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Abstract: This paper presents a reliability-based approach for the three-dimensional analysis and design of the face stability of a shallow
circular tunnel driven by a pressurized shield. Both the collapse and the blow-out failure modes of the ultimate limit state are studied. The
deterministic models are based on the upper-bound method of the limit analysis theory. The collapse failure mode was found to give the
most critical deterministic results against face stability and was adopted for the probabilistic analysis and design. The random variables
used are the soil shear strength parameters. The Hasofer-Lind reliability index and the failure probability were determined. A sensitivity
analysis was also performed. It was shown that �1� the assumption of negative correlation between the soil shear strength parameters gives
a greater reliability of the tunnel face stability with respect to the one of uncorrelated variables; �2� FORM approximation gives accurate
results of the failure probability; and �3� the failure probability is much more influenced by the coefficient of variation of the angle of
internal friction than that of the cohesion. Finally, a reliability-based design is performed to determine the required tunnel pressure for a
target collapse failure probability.
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Introduction

Over the past 30 years, tunneling in a frictional and/or cohesive
soil has been possible due to recent technological advances in-
cluding the pressurized shield. Face stability analysis of shallow
circular tunnels driven by the pressurized shield is of major im-
portance. The tunnel face pressure must avoid both the collapse
�active failure� and the blow-out �passive failure� of the soil mass
nearby the tunnel face. Active failure of the tunnel is triggered by
application of surcharge and self-weight, with the tunnel face
pressure providing resistance against collapse. Under passive con-
ditions, these roles are reversed and the face pressure causes
blow-out with resistance being provided by the surcharge and
self-weight.

In this paper, the face stability analysis is conducted based on
a probabilistic approach. The reliability-based analysis is more
rational than the deterministic one since it takes into account the
inherent uncertainty of the input variables. Nowadays, this is pos-
sible because of the improvement of our knowledge on the statis-
tical properties of the soil �Phoon and Kulhawy 1999; Baecher
and Christian 2003�. Two performance functions may characterize

1Ph.D. Student, INSA Lyon, LGCIE Site Coulomb 3, Géotechnique,
Bât. J.C.A. Coulomb, Domaine scientifique de la Doua, 69621 Villeur-
banne cedex, France. E-mail: Guilhem.Mollon@insa-lyon.fr

2Associate Professor, INSA Lyon, LGCIE Site Coulomb 3, Géotech-
nique, Bât. J.C.A. Coulomb, Domaine scientifique de la Doua, 69621
Villeurbanne cedex, France. Email: Daniel.Dias@insa-lyon.fr

3Professor, Dept. of Civil Engineering, Univ. of Nantes, Bd. de
l’université, BP 152, 44603 Saint-Nazaire, France �corresponding author�.
E-mail: Abed.Soubra@univ-nantes.fr

Note. This manuscript was submitted on April 25, 2008; approved on
July 1, 2009; published online on November 13, 2009. Discussion period
open until May 1, 2010; separate discussions must be submitted for indi-
vidual papers. This paper is part of the International Journal of Geome-
chanics, Vol. 9, No. 6, December 1, 2009. ©ASCE, ISSN 1532-3641/

2009/6-237–249/$25.00.

INTERNATIONAL JOURNAL O

Downloaded 17 Nov 2009 to 193.52.108.46. Redistribution subject to
the tunnel behavior: the serviceability limit state and the ultimate
limit state �ULS�. Only the collapse and the blow-out failure
modes of the ULS are analyzed herein. Two new rigorous deter-
ministic limit analysis models are used. The soil shear strength
parameters are modeled as random variables. The main reliability
concepts are described next, followed by the two deterministic
models and discussions of the deterministic and probabilistic nu-
merical results based on these models.

Overview of Reliability Concepts

The reliability index is a measure of the safety that takes into
account the inherent uncertainties of the input variables. A widely
used reliability index is the Hasofer and Lind �1974� index. Its
matrix formulation is �Ditlevsen 1981�

�HL = min
x�F

��x − ��TC−1�x − �� �1�

in which x=vector representing the n random variables; �
=vector of their mean values; C=covariance matrix; and F
=failure region. The minimization of Eq. �1� is performed subject
to the constraint G�x��0 where the limit state surface G�x�=0,
separates the n dimensional domain of random variables into two
regions: a failure region F represented by G�x��0 and a safe
region given by G�x��0.

The classical approach for computing �HL by Eq. �1� is based
on the transformation of the limit state surface into the rotated
space of standard normal uncorrelated variates. The shortest dis-
tance from the transformed failure surface to the origin of the
reduced variates is the reliability index �HL.

An intuitive interpretation of the reliability index was sug-
gested in Low and Tang �1997a, 2004� where the concept of an
expanding ellipsoid �or an ellipse in two-dimensions �2D� as
shown in Fig. 1� led to a simple method of computing the

Hasofer-Lind reliability index in the original space of the random
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variables using an optimization tool available in most software
packages. Low and Tang �1997a,2004� reported that the Hasofer-
Lind reliability index �HL may be regarded as the codirectional
axis ratio of the smallest ellipsoid that just touches the limit state
surface to the unit dispersion ellipsoid �i.e., corresponding to
�HL=1 in Eq. �1� without the minimum�. They also stated that
finding the smallest ellipsoid �called hereafter critical ellipsoid�
that is tangent to the limit state surface is equivalent to finding the
most probable failure point. When the random variables are non-
normal, the Rackwitz-Fiessler equivalent normal transformation
was used to compute the equivalent normal mean �N and the
equivalent normal standard deviation �N. The iterative computa-
tions of �N and �N for each trial design point are automatic during
the constrained optimization search.

From the first-order reliability method FORM and the Hasofer-
Lind reliability index �HL, one can approximate the failure prob-
ability as follows:

Pf � ��− �HL� �2�

where �� · �=cumulative distribution function of a standard nor-
mal variable. In this method, the limit state function is approxi-
mated by a hyperplane tangent to the limit state surface at the
design point.

Monte Carlo �MC� is another method of computing the failure
probability. It is the most robust simulation method in which
samples are generated with respect to the probability density of
each variable. For each sample, the response of the system is
calculated. An unbiased estimator of the failure probability is
given by

P̃f =
1

N�
i=1

N

I�xi� �3�

where N=number of samples and I�x�=1 if G�x��0 and 0 else-
where. The coefficient of variation of the estimator is given by

COV�P̃f� =��1 − Pf�
PfN

�4�

Generally, for a given target of the coefficient of variation, the
crude MC simulation requires a large number of samples, i.e.,
a large computation time. This is especially the case for small
values of the failure probability. The importance sampling �IS�
simulation method is a more efficient approach; it requires fewer
sample points than the MC method. In this approach, the initial

Failure domain

Safe domain

Limit state surface

Design point

Critical
dispersion
ellipse

N
HL 2.σβ

N
2σ

N
1σ

Unit dispersion
ellipse

N
1μ

N
2μ

x1

x2

N
HL 1.σβ

Fig. 1. Design point and equivalent normal dispersion ellipses in the
space of two random variables
sampling density f� · � is shifted to the design point in order to
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concentrate the samples in the region of greatest probability den-
sity within the zone defined by G�x��0. The design point may be
determined by using any of the classical methods such as
Rackwitz-Fiessler algorithm �Rackwitz and Fiessler 1978�, Low
and Tang’s ellipsoid approach �Low and Tang 1997a, 2004�, etc.
An estimator of the failure probability Pf is obtained as follows
�Melchers 1999�:

P̃f =
1

N�
i=1

N

I�vi�
f�vi�
h�vi�

�5�

where h� · �=new sampling density centered at the design point
and v=vector of sample values generated with the new probabil-
ity density function �PDF�, i.e., h� · �. The coefficient of variation
of the estimator is given by �Melchers 1999�

COV�P̃f� =
1

Pf
� 1

N
� 1

N�
i=1

N �I�vi�
f�vi�
h�vi�

�2

− �Pf�2� �6�

Reliability Analysis of a Circular Tunnel Face

The aim of this paper is to perform a reliability analysis of the
face stability of a shallow circular tunnel driven by a pressurized
shield in a c-� soil. The problem can be idealized as shown in
Figs. 2�a and b� by considering a circular rigid tunnel of diameter
D driven under a depth of cover C. A surcharge �s is applied at
the ground surface and a uniform retaining pressure �t is applied
to the tunnel face to simulate tunneling under compressed air.
The deterministic models are based on the upper-bound method
of the limit analysis theory. They are presented in the next sec-
tion. Due to uncertainties in soil shear strength parameters, the
cohesion c, and the angle of internal friction � are considered as
random. They are modeled in the present analysis as random vari-
ables. This means that the soil parameters are considered as ho-
mogeneous in the whole soil mass. The randomness of the soil is
taken into account from one simulation to another. The perfor-
mance functions G1 and G2 used in the reliability analysis for
both the collapse and the blow-out cases are respectively defined
as follows:

G1 = �t − �c �7�

G2 = �b − �t �8�

where �t=applied pressure on the tunnel face, and �c and
�b=collapse and blow-out pressures, respectively.

Limit Analysis Models

Several theoretical models have been presented in literature for
the computation of the collapse and blow-out tunnel pressures
corresponding respectively to the active and passive modes of
failure. The most recent and significant approach is the one pre-
sented by Leca and Dormieux �1990� who considered three-
dimensional �3D� failure mechanisms in the framework of the
upper-bound method in limit analysis. In this paper, two new
deterministic models �3D multiblock failure mechanisms� based
on the upper-bound approach of limit analysis are proposed for
the probabilistic analysis. These mechanisms constitute an im-
provement of the failure mechanisms by Leca and Dormieux
�1990� since they allow the 3D slip surface to develop more freely

in comparison with the available one- and two-block mechanisms

ER/DECEMBER 2009

 ASCE license or copyright; see http://pubs.asce.org/copyright



given by Leca and Dormieux �1990�. Notice that the use of a
lower-bound approach in limit analysis �using for instance finite
elements and linear programming� is another alternative ap-
proach. It has the advantage of providing conservative solutions.
However, this method leads, when dealing with the probabilistic
analysis, to complex and very expensive numerical computations
with a high computation time since the probabilistic analysis re-
quires a significant number of calls of the deterministic model for
a given soil variability. Thus, in order to optimize the computation
time and to get sufficiently accurate results, efforts were concen-
trated in the present paper on the improvement of the best avail-
able upper-bound solutions �i.e., those by Leca and Dormieux
1990� by using multiblock failure mechanisms. Notice that a
multiblock failure mechanism was also used by Soubra �1999�
when dealing with the 2D analysis of the bearing capacity of strip
foundations. It was shown by Soubra �1999� that the multiblock
mechanism significantly improves the solutions of the bearing
capacity as given by the available mechanisms �two-block and
log-sandwich mechanisms� and obtains smaller �i.e., better� upper
bounds. This is due to the great freedom offered by this mecha-

c. Three-dimensional views of the M1 mechanism in the (x, y, z) space

a. M1 mechanism (collapse case) in the (y, z) plane

b. M2 mechanism (blow-out case) in the (y, z) plane

Fig. 2. Failure mechanisms M1 and M2 for the face stability
nism to move more freely with respect to traditional mechanisms.

INTERNATIONAL JOURNAL O

Downloaded 17 Nov 2009 to 193.52.108.46. Redistribution subject to
The optimal radial shear zone found in the case of a ponderable
soil was not bounded by a log spiral as is the case of the tradi-
tional Prandtl �i.e., log sandwich� mechanism but by a more criti-
cal surface found by numerical optimization. Furthermore, the
multiblock mechanism by Soubra �1999� led in some cases �for
Nq and Nc� to the exact solutions given by the log-sandwich fail-
ure mechanism since both upper and lower bound solutions were
identical in these cases. Notice finally that the two 3D multiblock
failure mechanisms presented in this paper for the stability analy-
sis of circular tunnels make use of the idea of multiblock mecha-
nisms suggested by Soubra �1999� in the 2D analysis of strip
footings in order to obtain better upper-bound solutions. A de-
tailed description of these mechanisms is given in the following
sections.

Collapse Mechanism M1 (Active Case)
M1 is an improvement of the two-block collapse mechanism pre-
sented by Leca and Dormieux �1990�. This mechanism is a multi-
block. It is composed of n truncated rigid cones with circular
cross sections and with opening angles equal to 2�. Fig. 2�c�
depicts three different 3D views of a five-block mechanism �i.e.,
n=5�. The geometrical construction of this mechanism is similar
to that of Leca and Dormieux �1990�, i.e., each cone is the mirror
image of the adjacent cone with respect to the plane that is normal
to the contact surface separating these cones �cf. Leca and
Dormieux 1990�. This is a necessary condition to assure the same
elliptical contact area between adjacent cones. In order to make
clearer the geometrical construction of the 3D failure mechanism,
Fig. 3 shows how the first two truncated conical blocks adjacent
to the tunnel face are constructed. The geometrical construction of
the remaining truncated conical blocks is straightforward. In
Fig. 3, Block 1 is a truncated circular cone adjacent to the tunnel
face. It has an opening angle equal to 2� �in order to respect the
normality condition in limit analysis� and an axis inclined at �
with the horizontal direction. Thus, the intersection of this trun-
cated cone with the tunnel face is an elliptical surface that does
not cover the entire circular face of the tunnel �cf. Fig. 2�c�� This
is a shortcoming not only of the present failure mechanism but
also of the one- and two-block mechanisms by Leca and
Dormieux �1990�. On the other hand, Block 1 is truncated with
Plane 1, which is inclined at an angle �1 with the vertical direc-
tion �cf. Fig. 3�. In order to obtain the same contact area with the
adjacent truncated conical block, Block 2 is constructed in such a
manner to be the mirror image of Block 1 with respect to the
plane that is normal to the surface separating the two blocks �i.e.,
Plane 2 as shown in Fig. 3�. The upper rigid cone will or will
not intersect the ground surface depending on the � and C /D
values. At first glance, the fact that the failure mechanism does
not intersect the ground surface for some values of � and C /D is

Fig. 3. Detail of the construction of the M1 mechanism in the �y ,z�
plane
striking. However, the same phenomenon was also observed
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when performing 3D numerical simulations using FLAC3D soft-
ware �Mollon et al. 2009�. Notice that while using numerical
simulations, no assumptions were made on the shape of the fail-
ure mechanism and the optimal failure mechanism was explored.
Thus, one may confirm that the present failure mechanism based
on limit analysis is acceptable even if the critical failure surface
does not outcrop.

M1 is a translational kinematically admissible failure mecha-
nism. The different truncated conical blocks of this mechanism
move as rigid bodies. These truncated rigid cones translate with
velocities of different directions, which are collinear with the
cones axes and make an angle � with the conical discontinuity
surface in order to respect the normality condition required by the
limit analysis theory. The velocity of each cone is determined by
the condition that the relative velocity between the cones in con-
tact has the direction that makes an angle � with the contact
surface. The velocity hodograph is presented in Fig. 2�a�. The
present mechanism is completely defined by n angular parameters
� and �i �i=1, . . . ,n−1� where n is the number of the truncated
conical blocks.

Blow-Out Mechanism M2 (Passive Case)
Even though safety against collapse is a major concern during
tunneling, the blow-out mechanism may be of interest for very
shallow tunnels bored in weak soils, when the pressure �t

can become so great that soil is heaved in front of the shield. M2
�Fig. 2�b�� is a blow-out mechanism. It represents the passive case
of the former mechanism. With reference to M1, the M2 mecha-
nism presents an upward movement of the soil mass. Thus, the
cones with an opening angle 2� are reversed. Contrary to M1, the
present mechanism always outcrops.

Ellipsoid Approach via Spreadsheet

In the present paper, by the Low and Tang �1997a, 2004� method,
one literally sets up a tilted ellipsoid in the Excel spreadsheet and
minimizes the dispersion ellipsoid subject to the constraint that it
be tangent to the limit state surface using the Excel Solver with
the automatic scaling option. Eq. �1� may be rewritten as �Low
and Tang 1997b, 2004; Youssef Abdel Massih and Soubra 2008;
Youssef Abdel Massih et al. 2008�

�HL = min
x�F
�� x − �N

�N 	T


R�−1� x − �N

�N 	 �9�

in which 
R�−1	inverse of the correlation matrix. This equation
will be used �instead of Eq. �1�� since the correlation matrix 
R�
displays the correlation structure more explicitly than the covari-
ance matrix 
C�.

Deterministic Numerical Results

For both M1 and M2 mechanisms, when the total rate of energy
dissipation and the total rate of external work are equated, the
ultimate tunnel pressure �u for the collapse and the blow-out
modes of failure can be expressed as follows:

�u = 
DN
 + cNc + �sNs �10�

where N
, Nc, and Ns=nondimensional coefficients. They repre-
sent, respectively, the effect of soil weight, cohesion, and sur-
charge loading. The expressions of the different coefficients N
,

Nc, and Ns are given in the Appendix. Notice that the external
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forces involved in the present mechanisms are the weights of the
different truncated rigid cones, the surcharge loading acting on
the ground surface, and the pressure applied on the tunnel face.
For the collapse mechanism, the rate of external work of the
surcharge loading should be calculated only in case of outcrop of
the mechanism on the ground surface. The computation of the
rate of external work of the different external forces is straight-
forward. The details are given in Oberlé �1996�. The rate of in-
ternal energy dissipation takes place along the different velocity
discontinuity surfaces. These are �1� the radial elliptical surfaces
which are the contact areas between adjacent truncated cones and
�2� the lateral surfaces of the different truncated cones. Notice
that the rate of internal energy dissipation along a unit velocity
discontinuity surface is equal to c ·�u �Chen 2008� where c is the
soil cohesion and �u is the tangential component of the velocity
along the velocity discontinuity surface. Calculations of the rate
of internal energy dissipation along the different velocity discon-
tinuity surfaces are straightforward. The details are given in
Oberlé �1996�.

In Eq. �10�, �u, N
, Nc, and Ns depend not only on the
mechanical and geometrical characteristics c, �, and C /D, but
also on the angular parameters of the failure mechanism � and �i

�i=1, . . . ,n−1�. In the following sections, the ultimate tunnel
pressure of the collapse mode will be denoted �c, and that of
blow-out will be refereed to as �b. They were obtained respec-
tively by maximization and minimization of �u in Eq. �10� with
respect to the � and �i angles. As for the ultimate tunnel pres-
sures, the critical coefficients N


b, Nc
b, and Ns

b �respectively N

c , Nc

c,
and Ns

c� corresponding to the blow-out �respectively collapse�
case, were obtained by minimization �respectively maximization�
of these coefficients with respect to the � and �i angles. A com-
puter program has been written in Microsoft Excel Visual Basic to
define the different coefficients N
, Nc, and Ns and the tunnel
pressure �u for the collapse and the blow-out modes of failure.
The optimization was performed using the optimization tool
“Solver” implemented in Microsoft Excel. It was shown that the
increase in the number of cones improves the solutions �i.e., in-
creases the active coefficients, and reduces the passive ones�. The
numerical results have shown that this improvement becomes in-
significant �smaller than 1%� for a number of blocks greater than
five. Therefore, only five blocks were used in this paper for the
collapse and the blow-out mechanisms.

Notice that in both the collapse and the blow-out cases, the
numerical results have shown that Nc and Ns are related by the
following classical formula:

Nc tan � + 1 − Ns = 0 �11�

This can be explained by the theorem of corresponding states
�Soubra 1999�. Hence, in the following, only the N
 and Ns coef-
ficients will be presented; the Nc coefficient can be obtained using
Eq. �11�.

Comparison with Available Upper-Bound Solutions

Leca and Dormieux �1990� have considered a collapse failure
mechanism composed of two rigid cones. Fig. 4 presents the N


c

and Ns
c values given by the present analysis �M1 mechanism� and

the ones given by Leca and Dormieux �1990�. The N

c coefficient

increases with C /D; then, it becomes constant for large values of
C /D corresponding to the condition of no outcrop of the upper
block. However, coefficient Ns

c decreases with the C /D increase
and vanishes beyond a certain value of C /D corresponding to the

no-outcrop condition. In this case, the surcharge loading has no
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influence on the critical Ns
c value. These conclusions conform

to those of Leca and Dormieux �1990�. It should be mentioned
that in the case of collapse, the present failure mechanism gives
greater upper-bound solutions than the available upper-bound
solutions proposed by Leca and Dormieux �1990�. The improve-
ment of the solution is about 8% for the N


c coefficient when
�=20° and C /D�0.55. For Ns

c, the improvement is equal to
37.5% when �=20° and C /D=0.1.

For the blow-out case, Leca and Dormieux �1990� have con-
sidered a mechanism composed of a single rigid cone moving
upward. The upper-bound solutions given by these writers are
compared with the ones corresponding to the present M2 mecha-
nism in Fig. 5. The M2 mechanism is better than the one pre-
sented by Leca and Dormieux �1990� since the present upper-
bound solutions are smaller. For the N


b coefficient, the reduction
is very significant and it is of 41% when �=30° and C /D=1.4.
For the Ns

b coefficient, significant reductions are also obtained
with respect to the results presented by Leca and Dormieux. For
example, when �=30° and C /D=1.4, the reduction attains 51%.

As a conclusion, the four design charts presented before �i.e.,
Figs. 4 and 5� give the values of the coefficients N
 and Ns of the
proposed mechanisms for both the collapse and blow-out cases
for different values of the governing parameters � and C /D. The
existing values by Leca-Dormieux are also given in these charts,
allowing one to appreciate the improvement with respect to prior
solutions. The determination of the critical collapse or blow-out
pressure to be used in practice can then be made by using Eq. �10�
where Nc in this equation is given by Eq. �11� and N
 and Ns are
given in the design charts of Figs. 4 and 5.

It should be mentioned here that Fig. 2�c� presented earlier is a
3D representation of the critical collapse mechanism obtained
after optimization of the tunnel pressure with respect to the geo-

Fig. 4. N

c and Ns

c versus C/D as given by Leca and Dormieux and
M1 mechanism
metrical parameters of the failure mechanism for a friction angle
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equal to 17° and a cohesion equal to 7 kPa when C /D=2. It can
be seen that the 3D critical failure mechanism M1 involves a
radial shear zone �composed of three small truncated rigid cones,
i.e., Blocks 2–4� sandwiched between two greater rigid cones
�i.e., Blocks 1 and 5�. Line BCDE as obtained by numerical op-
timization is not a log spiral and this constitutes the major interest
of the present multiblock mechanism with respect to the similar in
shape mechanism �i.e., log sandwich� where line BCDE is re-
placed by a log spiral.

For the currently encountered cases �i.e., 1�C /D�3; 10°
���30°; 0�c�20 kPa�, Table 1 presents the results of the
tunnel ultimate pressures �c and �b corresponding respectively to
the collapse and the blow-out modes of failure as given by the
present failure mechanisms. The applied tunnel pressure �t should
be greater than the collapse pressure �c to avoid the active failure.
If one adopts a safety factor against collapse �Fs=�t /�c� equal to
2, the required applied pressure �t should be equal to twice the
value of the collapse pressure as given in the fifth column of
Table 1. The comparison of these pressures with those of the
blow-out case �i.e., �b� shows that the blow-out pressures are
much higher than the practical applied tunnel pressures �t for all
the values of the governing parameters considered in this paper.
Hence, the blow-out mode of failure does not occur for the cases
currently encountered in practice. In the following sections, only
the collapse failure mode is considered in the probabilistic analy-
sis and design of circular tunnels against face stability.

Comparison with Three-Dimensional Numerical
Simulations

In order to assess the accuracy of the limit analysis collapse

Fig. 5. N

b and Ns

b versus C/D as given by Leca and Dormieux and
M2 mechanism
model, complex 3D numerical simulations were performed using
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the finite difference commercial software FLAC3D. They allow
one to determine the values of the critical collapse pressure �c.
For a detailed description of these simulations, the reader may
refer to Mollon et al. �2009� . Fig. 6�a� shows a comparison be-
tween the collapse pressures as given by the FLAC3D model and
by the M1 mechanism. Three cases of �c ,�� are considered to
show the effect of both c and � on the comparison between the
limit analysis and the numerical simulations. It appears that the
limit analysis results are not far from the ones obtained by
FLAC3D. Even if they are upper-bounds �i.e., nonconservative� to
the exact collapse pressures, the present collapse pressures given
by limit analysis can be considered as sufficiently accurate for

Table 1. Values of the Collapse and Blow-Out Pressures �c and �b and t
of C /D, �, and c

C /D
�
�°�

c
�kPa�

1 10 0

1 10 20 


1 30 0

1 30 20 


3 10 0

3 10 20 


3 30 0

3 30 20 


a. Critical collapse pressure

b. Failure pattern in the (y, z) plane

Fig. 6. Comparison between FLAC3D numerical simulations and
limit analysis
242 / INTERNATIONAL JOURNAL OF GEOMECHANICS © ASCE / NOVEMB
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practical use. Notice also that the very short calculation time re-
quired by the limit analysis model �smaller than 1 s� compared to
that required by the numerical simulations �90 min� is appealing
for the probabilistic analysis, which requires a significant number
of calls of the deterministic model for a given soil variability.
Finally, Fig. 6�b� shows that the shape of the critical M1 collapse
mechanism is very close to the one obtained by FLAC3D for the
reference case �i.e., �=17°, c=7 kPa� that will be studied in the
probabilistic analysis.

Probabilistic Numerical Results

The present collapse failure mechanism M1 will be used in all
subsequent probabilistic analyses since �1� it gives better upper-
bound solutions than the mechanism by Leca and Dormieux
�1990� and �2� it gives results that are not very far from the
solutions given by complex 3D numerical simulations using
FLAC3D.

The probabilistic numerical results presented in this paper con-
sider the case of a circular tunnel with a diameter D=10 m and a
cover C=10 m �i.e., C /D=1�. The soil has a unit weight of
18 kN /m3. No surcharge loading ��s=0� is considered in the
analysis.

For the probability distribution of the random variables, two
cases are studied. In the first case, referred to as normal variables,
c and � are considered as normal variables. In the second case,
referred to as nonnormal variables, c is assumed to be lognor-
mally distributed while � is assumed to be bounded and a �
distribution is used �Fenton and Griffiths 2003�. The parameters
of the � distribution are determined from the mean value and
standard deviation of � �Haldar and Mahadevan 2000�. For
both cases, correlated and uncorrelated variables are considered.
In this paper, the illustrative values used for the statistical mo-
ments of the shear strength parameters and their coefficient of
correlation �c,� are as follows: �c=7 kPa, ��=17°, COVc=20%,
COV�=10%, and �c,�=−0.5.

A common approach to determine the reliability index of a
stability problem �slope stability, bearing capacity, etc.� is based
on the calculation of the reliability index corresponding to the
deterministic failure surface �i.e., the one corresponding to the
minimum safety factor or the ultimate load� �Christian et al.
1994�. In this paper, the reliability index is determined by mini-
mizing the quadratic form of Eq. �9� not only with respect to the
random variables, but also with respect to the geometrical param-
eters of the failure mechanism �� ,�i� i=1, .. ,n−1 �Bhattacharya
et al. 2003; Youssef Abdel Massih 2007; Youssef Abdel Massih

uired Face Pressure �t for a Safety Factor Fs=2 for the Common Values

c

a�
�t �kPa�
for Fs=2

�b

�kPa�

0 200 660

, stable� 
0 �i.e., stable� 94

2 44 3,800

, stable� 
0 �i.e., stable� 4,700

6 212 2,570

, stable� 
0 �i.e., stable� 3,290

2 44 20,900

, stable� 
0 �i.e., stable� 23,400
he Req

�
�kP

10

0 �i.e.

2

0 �i.e.

10

0 �i.e.

2

0 �i.e.
et al. 2008�. Five rigid blocks �i.e., n=5 in Fig. 2� are considered.
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Therefore, the minimization is performed with respect to seven
parameters �� ,�i ,c ,��. The surface obtained corresponding to
the minimum reliability index is referred to here as the critical
probabilistic surface.

For the configuration presented earlier, the tunnel collapse
pressure corresponding to normal variables was found equal to
�c=28.3 kPa. However, for nonnormal variables, the collapse
pressure was computed using the equivalent mean values of the
random variables and was found equal to 28.8 kPa.

Reliability Index, Critical Dispersion Ellipses,
and Partial Safety Factors

Fig. 7 presents the Hasofer-Lind reliability index versus the ap-
plied pressure �t for four combinations of normal and nonnormal,
uncorrelated and correlated shear strength parameters. For all
cases, the reliability index increases with the increase of the tun-
nel face pressure �t. The comparison of the results of correlated
variables with those of uncorrelated variables shows that the re-
liability index corresponding to uncorrelated variables is smaller
than the one of negatively correlated variables for both normal
and nonnormal variables. One can conclude that assuming un-
correlated shear strength parameters is conservative in compari-
son to assuming negatively correlated parameters. For a target
reliability index of 3.8 as imposed by Eurocode 7, the required
tunnel pressure is smaller for correlated and nonnormal variables.
For instance, with respect to the reference case of normal and
uncorrelated variables, �t decreases by 19% if the variables are
correlated �54.3 kPa to be compared to 66.9 kPa� and by 7% if
the variables are considered to follow nonnormal distributions
�62.3 kPa to be compared to 66.9 kPa�.

The values �c� and ��� of the design points corresponding to
different values of the tunnel face pressure �t can give an idea
about the partial safety factors of each of the strength parameters
c and tan � as follows:

Fc =
�c

c�
�12�

F� =
tan����
tan ��

�13�

Fig. 7. Reliability index versus �t for normal, nonnormal, uncorre-
lated, and correlated variables
Table 2 gives the obtained partial safety factors Fc and F� and
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the corresponding design point and reliability index for the four
combinations of normal, nonnormal, uncorrelated, and correlated
variables and for different values of the tunnel face pressure �t.
This table also shows the empirical Fc and F� values suggested
by Eurocode 7. For a reliability index close to 3.8 as suggested by
Eurocode 7 in the ULS, the values obtained from the present
approach for the four combinations of assumptions are between 1
and 1.5 for Fc and about 1.5 for F�. The corresponding Eurocode
values are 1.6 and 1.25. As can be seen, contrary to Eurocode 7,
the present probabilistic approach attributes more safety to the
cohesion parameter than Eurocode 7.

For �t=70 kPa �Fig. 7�, the collapse reliability index for un-
correlated and correlated normal variables are respectively equal
to 4.02 and 5.16. The corresponding most probable failure points
obtained from the minimization procedure �Table 2� are found to
be at �c�=4.53 kPa, ��=10.87°� and �c�=7.11 kPa, ��=9.34°�.
These are the points of tangency of the critical dispersion ellipses
with the limit state surface. Notice that the limit state surface
divides the combinations of �c ,�� that would lead to failure from

Table 2. Reliability Index, Design Point, and Partial Safety Factors

�t �HL c� �� Fc F�

Normal uncorrelated variables

28.3 0.00 7.00 17.00 1.00 1.00

30 0.25 6.76 16.69 1.04 1.02

35 0.93 6.18 15.78 1.13 1.08

40 1.53 5.74 14.90 1.22 1.15

50 2.51 5.19 13.33 1.35 1.29

60 3.32 4.82 12.02 1.45 1.44

70 4.02 4.53 10.87 1.55 1.59

80 4.63 4.30 9.85 1.63 1.76

100 5.69 3.95 8.07 1.77 2.16

Normal correlated variables

28.3 0.00 7.00 17.00 1.00 1.00

30 0.35 6.79 16.66 1.03 1.02

35 1.30 6.38 15.57 1.10 1.10

40 2.11 6.32 14.40 1.11 1.19

50 3.35 6.54 12.37 1.07 1.39

60 4.34 6.82 10.73 1.03 1.61

70 5.16 7.11 9.34 0.98 1.86

80 5.87 7.40 8.12 0.95 2.14

100 7.08 7.94 6.05 0.88 2.88

Nonnormal uncorrelated variables

28.8 0.00 7.00 17.00 1.00 1.00

30 0.17 6.71 16.75 1.04 1.02

35 0.89 6.19 15.77 1.13 1.08

40 1.53 5.84 14.81 1.20 1.16

50 2.63 5.42 13.17 1.29 1.31

60 3.58 5.12 11.82 1.37 1.46

Nonnormal correlated variables

28.8 0.00 7.00 17.00 1.00 1.00

30 0.24 6.73 16.72 1.04 1.02

35 1.23 6.40 15.56 1.09 1.10

40 2.08 6.33 14.39 1.11 1.19

50 3.47 6.33 12.51 1.11 1.38

60 4.65 6.33 11.04 1.11 1.57
the combinations that would not. The �c ,�� values defining the
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limit state surface are obtained by searching c �or �� for a pre-
scribed � �or c� that achieve both the conditions �1� G1=0 where
G1 is defined by Eq. �7� and �2� the collapse pressure �c in Eq. �7�
is obtained by a maximization with respect to the geometrical
parameters of the failure mechanism. For this purpose, a numeri-
cal procedure was coded in Microsoft Excel Visual Basic. It calls
the Excel Solver iteratively in order to simultaneously satisfy the
two preceding conditions. Fig. 8 provides graphical representation
of the reliability analysis for both correlated and uncorrelated
shear strength parameters in the physical space of the random
variables. One can easily see that negative correlation between
shear strength parameters rotates the major axis of the ellipse
from the vertical direction.

The critical probabilistic failure mechanisms obtained for both
uncorrelated and negatively correlated variables are plotted in
Fig. 9 using the values c� and �� of the design point �Table 2� and
the corresponding critical angular parameters of the failure
mechanism. One can observe that the most probable failure
mechanisms in the two cases are much more “extended” than the
critical failure mechanism obtained in the deterministic analysis
by optimization of the tunnel pressure with respect to the geo-
metrical parameters of the failure mechanism. This is due to the

Fig. 8. Unit and critical dispersion ellipses for correlated and uncor-
related variables in the physical space of the random variables

Fig. 9. Critical collapse mechanisms in the �y ,z� plane
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fact that the probabilistic failure mechanisms correspond to a
smaller value of �. Thus, contrary to the critical failure mecha-
nism obtained in the deterministic analysis, the probabilistic fail-
ure mechanism outcrops the ground surface for both uncorrelated
and negatively correlated shear strength parameters.

Failure Probability

Both MC and IS simulations were performed for the computation
of the failure probability. In this paper, these simulations were
carried out in the standardized space of uncorrelated variables.
Hence, only uncorrelated normal random variables have been
generated. The IS density function used in the standard uncorre-
lated space is given as follows �e.g., Lemaire 2005�:

f�u� =
1

�2�
e−1/2�u − u��2

�14�

where u�=transformed value of the design point in the standard
uncorrelated space of the random variables. When studying non-
normal and/or correlated variables, the limit state surface, which
is determined point by point as explained in the previous section,
was transformed to the standardized space of uncorrelated normal
variables using the equivalent normal transformation �i.e., the
Rackwitz-Fiessler equations� for each couple of �c ,��. The two
equations used for the transformation of each �c ,�� of the limit
state surface from the physical space to the standardized normal
uncorrelated space �u1 ,u2� are �Lemaire 2005�

u1 = � c − �c
N

�c
N � �15�

u2 =
1

�1 − �2��� − ��
N

��
N � − �� c − �c

N

�c
N �	 �16�

where �=coefficient of correlation of c and �, and �c
N, ��

N, �c
N,

and ��
N=respectively, the equivalent normal means and standard

deviations of the random variables c and �. They are determined
from the translation approach using the following equations:

c − �c
N

�c
N = �−1
Fc�c�� �17�

� − ��
N

��
N = �−1
F����� �18�

where Fc and F�=non-Gaussian cumulative distribution functions
�CDFs� of c and �, and �−1� · �=inverse of the standard normal
cumulative distribution. If desired, the original correlation matrix
��ij� of the nonnormals can be modified to �ij� in line with the
equivalent normal transformation, as suggested in Der Kiureghian
and Liu �1986�. Some tables of the ratio �ij� /�ij are given in
Appendix B2 of Melchers �1999�. For the cases illustrated herein,
the correlation matrix, thus modified, differs only slightly from
the original correlation matrix. Hence for simplicity, the examples
of this study retain the original unmodified correlation matrices
�Low et al. 2007�.

Figs. 10 and 11 present, respectively, the failure probability
and the corresponding coefficient of variation versus the number
of samples as given by MC and IS for normal and nonnormal
correlated variables. The tunnel face pressure was equal to 50
kPa. The expressions used for the computation of the failure prob-
ability and the corresponding coefficient of variation in both MC

and IS simulations are given by Eqs. �3�–�6�. A computer program

ER/DECEMBER 2009

 ASCE license or copyright; see http://pubs.asce.org/copyright



INTERNATIONAL JOURNAL O

Downloaded 17 Nov 2009 to 193.52.108.46. Redistribution subject to
has been written in Microsoft Excel Visual Basic for these com-
putations. It should be mentioned that for the MC simulations, a
single set of samples was generated for the estimation of the
failure probability. This is because the difference between the two
studied cases was taken into account through the transformation
of the limit state surface from the physical space to the rotated
standard normal uncorrelated �u1, u2� space using Eqs. �15�–�18�.
Also, the same set of samples can be used for uncorrelated vari-
ables and for different values of the tunnel applied pressure �t.
Notice however that in the IS method, a new set of samples was
generated for each probability distribution �normal and nonnor-
mal� and correlation coefficient and for each value of the applied
pressure. This is because the design point changes with the prob-
ability distribution and correlation of the random variables and
with the value of the tunnel applied pressure �t. Finally, notice
that the determination of the reliability index for use in the IS
simulations was determined using the dispersion ellipsoid ap-
proach presented earlier.

Figs. 10 and 11 show that the convergence of the failure prob-
ability calculated by IS is obtained for a sample size of 20,000
with a coefficient of variation smaller than 1%. This value of the
coefficient of variation is much smaller than the commonly
adopted value used in the literature, i.e., 10%. In order to have a
clear visualization of the convergence of the IS method, the maxi-
mal number of samples represented on the x-axis of Figs. 10 and
11 was limited to 200,000. For the MC simulation, a sample size
of 5,000,000 was necessary to achieve an almost constant value
of the failure probability. The corresponding coefficient of varia-
tion was smaller than 3%. Notice however that 35,000,000
samples were necessary to achieve a coefficient of variation
smaller than 1%. Finally, notice that similar trends were obtained
in the case of uncorrelated normal and nonnormal variables �the
figures are not shown in the paper� and the same conclusions cited
earlier remain valid in the case of uncorrelated variables �i.e., an
almost constant value of Pf was obtained from MC simulations
beyond 5,000,000 samples ; however, a smaller coefficient of
variation of 1% was obtained in the present case�. In the fol-
lowing, only IS simulation method will be used since it gives
close results with the MC simulations with a smaller sample size.
All the subsequent results will be given for a maximal value of
1% for the coefficient of variation of the estimator.

By varying the applied pressure on the tunnel face, the reli-
ability index was calculated and the failure probability was plot-
ted in Fig. 12 using FORM approximation and IS simulations for
normal, nonnormal, uncorrelated, and correlated variables. From
this figure, it is observed that the failure probability obtained from
FORM approximation are in good agreement with those obtained
from IS simulations for the commonly used values of the coeffi-
cients of variation of the soil shear strength parameters �i.e.,
COVc=20%, COV�=10%�. This means that FORM approxima-
tion is an acceptable approach for estimating the failure probabil-
ity for the commonly used values of the soil variability. It will be
used in all subsequent computations.

In order to explain the good agreement between the two ap-
proaches, the limit state surface is plotted. Fig. 13 shows the limit
state surface corresponding to a tunnel face pressure �t=50 kPa
for normal and nonnormal uncorrelated random variables in the
standard space of normal uncorrelated variables. This figure also
shows the linear FORM approximation, which is tangent to the
limit state surface at the design point. From this figure, it can be
shown that the linear FORM approximation is very close to the
exact limit state surface within the circle centered at the origin of
Fig. 10. Failure probability versus the number of samples for corre-
lated variables as given by IS and MC
Fig. 11. Coefficient of variation of the failure probability versus the
number of samples for correlated variables as given by IS and MC
Fig. 12. Comparison of the failure probability as given by FORM
and IS
 the rotated and transformed space and having a radius equal to 3.
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This explains why a good agreement between the two approaches
is obtained especially for normal variables. In the case of uncor-
related variables, the difference between the two failure probabili-
ties given by FORM and IS is about 1.6% for normal variables
and becomes equal to 3.0% for nonnormal variables �Fig. 13�.

Sensitivity Analysis

Fig. 14 presents the CDFs of the tunnel face pressure for normal,
nonnormal, correlated, and uncorrelated variables as given by
FORM. When no correlation between shear strength parameters
is considered, one can notice a more spread out CDF of the ap-
plied pressure �i.e., a higher coefficient of variation of this pres-
sure� with respect to the case of correlated shear strength. The
chosen probability distribution �i.e., normal, lognormal, and �
distribution� does not significantly affect the values of the failure
probability.

Fig. 15 presents the effect of the coefficient of variation of
the shear strength parameters on the failure probability. It can be
seen that a small change in the coefficient of variation of � highly
affects the failure probability. On the other hand, this failure prob-
ability is less sensitive to changes in the uncertainty of the cohe-
sion. Thus, the failure probability is highly influenced by the
coefficient of variation of �. The greater the scatter in �, the

a. Normal variables

b. Nonnormal variables
Fig. 13. Limit state surface and FORM approximation in the uncor-
related case
higher the failure probability. This means that accurate determi-
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nation of the uncertainties of the angle of internal friction � is
very important in obtaining reliable probabilistic results.

Probability Density Function of the Tunnel
Face Pressure

Fig. 16 shows the PDFs corresponding to the CDFs given in
Fig. 14. The PDFs were determined by numerical derivation of
the CDFs. It can be seen that the results of normal and nonnormal
variables are nearly similar. The correlation between the variables
has on the contrary an important influence, making the probability
density more significant around the deterministic value of the
applied pressure. By fitting the PDF of the tunnel pressure to an
empirical PDF �normal, lognormal, gamma� as shown in Fig. 17,
it was found �after minimization of the sum of the relative errors
between the values of the computed PDF and those of the empiri-
cal distribution� that the lognormal distribution is the one that best
fits the computed PDF especially in the distribution tail of interest
to the engineering practice �i.e., where �t�2�c�. It is then easy to
use the lognormal CDF to determine the failure probability for a
given applied tunnel pressure.

Fig. 14. CDFs of the tunnel face pressure

Fig. 15. Comparison of failure probabilities for different values of
the coefficients of variation of c and �
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Reliability-Based Design

A reliability-based design �RBD� has been performed in this sec-
tion. It consists of the calculation of the required tunnel face
pressure for a target collapse reliability index of 3.8 as suggested
by Eurocode 7 for the ULS. This tunnel pressure is called here-
after “probabilistic tunnel pressure.”

Fig. 18 presents the probabilistic tunnel pressure for different
values of the coefficients of variation of the shear strength param-
eters and their coefficient of correlation when the random vari-
ables follow normal distributions. This figure also presents the
deterministic tunnel face pressure �56.6 kPa� corresponding to
a safety factor against collapse �Fs=�t /�c� equal to 2. The
probabilistic tunnel face pressure decreases with the decrease of
the coefficients of variation of the shear strength parameters
and the increase of the negative correlation between these param-
eters. It can become smaller than the deterministic tunnel face
pressure for some values of the soil variability �i.e., COV�=5%,
COVc=20%�. However, for high values of the coefficients of
variation, the required tunnel face pressure is much higher than

Fig. 16. PDFs of the tunnel face pressure

Fig. 17. Fit of the PDF of the tunnel pressure in the normal uncor-
related case
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the deterministic value. As a conclusion, the deterministic tunnel
face pressure may be higher or lower than the reliability-based
tunnel face pressure, depending on the uncertainties of the ran-
dom variables and the correlation between these variables.

Conclusions

A reliability-based analysis and design of the face stability of a
shallow circular tunnel driven by a pressurized shield was per-
formed. Only the collapse and the blow-out failure modes of the
ULS were studied. Two rigorous deterministic models based on
the upper-bound method of limit analysis were used. It was
shown that
• Although the results given by the upper-bound approach in

limit analysis are unsafe estimates of the collapse and blow-
out loads, they are the best ones compared to the available
solutions in both the active and passive cases. This is because
the present mechanisms provide greater solutions than those
given by Leca and Dormieux �1990� in the collapse case and
smaller results than those of these writers in the case of blow-
out.

• The blow-out mode of failure does not occur for the cases
currently encountered in practice. Hence, only the collapse
failure mode was considered in the probabilistic analysis and
design against face stability.

• The present limit analysis results obtained from the M1 col-
lapse mechanism are not very far from the solutions given by
complex 3D numerical simulations using FLAC3D.

• The collapse reliability index increases with the increase of the
tunnel face pressure.

• FORM approximation is an acceptable approach for estimating
the failure probability against collapse for the commonly used
values of the soil variability.

• The assumption of uncorrelated shear strength parameters was
found conservative �i.e., it gives a greater failure probability�
in comparison to that of negatively correlated parameters;
however, the type of the probability distribution does not sig-
nificantly affect the values of the failure probability.

• The failure probability is more sensitive to � than to c. The
greater the scatter in �, the higher the failure probability. This
means that the accurate determination of the uncertainties of
the angle of internal friction � is important in obtaining reli-
able probabilistic results.

• When no correlation between shear strength parameters is con-
sidered, a more spread out CDF of the tunnel pressure was
obtained in comparison to the case of correlated shear strength
parameters.

• The distribution of the PDF of the tunnel pressure was found
very close to a lognormal distribution. This allows one to eas-
ily determine the failure probability against collapse for a
given face pressure.

• A RBD has shown that the tunnel pressure determined proba-
bilistically decreases with the increase of the negative correla-
tion between the shear strength parameters and the decrease of
their coefficients of variation.

Appendix. Computation of the Tunnel Collapse
Pressure—M1 Mechanism

The formulation is given here for a five-block mechanism. The

formulation for another number of blocks is straightforward.

F GEOMECHANICS © ASCE / NOVEMBER/DECEMBER 2009 / 247

 ASCE license or copyright; see http://pubs.asce.org/copyright



Geometry

The distance from the extremity of each block i to the tunnel
crown �hi� and the height of the extremity of the last block �h5��
are given by �Fig. 2�a��

h5� = h5 ·
sin�2�4 + 2�2 + � − ��

cos��4,5 − ��
− �H −

D

2
� �19�

with � h2 = D ·
cos�� + �� · cos��1 − � + ��

sin�2��

hi = h2 · 

k=2

i−1 � cos��k,k+1 + ��
cos��k−1,k − ��	 for i � 3� �20�

The volumes of the extreme blocks �first and fifth blocks� are

Fig. 18. Comparison between determ
k=2
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V1 =
A1 · h1 − A1,2 · h2

3
�21�

V5 =
A4,5 · h5 − A5 · h5�

3
�22�

The volume of an intermediate block i �for 2� i�4� is

Vi =
Ai−1,i · hi − Ai,i+1 · hi+1

3
�23�

If h5��0, the value of the outcropping surface of the fifth
block is

c and probabilistic design pressures
A5 =
�

cos���
· � h5� · sin�2��

2 sin�2�4 + 2�2 + � + �� · sin�2�4 + 2�2 + � − ��
�2

·�sin�2�4 + 2�2 + � + ��
sin�2�4 + 2�2 + � − ��

�24�

Otherwise, the mechanism does not outcrop and A5=0.
The area of the elliptical surface resulting from the intersection of the first cone �adjacent to the tunnel face� with the circular tunnel

face is

A1 =
� · D2

4 cos���
· �cos�� − �� · cos�� + �� �25�

The area of the contact elliptical surface between two successive blocks i and i+1 is given by

�A1,2 =
� · D2

4 cos���
· cos�� + ��2 ·

�cos��1 − � + ��
cos��1 − � − ��1.5

Ai,i+1 =
� · D2

4 cos���
· cos�� + ��2 ·

�cos��i,i+1 + ��
cos��i,i+1 − ��1.5 · 


k=2

i � cos��k−1,k + ��2

cos��k−1,k − �� 	 for i � 2� �26�
Kinematics

The velocity of the block i and the relative velocity between the
blocks i and i+1 are

vi = v1 · 

i

cos��k−1,k + ��
cos��k−1,k − ��

for i � 2 �27�
vi,i+1 = vi ·
sin�2�i,i+1�

cos��i,i+1 − ��
for i � 1 �28�

where ��0,1 = � � �29�
inisti
�i,i+1 = �i − �i−1,i for i � 1
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Expressions of N� and Ns

For a five-block collapse mechanism, the critical collapse pres-
sure can be calculated from Eqs. �10� and �11�, with

N
 =
P31 + P41 + P51 + P52

D
�30�

Ns =

v5

v1
· sin�2�2 + 2�4 + �� · A5

A1 · cos���
�31�

where P51 =

v4

v1
· sin�2�1 + 2�3 − �� · V4

A1 · cos���
�32�

P52 =

v5

v1
· sin�2�2 + 2�4 + �� · V5

A1 · cos���
�33�

P41 =

v2

v1
· sin�2�1 − �� · V2 +

v3

v1
· sin�2�2 + �� · V3

A1 · cos���
�34�

P31 =
V1 · sin���
A1 · cos���

�35�
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