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Probabilistic analysis of obliquely loaded strip foundations
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Abstract

This paper presents a probabilistic analysis at the ultimate limit state of a shallow strip footing resting on a (c, j) soil and subjected to

an inclined load. The system response considered in the analysis is the safety factor obtained using the strength-reduction technique. The

deterministic model makes use of the kinematic approach of the limit analysis theory. The Polynomial Chaos Expansion (PCE)

methodology is employed for the probabilistic analysis. The soil shear strength parameters and the footing load components are

considered as random variables. A reliability analysis and a global sensitivity analysis are performed. Also, a parametric study showing

the effect of the different statistical characteristics of the random variables on the variability of the safety factor is presented and

discussed. It is shown that the use of the safety factor (based on the strength-reduction technique) for the system response is of

significant interest in the reliability analysis, since it takes into account the simultaneous effect of soil punching and footing sliding and it

requires a unique reliability analysis for both failure modes. Furthermore, it allows the rigorous determination of the zones of

predominance of soil punching and footing sliding in the interaction diagram for different cases of soil and/or loading uncertainties.

Finally, it is shown that the loading configurations located in the zone of the footing sliding predominance exhibit a more significant

variability in the safety factor compared to those located in the zone of the soil punching predominance.

& 2012. The Japanese Geotechnical Society. Production and hosting by Elsevier B.V. All rights reserved.
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1. Introduction

Traditionally, stability analyses of shallow foundations
have been based on deterministic approaches (Kusakabe
et al., 1981; Michalowski, 1997; De Buhan and Garnier,
1998; Soubra, 1999; Kusakabe and Kobayashi, 2010). In
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these approaches, the uncertainties of the input parameters
are taken into account through the use of a global safety
factor. Reliability-based analyses are more rational, how-
ever, since they allow for consideration of the inherent
uncertainty of each uncertain parameter. Nowadays, this is
possible because of improvements in our knowledge of the
statistical properties of soil (Phoon and Kulhawy, 1999).
Previous investigations of reliability-based analyses of

foundations focused on shallow strip footings subjected to
a central vertical load (Bauer and Pula, 2000; Cherubini,
2000; Griffiths and Fenton, 2001; Griffiths et al., 2002;
Fenton and Griffiths, 2002, 2003; Popescu et al., 2005;
Przewlocki, 2005; Sivakumar Babu and Srivastava, 2007;
Youssef Abdel Massih et al., 2008; Youssef Abdel Massih
and Soubra, 2008). In this paper, a reliability analysis at
the ultimate limit state (ULS) of a shallow strip footing,
subjected to inclined loading, is presented.
Contrary to the case of vertical loading, where only soil

punching may occur, both soil punching as well as footing
sliding are present in the case of inclined loading, and
liquely loaded strip foundations. Soils and Foundations (2012), http://dx
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Nomenclature

ai, bi angular parameters of the triangular rigid
block i

a load inclination
bHL Hasofer–Lind reliability index
g soil unit weight
m mean value
mH mean value of the horizontal load component
mV mean value of the vertical load component
mVopt optimal mean value of the vertical load

component
x vector composed of four standard normal

variables
x1, x2, x3, x4 four standard normal variables that

represent c, j, V and H, respectively
r coefficient of correlation
s standard deviation
sN

H equivalent normal standard deviation of the
horizontal load component

sN
V equivalent normal standard deviation of the

vertical load component
cb multidimensional Hermite polynomial
j soil friction angle
jd developed soil friction angle
ab unknown coefficients of the PCE

A information matrix
B0 width of the strip footing
c soil cohesion
cd developed soil cohesion

COV coefficient of variation
_D energy dissipation
di, li velocity discontinuity lines of the triangular

rigid block i

Fpunching punching safety factor
Fs safety factor obtained using the strength reduc-

tion technique
Fsliding sliding safety factor
G performance function
GSA global sensitivity analysis
Hu ultimate horizontal load component
H applied horizontal load component
k number of triangular rigid blocks
M number of input random variables
MCS Monte Carlo Simulation
N number of the available sampling points
p order of the PCE

P number of unknown coefficients ab
PCE Polynomial Chaos Expansion
PDF probability density function
Pf failure probability
R2 coefficient of determination
SU Sobol index
ULS ultimate limit state
V applied vertical load component
Vu ultimate vertical load component
vi velocity of block i

vi,iþ1 inter-block velocity between blocks i and iþ1
_W rate of work of external forces

Y vector of model response values
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therefore, should be considered in the analysis. The soil
shear strength parameters (c, j) and the applied load
components (vertical V and horizontal H) are considered
as uncertain parameters. These four uncertain parameters
are modeled herein by random variables [i.e., they are
characterized by their probability density functions
(PDFs)]. The deterministic model is analytical and is based
on the kinematic approach of the limit analysis theory. The
system response considered in the analysis is the safety
factor obtained using the strength-reduction technique.
The use of such a safety factor allows for the simultaneous
consideration of the two failure modes (soil punching and
footing sliding) using a single simulation. This is particu-
larly useful in reliability-based analyses, since a unique
reliability analysis is required for both failure modes.

As for the probabilistic analysis, the classical Monte
Carlo Simulation (MCS) methodology is generally used to
compute either the PDF of the system response or the
failure probability Pf. In spite of being a rigorous and
robust methodology, MCS requires a great number of calls
for the deterministic model (about 1,000,000 samples for a
failure probability of 10�5). In the present paper, a more
efficient method based on the Polynomial Chaos Expansion
Please cite this article as: Soubra, A.-H., Mao, N., Probabilistic analysis of ob
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(PCE) is used (Isukapalli et al., 1998; Huang et al., 2009;
Mollon et al., 2011; Houmadi et al., 2012; Mao et al.,
2012). This method requires a much smaller number of calls
for the deterministic model.
The PCE methodology allows the replacement of the

deterministic model, for which the input uncertain para-
meters are modeled by random variables, by an approx-
imate simple analytical equation. In the present paper, the
analytical equation provided by the PCE methodology
allows the determination of the safety factor as a function
of four standard normal variables that represent the four
input uncertain parameters, c, j, V and H. Thus, the
probabilistic analysis can be easily performed when using
the Monte Carlo Simulation. This is because the safety
factor can be computed at a negligible time cost when
using the simple analytical equation.
The aim of the paper is threefold. Firstly, a global

sensitivity analysis is performed. The aim of this analysis is
to provide the contribution of each input random variable
(c, j, V and H) in the variability of the safety factor.
Secondly, the zones of the interaction diagram, corre-
sponding to the predominance of the footing sliding or the
soil punching, are determined for different cases of soil
liquely loaded strip foundations. Soils and Foundations (2012), http://dx
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and/or loading uncertainties. Finally, a parametric study
showing the effect of the different statistical characteristics of
the random variables (type of PDF, coefficient of variation
COV and coefficient of correlation r) on the PDF of the safety
factor is presented and discussed. It should be mentioned here
that the present work has been undertaken as part of a
broader objective, namely, to perform a probabilistic analysis
of offshore foundations (such as spudcans, bucket founda-
tions, suction caissons, etc.) subjected to eccentric and inclined
loading and taking into account the soil and the loading
uncertainties.

The aim of the next sections is to present (i) the determi-
nistic model used for the computation of the safety factor of
the soil-footing system, (ii) the PCE methodology employed
for the probabilistic analysis and (iii) the probabilistic results.
The paper ends with a conclusion.
2. Limit analysis model

In this paper, a non-symmetrical kinematically admis-
sible failure mechanism, based on the upper-bound theo-
rem of the limit analysis, is used for the deterministic
model. This mechanism was presented by Soubra (1999)
for the computation of the ultimate bearing capacity of
strip footings situated in seismic areas by a pseudo-static
approach. It is a translational multiblock failure mechan-
ism (Fig. 1a) and is composed of k triangular rigid blocks.
This mechanism can be completely described by 2k�1
angular parameters which are ai (i¼1, y, k�1) and bi

(i¼1, y, k). The first wedge ABC of this mechanism is
assumed to translate with a velocity v1 inclined at an angle
j to velocity discontinuity line AC (Fig. 1b). The founda-
tion is assumed to move with the same velocity as wedge
Fig. 1. (a) Translational non-symmetrical multiblock failure mechanism,

(b) velocity field, and (c) velocity hodograph.

Please cite this article as: Soubra, A.-H., Mao, N., Probabilistic analysis of ob
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ABC (i.e., v1). The other velocities vi of wedge i (i¼2, y,
k) and the inter-wedge velocities vi,iþ1 (i¼1, y, k�1) are
assumed to be inclined at an angle j to the corresponding
velocity discontinuity lines (i.e., di or li) in order to respect
the normality condition imposed by the theory of limit
analysis. The velocity hodograph is presented in Fig. 1(c).
For this mechanism, the work equation is obtained by

equating the total rate of work _W of the external forces to
the total rate of energy dissipation _D along the lines of
velocity discontinuities di and li. For more details on this
mechanism, the reader should refer to Soubra (1999).
The response considered in the analysis is not the

ultimate bearing capacity, as was the case in Soubra
(1999). Indeed, the stability analysis of a strip footing
subjected to an inclined load is traditionally performed by
computing two individual safety factors, Fpunching¼Vu/V
and Fsliding¼Hu/H, against soil punching and footing
sliding, respectively, where Vu and Hu are the vertical
and the horizontal ultimate loads. These safety factors,
which consider only a single mode of failure (punching or
sliding), are not very rigorous, since both failure modes
(footing sliding and soil punching) simultaneously exist
whatever the values for the footing load components (V,
H) may be. A more rigorous method, based on the
strength-reduction technique, is proposed herein for the
computation of a unique rigorous safety level that simul-
taneously takes into account the two modes of failure. In
this method, the soil shear strength parameters (c and j)
that appear in the work equation are replaced by cd and
jd, where cd and jd are the developed soil shear strength
parameters due to the applied footing loads. They are
given by

cd ¼
c

Fs

ð1Þ

jd ¼ ar tan
tanj

Fs

� �
ð2Þ

Critical safety factor Fs is obtained by minimization with
respect to the mechanism’s geometrical parameters. The
obtained Fs is the safety factor of the soil-foundation
system subjected to the loads (V, H). As may be seen, the
present definition of safety allows for the simultaneous
consideration of the two failure modes (footing sliding and
soil punching) using a single simulation. Thus, it is
particularly useful in probabilistic analyses, since there is
no need to perform two separate probabilistic analyses to
determine the system failure probability.

3. Probabilistic analysis by the Polynomial Chaos

Expansion (PCE) methodology

In the Polynomial Chaos Expansion methodology, the
system response is approximated by a simple analytical
formula called PCE. Thus, the PDF of the system response
can be easily obtained by generating a large number of
simulations using this PCE (not the original deterministic
liquely loaded strip foundations. Soils and Foundations (2012), http://dx
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model). In the present paper, the system response is safety
factor Fs. It was written in the framework of the PCE

methodology as a function of four standard normal
variables, x1, x2, x3 and x4, which represent the four input
uncertain parameters, c, j, V and H. Thus, the PDF of the
safety factor can be easily obtained with no time cost by
generating a large number of realizations of the vector (x1,
x2, x3 and x4) and by computing the corresponding system
response values using the obtained PCE. The PCE of the
safety factor has the following form (see Huang et al.,
2009; Mollon et al., 2011; Houmadi et al., 2012 and Mao
et al., 2012 among others):

Fsffi
XP�1
b¼0

abCbðxÞ ð3Þ

where x is a vector composed of four standard normal
variables, ab are unknown coefficients to be computed and
Cb(x) are multidimensional Hermite polynomials. They are
given in the Appendix. For a PCE of degree p, one should
retain only the multidimensional polynomials of a degree
less than or equal to the PCE order p. This leads to a
number P of unknown coefficients given by

P¼
ðMþpÞ!

M!p!
ð4Þ

where M is the number of random variables. The coeffi-
cients ab in Eq. (3) may be efficiently computed using a
regression approach. This means that the PCE is simply
obtained by fitting Eq. (3) with the values of the safety
factor computed at different sampling points in the
standard space of the random variables. These sampling
points are determined as follows: the roots of the one-
dimensional Hermite polynomial (of one degree higher
than the PCE order p) are computed for each random
variable (Isukapalli et al., 1998 and Huang et al., 2009
among others). The sampling points are the results of all
possible combinations of these roots for the different
random variables. Thus, the number N of the available
sampling points depends on the number M of the random
variables and the PCE order p as follows:

N ¼ ðpþ1ÞM ð5Þ

It should be mentioned here that in order to perform the
deterministic calculations, the independent standard nor-
mal random variables of a given sampling point must be
transformed to the physical correlated non-normal space
(if the physical variables are correlated and non-normal).
The reader may find a detailed description on these
transformations in Mollon et al. (2011).

As may be seen from Eq. (5), the number of available
sampling points dramatically increases as p or M increases.
This number is always higher than the number P of the
unknown coefficients (given by Eq. (4)) when MZ2. This
leads to a linear system of equations whose number of
equations N is greater than the number of unknowns P.
Based on the regression approach, the vector of the
Please cite this article as: Soubra, A.-H., Mao, N., Probabilistic analysis of ob
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unknown coefficients can be solved by

ab ¼ ðOTOÞ�1OT Y ð6Þ

where Y¼{Y1, y, YN} is the vector of the model response
values (i.e., Fs values in this analysis) computed via the
deterministic model for the N sampling points and O is the
matrix of dimensions N�P. It is given by

O¼

c1
0ðxÞ c1

1ðxÞ � � � c1
P�1ðxÞ

c2
0ðxÞ c2

1ðxÞ � � � c2
P�1ðxÞ

^ ^ & ^

cN
0 ðxÞ cN

1 ðxÞ � � � cN
P�1ðxÞ

2
66664

3
77775 ð7Þ

Several attempts have been made in the literature to select
the most efficient number of sampling points among the N

available ones to reduce the number of calls for the
deterministic model (Isukapalli et al., 1998; Berveiller et al.,
2006; Sudret, 2008). The approach proposed by Sudret (2008)
is a rational methodology. It is based on the invertibility of
the information matrix A¼OTO and will be used in this
paper. Finally, it should be noted that the quality of the
output approximation, via a PCE, closely depends on the
PCE order p. To ensure a good fit between the PCE and the
true deterministic model (i.e., to obtain the optimal PCE

order), the classical coefficient of determination R2 is used.
The value R2

¼1 indicates a perfect fit of the true model
response, whereas R2

¼0 indicates a nonlinear relationship
between the true model and the PCE model.
Once the approximation of the safety factor, via a PCE,

has been obtained, this PCE can be employed for the
probabilistic analyses. The PDF of the safety factor and
the corresponding statistical moments (i.e., mean m and
standard deviation s) can be easily estimated. This can be
done by simulating a large number of realizations of the
vector (x1, x2, x3 and x4), using the Monte Carlo Simula-
tion technique, and by computing the safety factor,
corresponding to each realization, using the obtained
PCE. Another important outcome of the PCE is that its
coefficients can be used to perform a global sensitivity
analysis (GSA) based on Sobol indices. The GSA is
generally based on the decomposition of the response
variance as a sum of the contributions of the different
random variables. The sum of all Sobol indices should be
equal to 1. In this paper, the Sobol indices give the
contribution of each random variable (c, j, V or H) in
the variability of the safety factor. Thus, it is possible to
determine the random variables that mostly or moderately
contribute to the variability of the safety factor and those
that do not significantly contribute to this variability. For
more details on the computation of the Sobol indices,
using the values of the PCE coefficients, the reader may
refer to Mollon et al. (2011), among others.

4. Numerical results

A strip footing of width B0¼2 m, placed on a soil mass
with a unit weight g¼18 kN/m3, is considered in the
liquely loaded strip foundations. Soils and Foundations (2012), http://dx
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Table 1

Illustrative values of the statistical characteristics of the input random variables (c, j, V, H).

Variables Mean COV (%) Probability density function Coefficient of

correlation

Case of normal

variables

Case of non-normal

variables

c (kPa) 20 20 Normal Log-normal r(c, j)¼0
j (deg) 30 10 Normal Beta

V (kN/m) 250* 10 Normal Log-normal

1000**

H (kN/m) 100*** 30 Normal Log-normal

nFor point K in Fig. 2.
nnFor point L in Fig. 2.
nnnFor points K and L in Fig. 2.

Fig. 2. Interaction diagram (V, H) for an obliquely loaded footing.
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analysis. As mentioned before, the soil shear strength
parameters (c and j) and the applied footing loads (V
and H) are considered as random variables. Thus, they are
characterized by their types of PDFs (Gaussian, log-
normal, beta, etc.), their mean values mi and their standard
deviation values si (or their coefficient of variation values
COVi defined as the ratio between si and mi), where i¼c, j,
V and H. In order to incorporate the possible dependence
between soil shear strength parameters c and j, a correla-
tion coefficient was considered herein. In this paper, the
illustrative values used for the coefficient of correlation
and the statistical moments of the different input random
variables are given in Table 1. However, other values for
these parameters were considered within the framework of
the parametric study. Notice that the high value of 30% is
proposed for the coefficient of variation of the horizontal
load component H to represent the large uncertainties due
to the wind and/or the wave loading. This value is to be
compared to the value of 10% affected to the coefficient of
variation of footing vertical load component V. This is
because V represents the structure weight for which the
variability is small. On the other hand, it has been found
by several authors (Phoon and Kulhawy, 1999 among
others) that the soil friction angle has a small variability
[COV(j)¼10%]; however, the variability of the soil cohe-
sion may vary in the range 10–40% and may attain 80% in
some cases. In this paper, COV(c) was assumed to be equal
to 20%. For the type of probability density function for
the random variables, two cases were studied. In the first
case, referred to as normal variables, c, j, V and H were
considered as normal variables. In the second case,
referred to as non-normal variables, c, V and H were
assumed to be log-normally distributed, while j was
assumed to be bounded and a beta distribution was used.
Notice that the log-normal distribution is more desirable
than the normal distribution, since it guarantees that the
random variable is always positive. This type of distribu-
tion has been advocated by several investigators (Huang
et al., 2010 among others). Notice also that the assumption
of the beta distribution for j was proposed by Fenton and
Griffiths (2003).
Please cite this article as: Soubra, A.-H., Mao, N., Probabilistic analysis of ob
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The deterministic model used in this paper is based on the
failure mechanism presented in a previous section. An inter-
action diagram is provided in Fig. 2 using the mean values of
soil shear strength parameters c and j. Each point (Vu, Hu) of
this diagram corresponds to a given load inclination a. The
value of Vu is determined by minimization with respect to the
mechanism’s geometrical parameters; the corresponding Hu

value is given by Hu¼Vu(tan a). The maximum point of this
diagram is (Vu¼872 kN/m, Hu¼277 kN/m).
The probabilistic numerical results, which will be pre-

sented in this section, involve the determination of the
optimal PCE order, the computation of Sobol indices and
the correlation coefficients between the input uncertain
parameters (c, j, V and H) and the output (Fs). This is
followed by the determination of the zones of predomi-
nance of the soil punching or the footing sliding in the
interaction diagram for different cases of soil and/or
loading uncertainties. A reliability analysis of several
practical load configurations is then presented and dis-
cussed. Finally, a parametric study is conducted in order to
examine the effect of the statistical parameters of the input
random variables on the variability of the system response
(i.e., safety factor).
liquely loaded strip foundations. Soils and Foundations (2012), http://dx
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Fig. 3. Safety factor Fs versus the vertical load component V for different

values of the horizontal load component H.
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4.1. Optimal PCE order, Sobol indices and correlation

between the input uncertain variables and the system output

The optimal order of a PCE was determined in this
paper as the minimal order that leads to a coefficient of
determination R2 greater than a prescribed value (say
0.999). Two load configurations (cf., points K and L in
the interaction diagram of Fig. 2) were considered for these
computations. The numerical results have shown that for
both cases, a fourth order PCE is necessary in order to
satisfy the prescribed condition for the coefficient of
determination. Thus, this PCE order will be used in all
subsequent probabilistic calculations performed in this
paper. Remember here that the PCEs were constructed
using the regression approach based on the concept of
matrix invertibility proposed by Sudret (2008). According
to this methodology, the number of sampling points
required for a fourth order PCE with four random
variables is equal to 107 points, which corresponds to a
reduction by 82.9% with respect to the total available
sampling points (i.e., 625 points).

Table 2 presents the Sobol indices of the different input
random variables (c, j, V and H) for points K and L
shown in Fig. 2. For point K (V¼250 kN/m, H¼100 kN/
m), one can see that the Sobol index of horizontal load
component H is significant (it involves more than 2/3 of
the variability of the safety factor), while that of vertical
load component V is negligible. This may be explained by
(i) the high variability of H and (ii) the predominance of
the sliding mode of failure with respect to the punching
mode of failure due to the proximity of point K to the left
hand branch of the interaction diagram (cf., Fig. 2).
Finally, it should be noted that the two other parameters,
c and j, have moderate values for their Sobol indices
(11.0% and 12.7%, respectively), and thus, they contribute
moderately to the variability of the safety factor. On the
other hand, for point L (V¼1000 kN/m, H¼100 kN/m),
friction angle j has the greatest Sobol index (it involves
more than 2/3 of the variability of the safety factor). The
Sobol index for cohesion c is smaller, but not negligible
(about 17%), while those of V and H are three times
smaller than that for cohesion c. These results may be
explained by the fact that point L is far from the sliding
zone and that soil punching is most likely predominant. In
this case, the parameters that mostly contribute to the
Table 2

Sobol indices for the different input random variables (c, j, V, H) and the co

Input random variables Sobol indices

Point K Point L

c 0.110 0.178

j 0.127 0.702

V 0.001 0.055

H 0.745 0.062

SummationE1.00 SummationE1

Please cite this article as: Soubra, A.-H., Mao, N., Probabilistic analysis of ob

.doi.org/10.1016/j.sandf.2012.05.010
variability of the safety factor are the soil friction angle,
and to a lesser degree, the soil cohesion. Table 2 also shows
the coefficients of correlation between the different input
random variables (c, j, V and H) and safety factor Fs. One
can observe that a high correlation exists between an input
random variable and the safety factor when the Sobol
index of this variable is significant.
From this study, it can be concluded that the variability

of V can be neglected (i.e., V can be considered as a
deterministic parameter) and H is the variable that mostly
contributes to the variability of the safety factor in the
zone of footing sliding predominance. However, in the
zone of soil punching predominance, soil shear strength
parameters c and j are the parameters that mostly
contribute to the variability of the safety factor.
4.2. Zones of predominance of soil punching or footing

sliding

Fig. 3 presents the factor of safety versus vertical load
component V for four different values of horizontal load
component H (H¼50 kN/m, 100 kN/m, 150 kN/m and
200 kN/m). As mentioned before, this safety factor is
defined with respect to soil shear strength parameters c

and tan j. For each curve, Fs presents a maximum value
rrelation coefficients between the input variables and the safety factor Fs.

Correlation coefficient between (c, j, V, H) and Fs

Point K Point L

0.39 0.42

0.42 0.84

0.04 �0.23

�0.80 �0.24

.00

liquely loaded strip foundations. Soils and Foundations (2012), http://dx
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(see points A, B, C and D). The numerical results show
that these maximum values for Fs correspond exactly to
the same ratio H/V, i.e., to the same load inclination
a¼17.621 represented by line OO0 in Fig. 2. This means
that from a deterministic point of view, line OO0, that joins
the origin and the maximum point of the interaction
diagram, subdivides this diagram into two zones, one on
the right-hand side of line OO0 (where the soil punching
mode is predominant) and the other on the left-hand side
of this line (where the footing sliding mode is predomi-
nant). This is due to the fact that for a given value of H, Fs

increases with an increase in V in the zone of footing
sliding predominance and it decreases with an increase in V

in the zone of soil punching predominance; its maximum
value corresponds to the load configuration for which no
failure mode is predominant. It should be mentioned here
that the determination of the zones of predominance of
punching or sliding described above is based on determi-
nistic computations. It does not take into account the soil
and/or the loading uncertainties. In order to check if the
zones of sliding predominance and punching predomi-
nance are dependent on the load and/or the soil uncertain-
ties, a probabilistic analysis is undertaken.

The failure probability is computed for different values
of the vertical load component when the horizontal load
component is equal to 100 kN/m (cf., Fig. 4) for the
following three cases: (i) case ‘A’ where only loading
components V and H are considered as random variables,
(ii) case ‘B’ where only soil shear strength parameters c and
j are assumed to be random variables and (iii) case ‘C’
where c, j, V and H are considered as random variables.
Similar to case ‘C’, a fourth order PCE was found optimal
for cases ‘A’ and ‘B’ (results not shown). Thus, the number
of sampling points used in cases ‘A’ and ‘B’ (where the
number of random variables is equal to 2) is equal to 15.
Notice that the performance function used in the prob-
abilistic calculation is G¼Fs�1, where Fs is computed
Fig. 4. Safety factor Fs and failure probability Pf versus mV when

mH¼100 kN/m.
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using the strength reduction method. The failure prob-
ability (of each case of study) is determined using MCS by
generating a large number (say 5� 106) of realizations
(x1,x2,x3,x4) and by computing the safety factor corre-
sponding to each realization using the corresponding PCE.
The failure probability is the ratio between the number of
realizations for which Fso1 (i.e., Go0) and the total
number of realizations. It should be emphasized here that,
since the safety factor simultaneously considers soil punch-
ing and footing sliding in a single simulation, the prob-
abilistic analysis based on G¼Fs�1 takes into account
both failure modes, and thus, directly provides the system
failure probability and not the components’ failure prob-
abilities, Pf(punching) or Pf(sliding). This is the great
advantage of the present approach using Fs (based on
the strength reduction technique), since one can avoid the
approximation that arises from the application of the
formula of the system failure probability (notice that the
system failure probability is generally based on a simplified
assumption concerning the dependence between both fail-
ure modes). Furthermore, only a unique probabilistic
analysis was performed for both failure modes. Finally,
it should be mentioned that another advantage of the
safety factor used in this study is that it allows one to
rigorously determine the zones of predominance of soil
punching or footing sliding in the interaction diagram
since the system failure probability is rigorously computed.
Failure probability Pf is plotted against the mean value

of vertical load component mV in Fig. 4 for the three
above-mentioned cases. This figure also gives the safety
factor versus deterministic vertical load component V (or
mV since V¼mV for the deterministic analysis). For a given
value of mH, although the two modes of failure are present
whatever the value of mV is, the footing sliding is pre-
dominant for small values of mV. Thus, the failure prob-
ability of the system (sliding and punching) is mainly due
to the footing sliding and this failure probability is
significant. When vertical load component mV increases,
the effect of footing sliding decreases and that of soil
punching gradually increases until both modes of failure
become non-predominant and induce a minimal value of
the system failure probability. Beyond this value, an
increase in vertical load component mV leads to an increase
in the predominance of the punching mode with respect to
the sliding one, and thus, to an increase in the failure
probability of the system. It should be emphasized here
that the term ‘sliding predominance’ means that the value
of Pf is mainly due to the footing sliding effect. Therefore,
there is a high risk of failure against this mode of failure.
This does not mean that there is no risk of failure against
the punching mode of failure; however, the risk is smaller.
The same explanation remains valid for the term ‘punching
predominance’.
Fig. 4 shows that the minimum for Pf and the maximum

for Fs correspond to the same values of the vertical load
component only for case ‘B’ where the soil parameters are
considered as random variables (the value of the vertical
liquely loaded strip foundations. Soils and Foundations (2012), http://dx
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Fig. 5. Fs or Pf versus V or mV for three different cases of soil

uncertainties when H¼100 kN/m.

Fig. 6. Optimal load configurations corresponding to non-predominance

of neither sliding nor punching for different cases of soil and/or load

uncertainties.
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load is mV¼314 kN/m, as may be seen in Fig. 4). This
indicates that the probabilistic approach provides the same
results as the deterministic approach in the case where only
the uncertainties of the soil are considered. This may be
explained by the fact that the optimal load inclination,
leading to a maximal safety factor or a minimal failure
probability, is not a function of the values of the soil
uncertainties (see Fig. 5 where cases B1 and B2 correspond
respectively to an increase and a decrease in the COVs of c

and j by 10% with respect to the reference values given in
Table 1). On the other hand, when only the uncertainties
of the loading (i.e., case ‘A’) or the uncertainties of both
the loading and the soil parameters (i.e., case ‘C’) are
considered, the minimal value for Pf corresponds to a
greater value for mV (mV¼872 kN/m and mV¼475 kN/m
for cases ‘A’ and ‘C’, respectively). Thus, the zone of
footing sliding predominance in the interaction diagram
extends with the presence of load uncertainties. This may
be explained by the fact that horizontal load component H

has the most important contribution in the variability of Fs

in the zone of footing sliding predominance. Consequently,
it would be expected that cases ‘A’ and ‘C’ (where H is
present) have a more extended sliding zone compared to
case ‘B’ (which does not consider loading uncertainties).

One can conclude that, although the deterministic
approach can provide the two zones of predominance, this
possibility is limited to cases where only the uncertainties
of the soil parameters are considered in the analysis. In
such cases where the loading uncertainties are involved in
the analysis, one cannot determine the two zones of
predominance using a deterministic approach; a probabil-
istic analysis is necessary.

Finally, Fig. 6 presents the optimal load configurations in
the interaction diagram corresponding to non-predominance
of either sliding or punching and for which one obtains the
minimal Pf compared to other loading configurations having
Please cite this article as: Soubra, A.-H., Mao, N., Probabilistic analysis of ob
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the same horizontal load component. These results are given
for different cases of soil and/or loading uncertainties. They
are obtained by repeating the computations made in Fig. 4
for different mean values of horizontal load component mH.
For case ‘B’, where only the soil uncertainties are considered,
both the deterministic and the probabilistic approaches have
found the same optimal load configurations corresponding to
no sliding or punching predominance, as was the case for
mH¼100 kN/m in Fig. 4. In this case (i.e., case ‘B’), the zone
of the footing sliding predominance (left-hand side of line
O’M) is much smaller than that of the soil punching
predominance. In the presence of both soil and loading
uncertainties (i.e., case ‘C’), this zone of footing sliding (left-
hand side of line O’N) extends with respect to that of case ‘B’
and can be determined only by the probabilistic approach.
Finally, in case ‘A’ where only the loading uncertainties are
considered in the analysis, the sliding zone on the left-hand
side of line O’P attains almost half of the interaction
diagram. This means that the optimal load configurations
corresponding to the non-predominance of either mode are
situated on the vertical line passing through the maximum
point of the interaction diagram. The fact that the optimal
value of the vertical load component (mVopt) for a prescribed
horizontal load component is that corresponding to the
maximum point of the interaction diagram, may be explained
by the following.
For values of vertical load component mV smaller or

greater than mVopt, one obtains greater values of the failure
probability due to either a sliding or a punching predomi-
nance. The greater values of the failure probability may be
explained by the concept of dispersion ellipse (cf., Mollon
et al., 2009, among others) as follows: For values of
vertical load component mV smaller or greater than mVopt,
one obtains smaller values for the Hasofer–Lind reliability
index bHL, as may be seen from Fig. 7 (i.e., greater values
of the failure probability). Remember here that the
liquely loaded strip foundations. Soils and Foundations (2012), http://dx
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Fig. 7. Critical and unit dispersion ellipses for mH¼175 kN/m and for

three values of mV (mVomVopt; mV¼mVopt; mV4mVopt).
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reliability index is the ratio between the critical dispersion
ellipse that is tangent to the limit state surface (interaction
diagram in the present case of loading uncertainties) and
the unit dispersion ellipse. As may be easily seen from
Fig. 7, this ratio is maximal at mVopt. Notice finally that in
Fig. 7, sN

V and sN
H are the equivalent normal standard

deviations of the vertical and horizontal load components
respectively.
Fig. 8. PDF of Fs for different load inclinations.
4.3. Variability of the system response and mode of failure

predominance for some practical load configurations

This section aims at considering the effect of the footing
load inclination on the PDF of the safety factor for the
practical load configurations corresponding to Vu/V¼3
and Hu/H¼3 where Vu and Hu are, respectively, the
ultimate vertical and horizontal load components corre-
sponding to the load inclination considered in the analysis,
while V and H are, respectively, the applied vertical and
horizontal load components corresponding to the same
load inclination. The case of non-normal and uncorrelated
variables is considered in the analysis.

Fig. 8 presents the PDF of the safety factor for different
load inclinations and for different cases of soil and/or load
uncertainties (i.e., cases ‘A’, ‘B’ and ‘C’). The statistical
moments corresponding to these PDFs are given in
Table 3.

From Table 3, it can be easily seen that the variability of
the safety factor obtained when considering both the soil
and the loading uncertainties is smaller than the one
obtained by the summation of the two variabilities com-
puted separately. Thus, it is necessary to take into account
all the input uncertainties of the soil and the loading in a
single computation in order to obtain accurate results in
cases where the soil and the loading uncertainties are
present in the analysis.
Please cite this article as: Soubra, A.-H., Mao, N., Probabilistic analysis of ob
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On the other hand, Table 3(b) and Fig. 8(b) show that
the variability of Fs does not significantly change with the
increase in footing load inclination a when one considers
only the soil uncertainties. This is due to the fact that for
the different load inclinations considered in case ‘B’, (i) the
safety factor is identical for the adopted values of V and H,
that respect Vu/V¼3 and Hu/H¼3, and (ii) the input
variability (which is that of c and j) is similar regardless
of the load inclination. Contrary to case ‘B’, for cases ‘A’
and ‘C’, the variability of the safety factor significantly
increases with a (see Fig. 8(a) and (c) and Table 3(a) and
liquely loaded strip foundations. Soils and Foundations (2012), http://dx
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Table 3

Statistical moments (m,s) of Fs for different load inclinations.

31
a

71
a

101
a

141
a

17.621
a

201
a

(a) Case ‘‘A’’ with only load uncertainties

l 1.48 1.49 1.50 1.51 1.52 1.53

r 0.06 0.07 0.10 0.14 0.18 0.21

COV% 3.9 4.9 6.4 9.0 11.8 13.8

31b 71b 101b 141b 17.621b 201a

(b) Case ‘‘B’’ with only soil uncertainties

l 1.47 1.49 1.49 1.51 1.51 1.52

r 0.15 0.15 0.16 0.16 0.16 0.16

COV% 10.3 10.3 10.4 10.4 10.5 10.6

31b 71b 101b 141a 17.621a 201a

(c) Case ‘‘C’’ with both load and soil uncertainties

l 1.48 1.49 1.50 1.51 1.52 1.53

r 0.16 0.17 0.18 0.21 0.24 0.27

COV% 11.1 11.4 12.2 13.8 15.9 17.5

aFooting sliding predominance.
bSoil punching predominance.
cNon-predominance of neither footing sliding nor soil punching.
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(c)), especially when a4101. For instance, when a
increases from 141 to 201, the COV of Fs increases by
52.7% in case ‘A’ compared to 26.1% in case ‘C’. The
significant increase in the variability of Fs for a4101 is to
be expected, since the variability in the loading for great
values of a induces much more variability in the safety
factor due to the predominance of the footing sliding
(where the variability of H is of a significant effect).
Finally, Table 3 shows that although case ‘A’ gives a
footing sliding predominance for all the load inclinations
considered in this table, case ‘B’ gives a footing sliding only
for a417.621, while case ‘C’ gives a footing sliding for
aZ141. This shows once again the importance of properly
considering the soil and/or the load uncertainties in any
reliability-based analysis in order to accurately determine
the mode of failure predominance.

4.4. Parametric study

The aim of this section is to study the effect of the
statistical characteristics of the input random variables (the
coefficient of variation, the type of the probability density
function and the correlation coefficient) on the PDF of the
safety factor for both zones of punching or sliding
predominance when the soil and footing load uncertainties
are considered in the analysis.

4.4.1. Effect of the coefficients of variation of the random

variables

To investigate the impact of the COV of a certain
random variable on the PDF of the safety factor, the
COV of this random variable is increased or decreased by
50% with respect to its reference value given in Table 1
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(except for COV(H) which is increased or decreased by
only 33.3% to remain in a reasonable range); however, the
COVs of the other random variables are assumed to be
constant (i.e., equal to their reference values).
Figs. 9 and 10 show the effect of the COV of the

different random variables on the PDF of the safety factor
for the two loading configurations (points K and L in
Fig. 2) corresponding to a footing sliding or a soil
punching predominance, respectively. To facilitate the
comparison between the two figures, the same scale was
used for the horizontal axes of these figures. The statistical
moments corresponding to these PDFs are given in
Tables 4 and 5, respectively.
The PDF of Fs is more spread out in the zone of footing

sliding predominance compared to that in the zone of soil
punching predominance. This may be explained by the
high variability of the horizontal load component (which is
believed to be the most encountered value in practice)
adopted in this paper. It should also be remembered that H

has the most significant weight in the variability of the
safety factor. As expected, Figs. 9 and 10 show that an
increase in the COV of one of the random variables leads
to a more spread out PDF. Fig. 9 shows that the impact of
the variability of H is the most significant one (contrary to
that of the variability of V which is negligible) in the zone
of sliding predominance. For instance, when increasing
COV(H) by 33.3% and COV(j) and COV(c) by 50% of
their reference values, Table 4 shows that the COV of the
safety factor increases by 17.9%, 10.3% and 9.2%,
respectively. On the other hand, the impact of the varia-
bility of j is the most significant one in the zone of
punching predominance (Fig. 10). For instance, the COV

of the safety factor increases respectively by 37.3% and
10.9% when increasing COV(j) and COV(c) by 50% with
respect to their reference values; however, it increases only
by about 3% with the increase in COV(V) and COV(H).
Notice that although the increase in COV of the different
random variables increases the variability of the safety
factor in both zones of predominance, it has practically no
effect on the probabilistic mean value of this response (this
value is shown to be slightly greater than the deterministic
value calculated using the mean values of the input
random variables (cf., Tables 4 and 5)). This means that
the randomness of the input variables leads to a variability
of the safety factor which is roughly centered on its
deterministic value. From the above results, one can
observe that the input parameters for which the COVs
are of most significant influence on the variability of the
safety factor are the same as those that have the largest
contribution in the variability of this safety factor (as
obtained using Sobol indices).
Finally, Tables 4 and 5 show the effect of the COV of

the random variables on their Sobol indices SU. The
increase/decrease in COV of one of the variables induces
an increase/decrease in the Sobol index of this variable
(i.e., in its ‘‘weight’’ in the variability of the safety factor),
and it also induces a decrease/increase in the Sobol indices
liquely loaded strip foundations. Soils and Foundations (2012), http://dx
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Fig. 10. Influence of the coefficients of variation of the input random variables on the PDF of the safety factor in the zone of soil punching

predominance. (a) Influence of COV(c), (b) Influence of COV(j), (c) Influence of COV(V) and (d) Influence of COV(H).

Fig. 9. Influence of the coefficients of variation of the input random variables on the PDF of the safety factor in the zone of footing sliding predominance.

(a) Influence of COV(c), (b) Influence of COV(j), (c) Influence of COV(V) and (d) Influence of COV(H).
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of the other variables. It should be emphasized here that
the variation of the Sobol index is significant for the
variables having the greatest weight in the variability of
Please cite this article as: Soubra, A.-H., Mao, N., Probabilistic analysis of ob
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the safety factor (i.e., H for the zone of footing sliding
predominance and j for the zone of soil punching
predominance).
liquely loaded strip foundations. Soils and Foundations (2012), http://dx

dx.doi.org/10.1016/j.sandf.2012.05.010
dx.doi.org/10.1016/j.sandf.2012.05.010
dx.doi.org/10.1016/j.sandf.2012.05.010
dx.doi.org/10.1016/j.sandf.2012.05.010


Table 4

Effect of the coefficients of variation of the input random variables on their Sobol indices SU and on the statistical moments (m, s) of the safety factor in

the zone of footing sliding predominance (i.e. point K).

m s COV% SU(c) SU(j) SU(V) SU(H) Deterministic

value of Fs

COV(c)

10% 1.46 0.25 17.3 0.043 0.201 0.002 0.741 1.45

20% 1.46 0.27 18.4 0.152 0.177 0.002 0.654

30% 1.46 0.29 20.1 0.282 0.148 0.002 0.549

COV(j)
5% 1.46 0.25 17.1 0.176 0.051 0.002 0.756

10% 1.46 0.27 18.4 0.152 0.177 0.002 0.654

15% 1.47 0.30 20.3 0.123 0.325 0.002 0.535

COV(V)

5% 1.47 0.27 18.3 0.154 0.180 0.000 0.656

10% 1.46 0.27 18.4 0.152 0.177 0.002 0.654

15% 1.46 0.27 18.6 0.148 0.173 0.006 0.650

COV(H)

20% 1.45 0.22 14.9 0.230 0.270 0.005 0.484

30% 1.46 0.27 18.4 0.152 0.177 0.002 0.654

40% 1.48 0.32 21.7 0.110 0.127 0.001 0.745

Table 5

Effect of the coefficients of variation of the input random variables on their Sobol indices SU and on the statistical moments (m, s) of the safety factor in

the zone of soil punching predominance (i.e. point L).

m s COV% SU(c) SU(j) SU(V) SU(H) Deterministic

value of Fs

COV(c)

10% 1.19 0.12 10.3 0.052 0.810 0.064 0.072 1.18

20% 1.19 0.13 11.0 0.178 0.702 0.055 0.062

30% 1.18 0.14 12.2 0.324 0.576 0.045 0.051

COV(j)
5% 1.18 0.09 07.6 0.377 0.371 0.116 0.131

10% 1.19 0.13 11.0 0.178 0.702 0.055 0.062

15% 1.19 0.18 15.1 0.095 0.841 0.029 0.033

COV(V)

5% 1.18 0.13 10.8 0.186 0.735 0.015 0.063

10% 1.19 0.13 11.0 0.178 0.702 0.055 0.062

15% 1.19 0.14 11.4 0.168 0.653 0.114 0.061

COV(H)

20% 1.19 0.13 10.8 0.185 0.728 0.057 0.029

30% 1.19 0.13 11.0 0.178 0.702 0.055 0.062

40% 1.19 0.13 11.3 0.170 0.669 0.053 0.104
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4.4.2. Effect of the non-normality of the random variables

and the correlation coefficient between variables

For both zones of punching or sliding predominance,
(i.e., for points K and L of Fig. 2), Fig. 11 presents the
PDF of the safety factor for normal and non-normal
variables. Two configurations of COVs were considered.
The ‘‘Standard COVs’’ correspond to the reference values
of the COV presented in Table 1, while the ‘‘High COVs’’
correspond to cases where COV(c)¼30%, COV(j)¼15%,
Please cite this article as: Soubra, A.-H., Mao, N., Probabilistic analysis of ob
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COV(V)¼15% and COV(H)¼30%. For these two sets of
COVs, the non-normality has a small influence on the PDF

of the safety factor in the zone of footing sliding pre-
dominance (Fig. 11(a)), while there is almost no effect in
the zone of soil punching predominance (Fig. 11(b)).
On the other hand, some authors [Harr (1987) and

Cherubini (2000) among others] have suggested a negative
correlation between effective cohesion c and effective angle
of internal friction j. However, further experimental tests
liquely loaded strip foundations. Soils and Foundations (2012), http://dx
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Fig. 11. Influence of the non-normality of the input random variables on the PDF of safety factor for two sets of the coefficients of variation of the

random variables.

Fig. 12. Influence of the correlation coefficient r(c, j) on the PDF of safety factor. (a) Zone of footing sliding predominance and (b) Zone of soil

punching predominance.
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are needed to confirm this statement. Fig. 12 presents the
effect of r(c, j) on the PDF of the safety factor for the two
loading configurations represented by points K and L in
Fig. 2. It appears that for both zones of sliding or
punching predominance, the increase in r(c, j) increases
the variability of Fs. For instance, the increase in r(c, j)
from �0.5 to 0 increases the variability of the safety factor
by 9.5% in the zone of footing sliding predominance and
by 24.1% in the zone of soil punching predominance. One
can conclude that assuming uncorrelated shear strength
parameters is conservative in comparison to assuming
negatively correlated parameters.
5. Conclusion

A probabilistic analysis of an obliquely loaded strip
footing resting on a (c, j) soil has been performed. The
deterministic model was based on the kinematical
approach of the limit analysis theory. The Polynomial
Chaos Expansion (PCE) methodology was used for the
probabilistic analysis. The input random variables consid-
ered in the analysis were the soil shear strength parameters
(c and j) and the applied load components (V and H).
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The general conclusions of the paper can be summarized as
follows:
–

liqu
The use of safety factor Fs, determined with the strength
reduction method, allows one to rigorously compute
the failure probability for a given load configuration (V
and H) since one does not need to perform a system
reliability computation based on the values of the
reliability of both components (footing sliding and soil
punching).
–
 Although the deterministic approach can provide the
zone of footing sliding predominance and that of soil
punching predominance in the interaction diagram, this
possibility is limited to cases where only the soil
uncertainties are considered. In cases where the load
uncertainties are involved in the analysis, one cannot
determine the two zones of predominance using a
deterministic approach; a probabilistic analysis is neces-
sary. In the interaction diagram, the zone of footing
sliding predominance is much smaller than that of the
soil punching predominance when only the soil uncer-
tainties are considered in the analysis. This zone extends
to almost half of the interaction diagram when one
considers only the loading uncertainties in the analysis.
ely loaded strip foundations. Soils and Foundations (2012), http://dx
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–

P

.d
The global sensitivity analysis, using the Sobol indices,
has shown that for the adopted values of the statistical
parameters of the random variables (which are believed
to be frequently encountered in practice), the horizontal
load component and the soil friction angle have a
significant weight in the variability of the safety factor
in the zones of footing sliding and soil punching
predominance, respectively.
–
 It was observed that a high correlation exists between
an input random variable and safety factor Fs when the
Sobol index of this variable is significant.
–
 In both zones of sliding or punching predominance, the
probabilistic mean value of the safety factor remains
almost the same with the increase in COV of the
different random variables. It is close to the determi-
nistic value computed using the mean values of the
random variables. This means that the randomness of
the input variables leads to a variability of the safety
factor which is roughly centered on its deterministic
value. On the other hand, the variability of the safety
factor increases with the increase in COV of the random
variables (as expected) and it is more sensitive to the
variation of COV(H) in the zone of footing sliding
predominance and to the variation of COV(j) in the
zone of soil punching predominance.
–
 The variability of Fs was found to be more significant in
the zone of sliding predominance.
–

Table A1

Multidimensional Hermite polynomial of degree smaller than or equal to

4 in the case of 2 random variables.
It was observed that the input parameters, for which the
COVs are of most significant influence on the variability
of the safety factor, are the same as those that have the
largest contribution in the variability of this safety
factor (as obtained using Sobol indices).
–

b Coefficients, ab Degree, p Multidimensional

Hermitepolynomials Cb

0 a0 0 H(0)(x1)*H(0)(x2)¼1

1 a1 1 H(1)(x1)*H(0)(x2)¼x1
2 a2 1 H(0)(x1)*H(1)(x2)¼x2

3 a3 2 H 2ð Þ x1ð ÞnH 0ð Þ x2ð Þ ¼ x21�1
4 a4 2 H(1)(x1)*H(1)(x2)¼x1x2

5 a5 2 H 0ð Þ x1ð ÞnH 2ð Þ x2ð Þ ¼ x22�1
The increase/decrease in COV of one of the random
variables induces an increase/decrease in the Sobol
index of this variable (i.e., in its ‘‘weight’’ in the
variability of the safety factor), and it also induces a
decrease/increase in the Sobol indices of the others
variables. The variation of the Sobol index is significant
for the variables having the greatest weight in the
variability of the safety factor (i.e., H for the zone of
footing sliding predominance and j for the zone of soil
punching predominance).
6 a6 3 H 3ð Þ x1ð ÞnH 0ð Þ x2ð Þ ¼ x31�3x1
–
7 a7 3 H 2ð Þ x1ð ÞnH 1ð Þ x2ð Þ ¼ x21x2�x2
8 a8 3 H 1ð Þ x1ð ÞnH 2ð Þ x2ð Þ ¼ x1x

2
2�x1
The non-normality of the probability density function
of the input random variables has practically no effect
on the PDF of Fs.
9 a9 3 H 0ð Þ x1ð ÞnH 3ð Þ x2ð Þ ¼ x32�3x2
–
10 a10 4 H 4ð Þ x1ð ÞnH 0ð Þ x2ð Þ ¼ x41�6x
2
1þ3

11 a11 4 H 3ð Þ x1ð ÞnH 1ð Þ x2ð Þ ¼ x31x2�3x1x2
12 a12 4 H 2ð Þ x1ð ÞnH 2ð Þ x2ð Þ ¼ x21x

2
2�x

2
1�x

2
2þ1

13 a13 4 H 1ð Þ x1ð ÞnH 3ð Þ x2ð Þ ¼ x1x
3
2�3x1x2

14 a14 4 H 0ð Þ x1ð ÞnH 4ð Þ x2ð Þ ¼ x42�6x
2
2þ3
In both zones of punching or sliding predominance, the
increase in the correlation coefficient between c and j in
the interval [�0.5, 0] increases the variability of Fs.
Consequently, assuming uncorrelated shear strength
parameters (when rigorous information about correla-
tion is absent) is conservative in comparison to assum-
ing negatively correlated variables.
lease cite this article as: Soubra, A.-H., Mao, N., Probabilistic analysis of ob

oi.org/10.1016/j.sandf.2012.05.010
–
 For the practical load configurations, the variability of
Fs does not change with the increase in the footing load
inclination when one considers only the soil uncertain-
ties. However, this variability significantly increases
with a, especially when a4101, if one considers either
the load uncertainties or both the load and the soil
uncertainties. Also, the mode of failure predominance
was shown to be closely related to the uncertainties
considered in the analysis (i.e., those of the soil and/or
the loading).

Appendix. Multidimensional Hermite polynomial

The multidimensional Hermite polynomial is the pro-
duct of the one-dimensional Hermite polynomials for the
different random variables.
Within the framework of the Polynomial Chaos Expan-

sion methodology (see Eq. (3)), only the multidimensional
Hermite polynomials of a degree smaller than or equal to p

are retained to construct the PCE of order p. As an
example, Table A1 shows the multidimensional Hermite
polynomials of a degree smaller than or equal to 4 in the
case of 2 random variables. These polynomials are used to
construct the PCE of order p¼4 with M¼2 random
variables. In this case, the number of the PCE coefficients
ab is P¼ ((pþM)!/p!M!)¼ ((2þ4)!/2!4!)¼15. The construc-
tion of other PCEs corresponding to other values of p and
M is straightforward.
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