
foundation level and the different inertia forces.
These inertia forces concern the base shear
load and the inertia forces of the soil mass and
the surcharge loadings. The incremental exter-
nal work for the different external forces can be
easily obtained; the calculations are presented in
Appendix 1.

12. Calculations of incremental internal en-
ergy dissipation. The incremental energy dis-
sipation per unit length along a velocity
discontinuity or a narrow transition zone can be
expressed as

ÄDL � cÄV cosö (1)

where ÄV is the incremental displacement or
velocity which makes an angle ö with the
velocity discontinuity according to the associated
¯ow rule of perfect plasticity, and c is the
cohesion parameter. Calculations of the incre-
mental energy dissipation along the different
velocity discontinuities are given in Appendix 1.

13. Work equation. By equating the total
external work (equation (24), Appendix 1) to
the total internal energy dissipation (equation
(32), Appendix 1), we have

qc � P

B0
� ã

B0

2
NãE � cNcE � qNqE (2)

where NãE, NcE and NqE are the seismic bearing
capacity factors. They are given as follows
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Fig. 1. Failure mechanism M1 for seismic bearing capacity analysis

Fig. 2. Free body
diagram for the M1
mechanism
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NãE � ÿ 1

cosá� Kh siná

3 [ f 1 � f 3 � f 5 � Kh( f 2 � f 4 � f 6)]

(3)

NcE � 1

cosá� Kh siná
( f 9 � f 10 � 2 f 11) (4)

NqE � ÿ 1

cosá� Kh siná
( f 7 � Kh f 8) (5)

M2 mechanism
14. As shown in Fig. 3, this mechanism is

composed of a triangular active wedge ABC, a
radial circular shear zone BCD and a triangular
passive wedge BDE. It is an arc-sandwich
mechanism and will be referred to here as the
M2 mechanism. As in the case of the M1
mechanism, the circular slip surface CD is
assumed to be tangent to lines AC and DE at C
and D respectively; hence there are no velocity
discontinuities along BC and BD. This mechan-
ism is de®ned by the two angular parameters á
and â.

15. The triangular wedge ABC is assumed
to be rigid. It moves with velocity V1, which
makes an angle ö with the discontinuity line
AC. The foundation is assumed to move with
the same velocity as the wedge ABC (i.e. V1).
The centre of the circular arc CD is at point B
and the radius r0 is the length of the line BC. It
has been shown

6
that the velocity V along the

circular shear zone is V (è) � V1 exp (è tan 2ö).
16. Finally, the triangular wedge BDE is

assumed to be rigid, moving with velocity
V2 � V (â) � V1 exp (â tan 2ö). Therefore, the
velocities so determined constitute a kinematic-
ally admissible velocity ®eld. Having established
the velocity ®eld of the kinematically admissible
failure mechanism, the different terms of the
work equation can be calculated; these calcula-
tions are presented in Appendix 2. As with the
M1 mechanism, by equating the rate of the total
external work (equation (46), Appendix 2) to
the rate of the total internal energy dissipation
(equation (54), Appendix 2), we obtain equation
(2), where the seismic bearing capacity factors
are given as follows

NãE � ÿ 1

cos (á� ö)� Kh sin (á� ö)

3 [g1 � g3 � g5 � Kh( g2 � g4 � g6)]

(6)

NcE � 1

cos (á� ö)� Kh sin (á� ö)

3 [g9 � g10 � g11 � g12] (7)

NqE � ÿ 1

cos (á� ö)� Kh sin (á� ö)

3 [g7 � Kh g8] (8)

Numerical results
17. The most critical bearing capacity can

be obtained by minimization of qc (equation (2))
with respect to the parameters á and â. A
computer program for assessing the seismic
bearing capacity has been developed based on
equation (2). The program gives the critical slip
surface and the corresponding critical bearing
capacity. In the following sections we present
the bearing capacity factors for the two mech-
anisms M1 and M2 obtained from the numerical
extremization of equations (3) to (8). The
results are then compared with those of other
authors for both static and seismic conditions.

Static case
18. The problem of bearing capacity in non-

seismic areas has been widely treated in the
literature by considering symmetrical failure
mechanisms and using the limit equilibrium, the
limit analysis or the slip line method.

19. NcS and NqS factors. For the NcS and
NqS factors, it should be noted that the exact
solution is well described in the literature

6
and

is given as

NqS � eð tan ö tan2 ð

4
� ö

2

� �
(9)

NcS � (Nqs ÿ 1) cotö (10)

20. Table 1 compares the NqS and NcS

values obtained from the two proposed mech-
anisms with those of Terzaghi,

1
Meyerhof,

2

Sokolovski,
3

Prakash and Saran,
4

Saran
5

and
Saran and Agarwal.

7
It should be mentioned

here that the numerical bearing capacity factors
NqS and NcS given by Sokolovski

3
are the same

as the ones given by the exact solutions
(equations (9) and (10)). It is clear from Table
1 that the solutions of the NqS and NcS factors
obtained from the M1 mechanism are the same
as the exact solution given by equations (9) and
(10). The corresponding critical slip surface
obtained from the minimization procedure cor-
responds to á � ð=4 � ö=2 and â � ð=2, which
means that lines BD and DE are inclined at an
angle of ð=4 ÿ ö=2 to the horizontal direction,
as it is the case of the symmetrical Prandtl
mechanism (see below). Note, however, that the
M2 mechanism greatly overestimates the NqS

A B E

C

D

α
â

φ

φφ

V2V1

V1

Circle

Fig. 3. Failure
mechanism M2 for
seismic bearing
capacity analysis
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and NcS values, especially for large ö values,
and equation (10) is still satis®ed for this
mechanism.

21. NãS factor. For the NãS values, many
solutions are proposed in the literature based
on different failure mechanisms. Chen

6
consid-

ered three symmetrical failure mechanisms
referred to as Prandtl1, Prandtl2 and Prandtl3
and gave rigorous upper-bound solutions for
the three mechanisms in the framework of
the limit analysis theory. Prandtl1 is composed
of a triangular active wedge under the footing,
two radial log-spiral shear zones and two
triangular passive wedges. Prandtl2 differs from
Prandtl1 only in that an additional rigid body
zone has been introduced. Finally, Prandtl3
resembles closely the Prandtl1 mechanism;
however, each shear zone is now bounded by
a circular arc.

22. Soubra and Reynolds
11

and Soubra
13, 14

considered one-sided non-symmetrical mechan-
isms and developed upper-bound solutions for
the bearing capacity problem. While Soubra and
Reynolds

11
used a rotational log-spiral mechan-

ism, Soubra
13, 14

used translational mechanisms.
One mechanism

14
is of the Coulomb type

(two triangular wedges), whereas the other
13

is
composed of a triangular active wedge and a
radial log-spiral shear zone. The latter mechan-
ism is described by a single parameter. The
mechanisms M1 and M2 presented in this paper

are more general mechanisms since they are
described by the two parameters á and â and
they permit a greater freedom for the slip
surface to develop, thus leading to smaller
upper-bound solutions of the bearing capacity
problem.

23. Table 2 compares the NãS values ob-
tained from the two proposed mechanisms with
those of Chen,

6
Soubra and Reynolds,

11
and

Soubra.
13, 14

It is clear from this table that the
solutions of the NãS factor obtained from the
M1 non-symmetrical mechanism are very close
to the ones obtained from the Prandtl2 sym-
metrical mechanism. The critical slip surface
corresponds to the case when lines BD and DE
are inclined at an angle of ð=4 ÿ ö=2 to the
horizontal direction. Note also that the results
given by the M2 non-symmetrical mechanism
are in good agreement with the ones given by
the symmetrical Prandtl3 mechanism up to
ö � 308.

24. Few of the available bearing capacity
theories for a non-symmetrical mechan-
ism

10, 15, 16
belong to the limit equilibrium

method or the slip line methods and we cannot
say if the solutions they give are upper- or
lower-bound ones with respect to the exact
solution. However, as is well known in the
framework of the limit analysis method, the
exact solution of a bearing capacity problem can
be bracketed by the minimal upper-bound

Table 1. Comparison of static bearing capacity factors: (a) NcS; and (b) NqS

(a)
ö: deg Present Present Terzaghi

1
Meyerhof

2
Sokolovski

3
Prakash and Saran

5
Saran and

solution solution Saran
4

Agarwal
7

M1 M2

20 14´8 18 17´7 14´5 14´8 17´3 17´5 17´7
30 30´1 70 37´2 31 30´1 36´6 37´2 37´2
40 75´3 Ð 95´7 73 75´3 94´8 95´4 96

(b)
ö: deg Present Present Terzaghi

1
Meyerhof

2
Sokolovski

3
Prakash and Saran

5
Saran and

solution solution Saran
4

Agarwal
7

M1 M2

20 6´4 7´6 7´4 6´8 6´4 7´4 7´4 7´4
30 18´4 41´4 22´5 19´5 18´4 22´4 22´5 22´5
40 64´2 Ð 81´3 64 64´2 81´3 81´3 81´6

Table 2. Comparison of static bearing capacity factor NãS (upper-bound solutions)

ö: deg Present Present Chen
6

Chen
6

Chen
6

Soubra and Soubra
13

Soubra
14

solution solution `Prandtl1' `Prandtl2' `Prandtl3' Reynolds
11

M1 M2

15 2´3 2´1 2´7 2´3 2´1 3´2 2´4 2´5
20 5´2 4´8 5´9 5´2 4´6 7´3 5´5 5´9
25 11´4 11´1 12´4 11´4 10´9 16´5 12´1 14´1
30 25 31´5 26´7 25 31´5 38´1 26´8 36´4
35 57´1 152´2 60´2 57 138 92´5 61´6 115´6
40 140´5 5444´4 147 141 1803 243´9 152´6 642´8
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solution and the maximal lower-bound solution.
Therefore, in this paper only the minimum
value obtained by the different available upper-
bound methods (i.e. Chen,

6
mechanism M1 or

M2, Soubra and Reynolds
11

or Soubra
13,14

should be considered. It should be mentioned
that the minimum results of the present non-
symmetrical mechanisms [Min (M1, M2)] give
the lowest upper-bound solutions of the non-
symmetrical mechanisms available in the litera-
ture in the framework of the limit analysis
theory (i.e. Soubra and Reynolds,

11
and

Soubra
13,14

). Note that in the following we will
consider the minimal values of the two mech-
anisms M1 and M2 in order to provide the
geotechnical engineer with the lowest upper-
bound solution.

25. For the sake of completeness, Table 3
compares the NãS values obtained with those of
different authors using the limit equilibrium
method and the slip line method (Terzaghi,

1

Meyerhof,
2

Sokolovski,
3

Prakash and Saran,
4

Saran,
5

Sarma and Iossifelis,
10

and Saran and
Agarwal

7
). It is generally known that Terzag-

hi's
1

values give a conservative estimate. Ex-
periments performed on models and at full scale
by Muhs and Kahl,

17
Feda,

18
Selig and

McKee,
19

and De Beer
20

showed that Terza-
ghi's analysis underestimates the bearing capa-
city. Saran

5
showed by analysing model test

data that the values of Terzaghi,
1

Meyerhof
2

and Sokolovski
3

underestimate the NãS values.
The present NãS values chosen as the minimal
values of the M1 and M2 mechanisms are in
good agreement with those of the non-symme-
trical mechanism of Sarma and Iossifelis

10
using

the limit equilibrium method; the difference
does not exceed 5% when ö � 408.

26. Finally, one can easily see that in most
cases M1 gives smaller values for the bearing
capacity factors than M2, except for the NãS

factor when ö , 308.

Seismic case
27. The analysis of the seismic bearing

capacity problem by a pseudo-static approach,
considering the inertia forces both on the soil
mass and on the structure, has been under-
taken by Sarma and Iossifelis,

10
Soubra and

Reynolds,
11

Richards et al.,
15

and Soubra.
13,14

While the analyses of Sarma and Iossifelis
10

and
of Richards et al.

15
are based on the limit

equilibrium method, the solutions presented by
Soubra and Reynolds

11
and Soubra

13,14
are

upper-bounds to the exact solution for an
associated ¯ow rule Coulomb material in the
framework of the limit analysis theory.

28. Figure 4 shows the comparison of the
present reduction factor NãE=NãS obtained
using the M1 mechanism with the one given
by Dormieux and Pecker

12
for ö � 308. The

difference between the two curves is due to
the fact that Dormieux and Pecker

12
have

limited the á parameter to ð=2 as mentioned
in their paper. In fact, á , ð=2 is valuable
only for small values of Kh; for greater values
of Kh, á becomes greater than ð=2. Table 4
presents the values of the angular parameters á
and â obtained from the numerical minimization
by considering the restriction á , ð=2 (Dor-
mieux and Pecker

12
) and the unrestricted

values from the present analysis. It is clear from
this table that the difference with Dormieux and
Pecker

12
appears when Kh � 0:25, where

á . ð=2.
29. Tables 5 to 7 give the seismic bearing

capacity factors NãE, NcE and NqE from both
the M1 and M2 mechanisms. As in the static
case, in most cases M1 continues to give
smaller values for the seismic bearing capacity
factors than the M2 mechanism, except for the
NãE factor when ö , 308. Furthermore, it
should be mentioned that the present results

Table 3. Comparison of static bearing capacity factor NãS with available limit equilibrium and slip line methods

ö: deg Present Terzaghi
1

Meyerhof
2

Sokolovski
3

Prakash and Saran
5

Sarma and Saran and
solution Saran

4
Iossifelis

10
Agarwal

7

Min (M1, M2)

20 4´8 5 2´8 3´2 3´8 6 5´7 6´4
30 25 19´7 16 15´3 19´4 29´3 25 29´4
40 140´5 100´4 95 85´3 115´8 165´3 133´8 166´1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Present solution Dormieux and Pecker12
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Fig. 4. Comparison of
the present solution
and that of Dormieux
and Pecker

12
for the

M1 mechanism
(ö � 308)
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Table 4. Comparison of the angular parameters á and â as given by the present analysis and that of
Dormieux and Pecker

12
for ö � 308

Kh Present solution Dormieux and Pecker
12

á: deg â: deg NãE á: deg â: deg NãE

0 74´74 75´26 24´98 74´74 75´26 24´98
0´05 78´56 69´49 19´95 78´56 69´49 19´95
0´1 82´39 63´74 15´63 82´39 63´74 15´63
0´15 86´24 57´98 11´97 86´24 57´98 11´97
0´2 90´09 52´23 8´94 90´00 52´23 8´94
0´25 93´92 46´47 6´47 90´00 50´52 6´74
0´3 97´76 40´69 4´50 90´00 48´69 5´25
0´35 101´52 34´83 2´97 90´00 46´79 4´16
0´4 105´38 28´94 1´81 90´00 44´76 3´31

Table 5. Seismic bearing capacity factor NãE from the M1 and M2 mechanisms

Kh ö: deg

15 20 25 30 35 40

0 2´3 5´2 11´4 25´0 57´1 140´5
0´1 1´1 3´0 6´9 15´6 36´1 88´4
0´2 Ð 1´3 3´6 8´9 21´4 53´0
0´3 Ð Ð 1´5 4´5 11´7 30´1

M1
0´4 Ð Ð Ð 1´8 5´8 16´0
0´5 Ð Ð Ð Ð 2´3 7´8
0´6 Ð Ð Ð Ð Ð 3´3

0 2´1 4´8 11´1 31´5 152´2 5444´4
0´1 Ð 2´7 6´6 18´9 85´2 2288´7
0´2 Ð 1´2 3´4 10´3 44´4 912´1
0´3 Ð Ð 1´4 4´9 21´3 345´1

M2
0´4 Ð Ð Ð 1´9 9´1 123´2
0´5 Ð Ð Ð Ð 3´3 40´6
0´6 Ð Ð Ð Ð 0´8 11´7
0´7 Ð Ð Ð Ð Ð 2´5

Table 6. Seismic bearing capacity factor NcE from the M1 and M2 mechanisms

Kh ö: deg

15 20 25 30 35 40

0 11´0 14´8 20´7 30´1 46´1 75´3
0´1 9´5 12´7 17´5 25´0 37´6 60´1
0´2 7´9 10´5 14´3 20´3 30´0 46´9
0´3 6´4 8´5 11´5 16´1 23´5 36´1
0´4 5´1 6´7 9´1 12´6 18´1 27´4

M1 0´5 4´0 5´2 7´0 9´7 13´8 20´7
0´6 3´0 4´0 5´4 7´4 10´5 15´5
0´7 Ð Ð 4´0 5´6 7´9 11´6
0´8 Ð Ð Ð 4´2 5´9 8´7
0´9 Ð Ð Ð 3´1 4´4 6´5
1 Ð Ð Ð Ð 3´3 4´9

0 11´9 18´0 31´3 70´0 280´6 Ð
0´1 10´2 15´1 25´3 53´7 193´8 Ð
0´2 8´5 12´3 19´9 40´1 130´7 Ð
0´3 6´8 9´7 15´3 29´2 86´4 Ð

M2 0´4 5´3 7´5 11´4 20´9 56´3 Ð
0´5 4´1 5´6 8´4 14´7 36´1 Ð
0´6 Ð 4´1 6´0 10´1 22´9 Ð
0´7 Ð Ð 4´2 6´8 14´2 Ð
0´8 Ð Ð Ð Ð 8´6 Ð
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[Min (M1, M2)] give the lowest upper-bound
solutions of the non-symmetrical mechanisms
available in the literature in the framework of
the limit analysis theory.

11,13,14

30. Figure 5 shows the variation of the
seismic NãE value with the horizontal seismic
coef®cient Kh when ö � 308, as given by the
present analysis, Sarma and Iossifelis

10
and

Richards et al.
15

The comparison of the present
upper-bound solution with the solutions pre-
sented by Sarma and Iossifelis

10
and Richards

et al.
15

in the framework of the limit equilibrium
method shows good agreement. The maximum
difference does not exceed 13% when compared
with Sarma and Iossifelis'

10
results and 6%

compared with Richards et al.
15

31. Figures 6 to 8 show design charts of the
seismic bearing capacity factors as given by the
present analysis for ö � 208, 258, 308, 358 and
408. In these ®gures the values proposed by
Sarma and Iossifelis

10
for the same ö values

and those proposed by Richards et al.
15

for
ö � 208, 308 and 408 are also presented. These
®gures again con®rm the agreement of the
present results with those of these authors for
the different values of ö and Kh, except for the
NcE value proposed by Richards et al.

15
This

may be explained by the fact that Richards
et al.

15
have used equation (10) to calculate the

seismic factor NcE without any real justi®cation,
as they mentioned in their paper.

32. Figure 9 shows the variation of NãE=NãS

with Kh for ö � 358, according to the present
analysis (Sarma and Iossifelis,

10
Soubra and

Reynolds,
11

Soubra,
13, 14

Richards et al.
15

and
Budhu and Al-Karni

16
). It can easily be seen

that the present solutions in terms of the
reduction in the NãE factor agree well with the
ones of Richards et al.

15
and Sarma and

Iossifelis,
10

as was shown in Fig. 5. For the ö
value used in Fig. 9 (ö � 358), this agreement is
best with the results of Richards et al.

15

Table 7. Seismic bearing capacity factor NqE from the M1 and M2 mechanisms

Kh ö: deg

15 20 25 30 35 40

0 3´9 6´4 10´7 18´4 33´3 64´2
0´1 3´1 5´0 8´3 14´3 25´6 48´7
0´2 2´1 3´6 6´2 10´7 19´0 35´9
0´3 Ð 2´2 4´2 7´5 13´6 25´7

M1
0´4 Ð Ð 2´5 5´0 9´4 17´9
0´5 Ð Ð Ð Ð 6´0 12´0
0´6 Ð Ð Ð Ð 3´5 7´7
0´7 Ð Ð Ð Ð Ð 4´6

0 4´2 7´6 15´6 41´4 197´5 Ð
0´1 3´2 5´7 11´5 29´1 125´0 Ð
0´2 2´1 4´0 8´0 19´5 76´2 Ð

M2 0´3 Ð 2´4 5´1 12´4 44´6 Ð
0´4 Ð Ð Ð 7´3 24´9 Ð
0´5 Ð Ð 3´6 13´0 Ð
0´6 Ð Ð Ð Ð 5´8 Ð

0 0.05 0.1 0.15 0.2 0.25 0.3
0

5

10

15

20

25

Present solution Sarma and lossifelis10 Richards et al15

Kh

N
γE

Fig. 5. Variation of the seismic bearing capacity factor NãE with Kh as given
by different authors (ö � 308)

Present solution
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Richards et al.15
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Fig. 6. Design charts for NãE
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33. Finally, it should be mentioned that the
seismic acceleration generated by earthquakes
not only imposes extra loadings on a soil mass
but also shifts the sliding surface to less
favourable positions. Fig. 10 shows that the
critical slip surface of the M1 mechanism
becomes shallower as the acceleration intensity
increases. This conforms with the results of
Richards et al.

15

Conclusions
34. Two failure mechanisms have been

considered for the analysis of the seismic
bearing capacity factors using the upper-bound
method in limit analysis. The solutions pre-
sented are rigorous upper-bound ones in the
framework of the limit analysis theory for an
associated ¯ow rule Coulomb material. The
numerical results obtained lead to the following
conclusions.

(a) For the static case, the log-sandwich mech-
anism M1 gives the exact solutions of the
NcS and NqS factors. The angular para-
meters obtained from the numerical mini-
mization show that the passive triangular
wedge is in a passive Rankine state, as it is
in the case of the symmetrical Prandtl
mechanism. However, the arc-sandwich
mechanism M2 gives non-interesting results
in this case since one obtains higher upper-
bound solutions than the former mechan-
ism. For the NãS factor, it was found that
the results of the M1 mechanism are very
close to the ones of the symmetrical failure
mechanism Prandtl2 considered by Chen

6

using the limit analysis method, and that the
critical failure mechanism corresponds to
the case when the passive wedge is in a
Rankine state. However, the M2 mechanism
gives results which are very close to
another symmetrical mechanism, Prandtl3,

6

up to ö � 308. For design purposes, one has
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Fig. 7. Design charts for NcE
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NãE=NãS with Kh as
given by different
authors (ö � 358)
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to choose the minimal value from both the
M1 and M2 mechanisms [Min (M1, M2)].
Note that the lowest upper-bound solutions
are obtained from the M1 mechanism when
ö . 308 and from the M2 mechanism when
ö , 308. The present upper-bound solutions
[Min (M1, M2)] are smaller than the ones
available in the literature for non-symme-
trical failure mechanisms in the framework
of the upper-bound method of limit analysis
theory.

(b) For the seismic case, in most cases the log-
sandwich M1 mechanism continues to give
smaller values for the seismic bearing
capacity factors than the arc-sandwich M2
mechanism, except for the NãE factor when
ö , 308. For design purposes, one has to
choose the minimal values from both
mechanisms. It should be mentioned that
the present upper-bound solutions for the
seismic bearing capacity factors are the
smallest ones with respect to the results
available in the literature in the framework
of the kinematical method of limit analysis.
Furthermore, the present results for the
seismic bearing capacity factors are in good
agreement with the ones of Sarma and
Iossifelis

10
and Richards et al.

15
using the

limit equilibrium method. These results are
presented in the form of design charts for
practical use.

Appendix 1
35. In this appendix, we present the different

expressions for the incremental external work of the
different regions of mechanism M1, together with the
internal energy dissipation for the same mechanism.

Incremental external work
36. The different elements of the incremental

external work for the M1 mechanism can be calculated
as follows.

(a) Incremental external work due to self-weight and
inertia force of triangle ABC

ÄWABC � ãB2
0

2
[ f 1(á, â)� Kh f 2(á, â)]V1 (11)

where

f 1 � sin 2á cos (áÿ ö)

2 cosö
(12)

f 2 � sin 2á taná cos (áÿ ö)

2 cosö
(13)

(b) Incremental external work due to self-weight and
inertia force of the radial shear zone BCD

ÄWBCD � ãB2
0

2
[ f 3(á, â)� Kh f 4(á, â)]V1 (14)

where

f 3 � cos2 (áÿ ö)

cos2 ö
3

e3â tan ö [3 tanö cos (á� â)� sin (á� â)]

1� 9 tan2 ö

�
ÿ [ÿ3 tanö cosáÿ siná]

1� 9 tan2 ö

�
(15)

f 4 � cos2 (áÿ ö)

cos2 ö
3

e3â tan ö [3 tanö sin (á� â)ÿ cos (á� â)]

1� 9 tan2 ö

�
ÿ[3 tanö siná� cosá]

1� 9 tan2 ö

�
(16)

(c) Incremental external work due to self-weight and
inertia force of triangle BDE

ÄWBDE � ãB2
0

2
[ f 5(á, â)� Kh f 6(á, â)]V1 (17)

where

f 5 � ÿ cos (á� â) sin (á� â) cos2 (áÿ ö)

cos (á� âÿ ö) cosö
e3â tan ö

(18)

f 6 � ÿ cos2 (áÿ ö) sin2 (á� â)

cos (á� âÿ ö) cosö
e3â tan ö (19)

(d) Incremental external work due to the foundation
load and the corresponding inertia force

ÄWP � P(cosá� Kh siná)V1 (20)

(e) Incremental external work due to the surcharge
loading and the corresponding inertia force

ÄWq � qB0[ f 7(á, â)� Kh f 8(á, â)]V1 (21)

where

f 7 � ÿ cosá cos (áÿ ö) cos (á� â)

cos (á� âÿ ö)
e2â tan ö (22)

f 8 � ÿ cos (áÿ ö) sin (á� â)

cos (á� âÿ ö)
e2â tan ö (23)

37. The total incremental external work is the
summation of these ®ve contributions; that is, equa-
tions (11), (14), (17), (20) and (21)

Ó[ÄW ]ext �
ÄWABC � ÄWBCD � ÄWBDE � ÄWP � ÄWq (24)

Kh 5 0.3 Kh 5 0

Fig. 10. Critical slip surfaces from the M1 log-sandwich mechanism (ö � 358)
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Incremental internal energy dissipation
38. The different elements of the incremental

internal energy dissipation for the M1 mechanism can
be calculated as follows.

(a) Along AC

ÄDAC � cB0 f 9(á, â)V1 (25)

where

f 9 � siná (26)

(b) Along DE

ÄDDE � cB0 f 10(á, â)V1 (27)

where

f 10 � ÿ sin (á� â) cos (áÿ ö)

cos (á� âÿ ö)
e2â tan ö (28)

(c) Along CD

ÄDCD � cB0 f 11(á, â)V1 (29)

where

f 11 � cos (áÿ ö)

2 sinö
(e2â tan ö ÿ 1) (30)

(d) Along the radial lines of the shear zone BCD

ÄDrad � ÄDCD (31)

39. The total incremental energy dissipation is the
summation of these four parts: that is, equations (25),
(27), (29) and (31)

Ó[ÄD] � ÄDAC � ÄDDE � ÄDCD � ÄDrad (32)

Appendix 2
40. In this appendix, we present the different

expressions for the incremental external work of the
different regions of mechanism M2, together with
the internal energy dissipation for the same mech-
anism.

Incremental external work
41. The different elements of the incremental

external work for the M2 mechanism can be calculated
as follows.

(a) Incremental external work due to self-weight and
inertia force of triangle ABC

ÄWABC � ãB2
0

2
[g1(á, â)� Kh g2(á, â)]V1 (33)

where

g1 � sin 2á cos (á� ö)

2
(34)

g2 � sin 2á sin (á� ö)

2
(35)

(b) Incremental external work due to self-weight and
inertia force of the radial shear zone BCD

ÄWBCD � ãB2
0

2
[g3(á, â)� Kh g4(á, â)]V1 (36)

where

g3 � cos2 á

1� tan2 2ö

�
eâ tan 2ö

3 [tan 2ö cos (á� ö� â)� sin (á� ö� â)]

ÿ [tan 2ö cos (á� ö)� sin (á� ö)]

�
(37)

g4 � cos2 á

1� tan2 2ö

�
eâ tan 2ö

3 [tan 2ö sin (á� ö� â)ÿ cos (á� ö� â)]

ÿ [tan 2ö sin (á� ö)ÿ cos (á� ö)]

�
(38)

(c) Incremental external work due to self-weight and
inertia force of triangle BDE

ÄWBDE � ãB2
0

2
[g5(á, â)� Kh g6(á, â)]V1 (39)

where

g5 � ÿ cos2 á sin (á� â) cos (á� â� ö)

cos (á� â)
eâ tan 2ö

(40)

g6 � ÿ cos2 á sin (á� â) sin (á� â� ö)

cos (á� â)
eâ tan 2ö

(41)

(d) Incremental external work due to the foundation
load and the corresponding inertia force

ÄWP � P[cos (á� ö)� Kh sin (á� ö)]V1 (42)

(e) Incremental external work due to the surcharge
loading and the corresponding inertia force

ÄWq � qB0[g7(á, â)� Kh g8(á, â)]V1 (43)

where

g7 � ÿ cosá cos (á� â� ö)

cos (á� â)
eâ tan 2ö (44)

g8 � ÿ cosá sin (á� â� ö)

cos (á� â)
eâ tan 2ö (45)

42. The total incremental external work is the
summation of these ®ve contributions; that is, equa-
tions (33), (36), (39), (42) and (43)

Ó[ÄW]ext � ÄWABC � ÄWBCD � ÄWBDE

� ÄWP � ÄWq (46)

Incremental internal energy dissipation
43. The different elements of the incremental

internal energy dissipation for the M2 mechanism can
be calculated as follows.

(a) Along AC

ÄDAC � cB0 g9(á, â)V1 (47)

where

g9 � siná cosö (48)

(b) Along DE

ÄDDE � cB0 g10(á, â)V1 (49)

where

g10 � ÿ cosá sin (á� â) cosö

cos (á� â)
eâ tan 2ö (50)

(c) Along CD

ÄDCD � cB0 g11(á, â)V1 (51)

where

g11 � cosá cosö

tan 2ö
(eâ tan 2ö ÿ 1) (52)

(d) Along the radial lines of the shear zone BCD

ÄDrad � ÄDCD (53)
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44. The total incremental energy dissipation is the
summation of these four parts: that is, equations (47),
(49), (51) and (53)

Ó[ÄD] � ÄDAC � ÄDDE � ÄDCD � ÄDrad (54)

References
1. TERZAGHI K. Theoretical soil mechanics. John Wiley

and Sons, New York, 1943.
2. MEYERHOF G. G. The ultimate bearing capacity of

foundations. GeÂotechnique, 1951, 2, 301±332.
3. SOKOLOVSKI V. V. Statics of granular media.

Pergamon Press, New York, 1965.
4. PRAKASH S. and SARAN S. Bearing capacity of

eccentrically loaded footings. J. Soil Mech. Foundn
Engng Div. Am. Soc. Civ. Engrs, 1971, 97, No. 1,
95±117.

5. SARAN S. Bearing capacity of footings under
inclined loads. Seminar on foundation problems.
Indian Geotechnical Society, New Delhi, 1971, Vol.
II, 4±5.

6. CHEN W. F. Limit analysis and soil plasticity.
Elsevier Scienti®c, London, 1975.

7. SARAN S. and AGARWAL R. K. (1991). Bearing
capacity of eccentrically obliquely loaded footing.
J. Geotech. Engng Div. Am. Soc. Civ. Engrs, 117,
No. 11, 1669±1690.

8. MEYERHOF G. G. (1953) The bearing capacity of
foundations under eccentric and inclined loads.
Proceedings of the 3rd international conference on
soil mechanics and foundation engineering, Zurich,
1953, Vol. 1, 440±445.

9. SHINOHARA T., TATEISHI T. and KUBO K. Bearing
capacity of sandy soil for eccentric and inclined
load and lateral resistance of single piles em-
bedded in sandy soil. Proceedings of the 2nd world
conference on earthquake engineering, Tokyo, 1960,
Vol. 1, 265±280.

10. SARMA S. K. and IOSSIFELIS I. S. Seismic bearing
capacity factors of shallow strip footings. GeÂotech-
nique, 1990, 40, No. 2, 265±273.

11. SOUBRA A. H. and REYNOLDS F. (FACCIOLLI E. and

PECKER A. (eds)) Design charts for the seismic
bearing capacity of strip footings on slopes.
Proceedings of the French±Italian conference on
slope stability in seismic areas, Bordighera, 1992,
273±283, Ouest eÂditions.

12. DORMIEUX L. and PECKER A. Seismic bearing
capacity of foundations on cohesionless soil.
J. Geotech. Engng Div. Am. Soc. Civ. Engrs, 1995,
121, No. 3, March, 300±303.

13. SOUBRA A. H. (OWEN D. R. J. (ed.)) Seismic
bearing capacity of strip footings. Proceedings of
the 3rd international conference on computational
plasticity. Pineridge Press, Barcelona, 1992,
995±1006.

14. SOUBRA A. H. Discussion on `Seismic bearing
capacity and settlement of foundations' by Ri-
chards R., Elms D. G. and Budhu M. J. Geotech.
Engng Div. Am. Soc. Civ. Engrs, 1994, 120, No. 9,
1634±1636.

15. RICHARDS R., ELMS D. G. and BUDHU M. Seismic
bearing capacity and settlement of foundations.
J. Geotech. Engng Div. Am. Soc. Civ. Engrs, 1993,
119, No. 4, 662±674.

16. BUDHU M. and AL-KARNI A. Seismic bearing
capacity of soils GeÂotechnique, 1993, 43, No. 4,
181±187.

17. MUHS H. and KAHL H. Ergebnisse V on Probebe-
lastungen und grossen Last¯achen Zur Ermittlung
der Bruch last in sand. Mitteilungen der DEGEBO,
1954, 8 (in German).

18. FEDA J. Research on bearing capacity of loose soil.
Proceedings of the 5th international conference on
soil mechanics and foundation engineering, Paris,
1961, Vol. I, 635±642.

19. SELIG E. T. and MCKEE K. E. (1961). Static and
dynamic behavior of small footings. J. Soil Mech.
Foundn Engng Div. Am. Soc. Civ. Engrs, 1961, 87,
No. 6, 29±47.

20. DEBEER E. E. Bearing capacity and settlement of
shallow foundations on sand. Proceedings of
symposium on bearing capacity and settlement of
foundations, Durham, North Carolina, 1965,
15±34.

241

SEISMIC BEARING CAPACITY
OF STRIP FOOTINGS


	Notation
	Introduction
	Assumptions
	The upper-bound theorem of limit
	Failure mechanisms
	M1 mechanism
	M2 mechanism
	Numerical results
	Static case
	Seismic case
	Conclusions
	Appendix 1
	Incremental internal energy dissipation
	Incremental internal energy dissipation
	Appendix 2
	Incremental external work
	Incremental internal energy dissipation
	References

