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Abstract 
The sparse polynomial chaos expansion (SPCE) methodology is an efficient approach that deals with 
uncertainties propagation in case of high-dimensional problems (i.e. when a large number of random 
variables is involved). This methodology significantly reduces the computational cost with respect to the 
classical full polynomial chaos expansion (PCE) methodology. Notice however that when dealing with 
computationally-expensive deterministic models, the time cost remains important even with the use of 
the SPCE. In this paper, an efficient combined use of the SPCE methodology and the global sensitivity 
analysis (GSA) is proposed to solve such a problem. The proposed methodology is validated using a 
relatively non-expensive deterministic model.  
 
Keywords: Sobol indices; spatial variability; sparse polynomial chaos expansion, global sensitivity 
analysis. 
 

1. Introduction 
 
An efficient approach to deal with uncertainties propagation in case of high-dimensional problems (i.e. 
when a large number of random variables is involved) was recently presented by Blatman and Sudret 
(2010). This approach is based on a Sparse Polynomial Chaos Expansion (SPCE) for the system 
response and leads to a reduced computational cost as compared to the classical Polynomial Chaos 
Expansion (PCE) methodology. Notice that both, the PCE and the SPCE methodologies, aim at 
replacing the original expensive deterministic model which may be an analytical model or a finite 
element/finite difference model by a meta-model. This allows one to calculate the system response 
using a simple analytical equation (e.g. Isukapalli et al., 1998; Huang et al., 2009; Mollon et al., 2011; 
Mao et al., 2012). Notice however that when dealing with computationally-expensive deterministic 
models with a large number of random variables, the time cost remains important even with the use of 
the SPCE. Consequently, a method that can reduce once again the cost of the probabilistic analysis is 
needed. In this paper, an efficient combination between the SPCE methodology and the Global 
Sensitivity Analysis (GSA) is proposed to solve such a problem. In this method, a small SPCE order is 
firstly selected to approximate the system response by a meta-model. A GSA based on Sobol indices is 
then performed on this small SPCE order to determine the weight of each random variable in the 
variability of the system response. As a result, the variables with very small values of their Sobol 
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indices (i.e. those that have a small weight in the variability of the system response) can be discarded. 
Consequently, a response which only depends on a smaller number of random variables is obtained. In 
other words, one obtains a response with an 'effective dimension'. This dimension is smaller than the 
initial dimension where the total number of random variables was considered. As it will be shown later, 
the use of a small SPCE to perform the GSA is not a concern since higher SPCE orders lead to the same 
influential random variables. Once the 'effective dimension' was determined, a higher SPCE order that 
makes use of only the most influential random variables can be used. This significantly reduces the 
computation time. The use of a higher SPCE order is necessary in order to lead to an improved fit of the 
SPCE.  
The proposed methodology is validated using a relatively non-expensive model which was extensively 
investigated by Al-Bittar and Soubra (2011, 2012). This model involves the computation of the ultimate 
bearing capacity of a strip footing resting on a weightless spatially varying (c, φ) soil where c is the soil 
cohesion and φ is the soil angle of internal friction. It should be noticed here that the random fields of c 
and φ are discretized into a finite number of random variables. This number is small for very large 
autocorrelation distances and significantly increases for small values of the autocorrelation distances.    
The paper is organized as follows: The next two sections aim at briefly presenting both the sparse 
polynomial chaos expansion (SPCE) and the global sensitivity analysis (GSA). Then, the proposed 
efficient combination between the SPCE methodology and the GSA is presented. It is followed by the 
numerical results. The paper ends with a conclusion.   

2. Sparse polynomial chaos expansion (SPCE) methodology 

In this section, one first presents the polynomial chaos expansion (PCE) and then its extension, the 
sparse polynomial chaos expansion (SPCE). The Polynomial Chaos Expansion (PCE) methodology 
allows one to replace an expensive deterministic model which may be an analytical model or a finite 
element/finite difference numerical model by a meta-model. Thus, the system response may be 
calculated using a simple analytical equation. This equation is obtained by expanding the system 
response on a suitable basis which is a series of multivariate polynomials that are orthogonal with 
respect to the joint probability density function of the random variables.  
The PCE theory was originally formulated with standard Gaussian random variables and Hermite 
polynomials (Ghanem and Spanos, 1989). It was later extended to other types of random variables that 
use other types of polynomials (Xiu and karniadakis, 2002). In this paper, standard normal random 
variables in conjunction with Hermite polynomials are used. The coefficients of the PCE may be 
efficiently computed using a non-intrusive technique where the deterministic calculations are done using 
for example an analytical model or a finite element/finite difference software treated as a black box. The 
most used non-intrusive method is the regression approach (e.g. Isukapalli et al., 1998; Huang et al., 
2009; Blatman and Sudret, 2010; Mollon et al., 2011; Mao et al., 2012). This method is used in the 
present work. The PCE methodology can be briefly described as follows:  
For a deterministic model Γ with M random variables, the system response can be expressed by a PCE 
of order p fixed by the user as follows: 
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where P is the number of terms retained in the truncation scheme, { } 1,....,i i M
ξ ξ

=
=  is a vector of M 

independent standard random variables that represent the M random variables, aβ are unknown 
coefficients to be computed and βΨ  are multivariate Hermite polynomials which are orthogonal with 
respect to the joint probability density function (PDF) of the standard normal random vector ξ. These 
multivariate Hermite polynomials can be obtained from the product of one-dimensional Hermite 
polynomials as follows: 

1

( )
=

Ψ = ∏ i

M

i
i

Hβ α ξ (2) 

where αi (i=1, …, M) are a sequence of M non-negative integers and (.)
i

Hα  is the th
iα one-dimensional 

Hermite polynomial. The expressions of the one-dimensional Hermite polynomials are given in Ghanem 
and spanos (1989) among others.  
In practice, the PCE with an infinite number of terms should be truncated by retaining only the 
multivariate polynomials βΨ  of degree less than or equal to p. For this purpose, the classical truncation 

scheme based on the determination of the first order norm 
1

1

M

i
i

α α
=

=∑  is used. This first order norm 

should be less than or equal to the order p of the PCE. This leads to a number P of the unknown PCE 

coefficients equal to 
( )!

! !
M p
M p
+

. This number is significant in the present case of random fields 

(especially when considering small values of the autocorrelation distances) and thus, one needs a great 
number of calls of the deterministic model (see Al-Bittar and Soubra 2011, 2012). The SPCE 
methodology presented by Blatman and Sudret (2010) is an efficient alternative that can significantly 
reduce the number of calls of the deterministic model. In this methodology, Blatman and Sudret (2010) 
have shown that the number of significant terms in a PCE is relatively small since the multivariate 
polynomials βΨ  corresponding to high-order interaction (i.e. those resulting from the multiplication of 

the 
i

Hα with increasing αi values) are associated with very small values for the coefficients aβ. Thus, a 
truncation strategy (called the hyperbolic truncation scheme) based on this observation was suggested 
by these authors. Within this strategy, the multivariate polynomials βΨ  corresponding to high-order 
interaction were penalized. This was performed by considering the hyperbolic truncation scheme which 
suggests that the q-norm should be less than or equal to the order p of the PCE. The q-norm is given by: 

1

1

qM
q
iq

i
α α

=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∑ (3) 

where q is a coefficient (0<q<1). In this formula, q can be chosen arbitrarily. Blatman and Sudret (2010) 
have shown that sufficient accuracy is obtained for 0.5q ≥ .  
The proposed SPCE methodology leads to a sparse polynomial chaos expansion that contains a small 
number of unknown coefficients which can be calculated from a reduced number of calls of the 
deterministic model. This strategy was used in Al-Bittar and Soubra (2011, 2012) and will also be used 
in this paper to build up a SPCE of the system response. The iterative procedure suggested by Blatman 
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and Sudret (2010) for building up a SPCE is detailed in Blatman and Sudret (2010) and Al-Bittar and 
Soubra (2011, 2012) and is not repeated herein. Once the coefficients aβ have been computed, the 
statistical moments (mean, standard deviation, skewness, and kurtosis) can be calculated with no 
additional cost. The next subsection is devoted to the method used for the computation of the 
coefficients aβ of the SPCE using the regression approach. 
 
2.1. COMPUTATION OF THE SPCE COEFFICIENTS BY THE REGRESSION APPROACH  

Consider a set of K realizations ( ) ( )(1) ( )
1 1{ ,..., ,..., ,..., }K

M Mξ ξ ξ ξ ξ ξ= = of the standard normal 
random vector ξ. These realizations are called experimental design (ED) and can be obtained from 
Monte Carlo (MC) simulations or any other sampling scheme (e.g. Latin Hypercube (LH) sampling 
or Sobol set). We note ( ) ( ){ }(1) ( ),..., Kξ ξΓ = Γ Γ , the corresponding values of the response 

determined by deterministic calculations.  
The computation of the SPCE coefficients using the regression approach is performed using the 
following equation: 

1( )T Ta η η η−= Γ)  (4)
where the data matrix η is defined by: 

( )( ), 1,..., , 0,..., 1= Ψ = = −i
i i K Pβ βη ξ β  (5)

In order to ensure the numerical stability of the treated problem in Eq.(4), the size K of the ED must 
be selected in such a way that the matrix 1( )Tη η −  is well-conditioned. This implies that the rank of 
this matrix should be larger than or equal to the number of unknown coefficients. This test was 
systematically performed while solving the system of equations of the regression approach. 
The quality of the output approximation via a SPCE closely depends on the SPCE order p. To ensure 
a good fit between the meta-model and the true deterministic model (i.e. to obtain the optimal SPCE 
order), the simplest error estimate is the well-known coefficient of determination R2 given by: 

( )( ) ( )( )
( )( )

2K i i
SPCEi 12

2K i
i 1

1
KR 1 1

K 1

Γ ξ Γ ξ

Γ ξ Γ

=

=
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∑
 

Where 

(6) 

( )( )K i
i 1

1
K

Γ Γ ξ
=

= ∑ (7) 

The value 2R 1=  indicates a perfect fit of the true model response Γ, whereas 2R 0=  indicates a 
nonlinear relationship between the true model Γ and the SPCE model SPCEΓ . The coefficient R2 may 
be a biased estimate since it does not take into account the robustness of the meta-model (i.e. its 
capability of correctly predicting the model response at any point which does not belong to the 
experimental design). As a consequence, one makes use of a more reliable and rigorous error estimate, 
namely the leave-one-out error estimate (Blatman and Sudret, 2010). This error estimate consists in 
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sequentially removing a point from the experiment design composed of K points. Let \iξΓ  be the 
meta-model that has been built from the experiment design after removing the ith observation and let 

i ( i ) ( i )
\i( ) ( )ξ∆ Γ ξ Γ ξ= − be the predicted residual between the model evaluation at point ( i )ξ and 

its prediction based on \iξΓ . The corresponding coefficient of determination is often denoted by Q2: 

( )
( )( )

2K i
i 12

2K i
i 1

1
KQ 1 1

K 1

∆

Γ ξ Γ

=

=

= −
⎡ ⎤−⎣ ⎦−

∑

∑
(8)

This coefficient will be used in the present paper to check the accuracy of the fit. 
 

3.  Global sensitivity analysis (GSA) 
 

Once the SPCE coefficients are determined, a global sensitivity analysis (GSA) based on Sobol indices 
can be easily performed. Notice that the first order Sobol index of a given random variable ξi (i=1,…, 
M) gives the contribution of this variable in the variability of the system response. The first order Sobol 
index is given by Saltelli (2000) and Sobol (2001) as follows: 

( )
( )

|
( ) i

i

Var E Y
S

Var Y
ξ

ξ
⎡ ⎤⎣ ⎦= (9) 

where Y is the system response, ( )| iE Y ξ  is the expectation of Y conditional on a fixed value of iξ , and 
Var denotes the variance. 
In the present paper, the system response Y is represented by a SPCE. Thus, by replacing Y in Eq.(9) 
with the SPCE expression, one obtains the Sobol index formula as a function of the different terms of 
the SPCE (Sudret, 2008). This formula is given by:  

( ) ( )2 2

( ) iI
i

PC

a E
S

D

β β
βξ ∈

⎡ ⎤Ψ⎢ ⎥⎣ ⎦
=
∑

(10) 

where aβ  are the obtained SPCE coefficients, βΨ  are the multivariate Hermite polynomials, [ ].E  is the 

expectation operator, and PCD  is the variance of the response approximated by the SPCE. The response 
variance DPC is given by Sudret (2008) as follows: 

( )
[ ]

( )
1 2

2 2

, ,..., M

PC
I I I

D a Eβ β
β∈

⎡ ⎤= Ψ⎢ ⎥⎣ ⎦∑ (11) 

Notice that the term  ( )2
E β
⎡ ⎤Ψ⎢ ⎥⎣ ⎦

 that appears in both Eq. (10) and Eq. (11) is given by Sudret (2008) as 

follows: 

( )2

1

!
M

i
i

E β α
=

Ψ =∏ (12) 

where the αi are the same sequence of M non-negative integers{ }1 , ....., Mα α used in Eq. (2). Notice 

finally that Ii in Eq. (10) denotes the set of indices β for which the corresponding βΨ  is only a function 
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of the random variable ξi (i.e. it only contains the variable ξi), and Ii (i=1, …, M) regroup all the indices 
β for which the corresponding βΨ  is only a function of the random variable ξi (i=1, …, M). 
In order to illustrate the PCE theory and the global sensitivity analysis based on Sobol indices in a 
simple manner, an illustrative example of a PCE of order p=3 using only M=2 random variables (ξ1 and 
ξ2) is presented in Appendix A. 
 
 

4. Efficient combination between the SPCE methodology and the global sensitivity analysis 
 
As mentioned previously, the time cost of the probabilistic analysis remains important even with the use 
of the SPCE when dealing with computationally-expensive deterministic models. Consequently, a 
procedure that can reduce once again this time cost is needed. An efficient combination between the 
SPCE methodology and the GSA is proposed in this section. The basic idea of this combination is that, 
for a given discretized random field, the obtained random variables do not have the same weight in the 
variability of the system response. The variables with a very small contribution in the variability of the 
system response can be discarded which significantly reduces the dimensionality of the treated problem. 
This allows one to perform a probabilistic analysis using a reduced Experiment Design (ED) and thus a 
smaller number of calls of the computationally-expensive deterministic model. The main challenge 
remains in detecting the most influential random variables in order to reduce the dimensionality of the 
problem. For this purpose, a procedure that makes use of both the SPCE and the GSA (denoted hereafter 
by SPCE/GSA) is proposed in this regard. The SPCE/GSA procedure can be summarized by the 
following steps: 
a) Discretize the random field(s): This step was made in this paper using EOLE method and its 

extensions by Vořechovsky (2008).  Let us consider NRF anisotropic non-Gaussian cross-correlated 
random fields ( , )NG

iZ x y ( 1,..., RFi N= ) described by: (i) constant means and standard deviations 
(µi, σi; 1,..., RFi N= ), (ii) non-Gaussian marginal cumulative distribution functions CDFs named Gi 
( 1,..., RFi N= ), (iii) a target cross-correlation matrix CNG and (iv) a common square exponential 

autocorrelation function NG
Zρ [(x, y), (x', y')] which gives the values of the correlation function 

between two arbitrary points (x, y) and (x', y'). This autocorrelation function is given as follows: 
22

' '[( , ), ( ', ')] exp
Z

NG

x y

x x y yx y x y
a a

ρ
⎛ ⎞⎛ ⎞⎛ ⎞− −⎜ ⎟= − − ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 (13) 

 
where ax and ay are the autocorrelation distances along x and y respectively. The Expansion Optimal 
Linear Estimation method (EOLE) and its extension by Vořechovsky (2008) to cover the case of 
correlated non-Gaussian random fields are used herein to generate the NRF random fields. Notice that 
EOLE was first proposed by Li and Der kiureghian (1993) for the case of uncorrelated Gaussian 
fields, and then extended by Vořechovsky (2008) to cover the case of correlated non-Gaussian fields. 
In this method, one should first define a stochastic grid composed of q grid points (or nodes) 
{ }1 1( , ), ..., ( , )q qx y x y  for which the values of the field are assembled in a vector 
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{ }1 1( , ), ..., ( , )q qZ x y Z x yχ = . Then, one should determine the common correlation matrix for 

which each element ( )
,

;
i j

NG

χ χΣ  is calculated as follows: 

( )
,

; ( , ), ( , )
Zi j

NG NG
i i j jx y x yχ χ ρ ⎡ ⎤Σ = ⎣ ⎦  (14) 

The common non-Gaussian autocorrelation matrix 
;

NG
χ χ

Σ  and the target non-Gaussian cross-

correlation matrix CNG should be transformed into the Gaussian space using Nataf model (Nataf, 
1962) since the discretization of the random fields using EOLE is done in the Gaussian space. As a 
result, one obtains NRF Gaussian autocorrelation matrices ;

i
χ χΣ ( 1,..., RFi N= ), and a Gaussian cross-

correlation matrix C that can be used to discretize the two random fields. The value iZ%  of a random 
field obtained using this method is given by the following equation (cf. Al-Bittar and Soubra, 2011, 
2012): 

( )
( , );

,

1

( , ) . . 1, ...,
Z x y

j

DN Ti j i i
i i i j RFi

j

Z x y µ i N
χ

κ
σ φ

λ=

≅ + Σ =∑%

 
(15) 

where NRF  is the number of random fields, N is the number of terms retained in the series expansion, 

,
D
i jκ  are NRF cross-correlated blocks of independent standard normal random variables obtained using 

the Gaussian cross-correlation matrix C between the NRF fields, ( , ; 1,...,
j

i i
j RFi Nλ φ = ) are the 

eigenvalues and eigenvectors of the NRF Gaussian autocorrelation matrices ;
i
χ χΣ evaluated at the 

different points of the stochastic mesh, and ( , );Z x y χΣ  is the correlation vector between the value of the 

field iZ%  at an arbitrary point (x, y) and its values at the different points of the stochastic mesh. Notice 

finally that ,
D
i jκ , i

jφ , and ( , );Z x y χΣ in Eq.(15) are vectors whose size is equal to N. 
Once the two Gaussian random fields are obtained, they should be transformed into the non-Gaussian 
space (in case of non-Gaussian random fields) by applying the following formula: 

{ }1( , ) ( , ) 1, ...,NG
i i i RFZ x y G Z x y i N− ⎡ ⎤= Φ =⎣ ⎦
% %

 
(16) 

where (.)Φ  is the standard normal cumulative density function (CDF). For more details about the 
EOLE method and its extensions to cover the case of cross-correlated non-Gaussian random fields, the 
reader may refer to Vořechovsky (2008) and Al-Bittar and Soubra (2011, 2012). 
After the discretization procedure, a random field is represented by N independent standard normal 
random variables. For the NRF random fields that have the same autocorrelation function, the total 
number of random variables is NT= NRFxN which can be relatively large especially for small values of 
the autocorrelation distances. 

b) Use a preliminary small order of the sparse polynomial chaos expansion (e.g. p=2) to approximate the 
system response by a meta-model. The main reason for selecting a small order is the exploration of 
the most influential random variables (i.e. those that have a significant weight in the variability of the 
system response) using a small Experiment Design (ED). It should be emphasized here that the 
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reduced number of the unknown SPCE coefficients related to the small value of the SPCE order leads 
to a significant decrease in the size of the experiment design, i.e. in the number of calls of the 
deterministic model. 

c) Perform a GSA based on Sobol indices (using the obtained second order SPCE) to determine the 
weight of each random variable in the variability of the system response. The variables with very 
small values of their Sobol indices have no significant impact in the variability of the system response 
and can thus be discarded. Consequently, a response that only depends on a smaller number of 
random variables is obtained. In other words, one obtains a response with an 'effective dimension' Ne 
that is smaller than the initial dimension where the total number NT of random variables was 
considered. It should be mentioned here that the small SPCE order (i.e. p=2) used firstly to perform 
the GSA is sufficient to provide the weight of each random variable in the variability of the system 
response since higher SPCE orders lead to the same influential random variables as will be seen later 
in the numerical results. 

d) Use the same Experiment Design (ED) which was employed in step (b) but this time by only keeping 
the most influential random variables. By reducing the number of random variables from NT to Ne (Ne 
< NT), one has the possibility to use a higher SPCE order (i.e. p>2). The use of a higher SPCE order is 
necessary to lead to an improved fit of the SPCE since the leave-one-out error estimate Q2 given in 
Eq. (8) increases when the SPCE order increases as it will be shown in the numerical results.  

As a conclusion, the use of the SPCE/GSA procedure has the advantage of performing a good fit of the 
deterministic model with a reduced number of model evaluations as compared to the classical SPCE 
approach. 
 

5. Numerical results 
 
The aim of this section is to validate the present SPCE/GSA procedure. For this purpose, a comparison 
between the results obtained by using the classical SPCE methodology and those given by the proposed 
SPCE/GSA procedure is presented. A computationally non expensive deterministic model was used for 
the validation. The problem used for the validation was presented in Al-Bittar and Soubra (2011, 2012). 
It aims at computing the ultimate bearing capacity of a strip footing resting on a c-φ spatially varying 
soil. The input parameters are similar to those considered in Al-Bittar and Soubra (2011, 2012). They 
are briefly presented in Table 1. For a more detailed description on these data, the reader may refer to 
Al-Bittar and Soubra (2011, 2012). The deterministic model is based on numerical simulations using 
FLAC3D and it involves the case of a weightless soil. Thus, one obtains the soil bearing pressure due to 
only the soil cohesion; the contribution of the soil friction angle being neglected in the present paper. It 
should be mentioned here that when neglecting the soil weight γ, the computation time decreases from 
10 to 5 min per simulation. This significantly reduces the computation time for the validation of the 
present SPCE/GSA procedure. 
As shown in Figure 1, the adopted soil domain considered in the analysis is 15m wide by 6m deep. For 
the boundary conditions, the horizontal movement on the vertical boundaries of the grid is restrained, 
while the base of the grid is not allowed to move in both the horizontal and the vertical directions. 
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Figure 1. The adopted soil domain 

Table 1. Deterministic and probabilistic input parameters 
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Young modulus 
E deterministic 60=E MPa  - - - 

Poisson ratio ν deterministic 0.3ν =  - - - 

Cohesion c Random field - 

Lognormal 

Reference case: 
( ) ( )

( ) ( )
, 0 , 0.5

, 0.5 , 0
NG r c c r c

C
r c r

ϕ
ϕ ϕ ϕ

⎡ ⎤= = −
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Parametric study: 
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Square exponential 
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 ax and ay are the autocorrelation 
distances along x and y 

respectively 
 

Reference case: 
ax=10m and ay=1m 

 
Parametric study: 

2 50xm a m≤ ≤ ; 0.5 8ym a m≤ ≤  

 

20c kPaµ =

25%cCov =  

Friction angle φ Random field - 
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030ϕµ =  

10%Cov ϕ =  

Dilation ψ Random field - 

Beta 
020ψµ =

10%Cov ψ =  
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 Young modulus 

E deterministic 25E GPa=  - - - 

Poisson ratio ν deterministic 0.4ν =  - - - 
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Shear stiffness 
Ks 

deterministic 1sK GPa=  - - - 

Normal stiffness 
Kn 

deterministic 1nK GPa=  - - - 

Cohesion cint deterministic int 20c kPa= - - - 
Friction angle 

φint 
deterministic 0

int 30ϕ =  - - - 

Dilation ψint deterministic 0
int 20ψ =  - - - 
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The validation of the SPCE/GSA procedure is done for the illustrative case [ax=10m, ay=1m, r(c, φ) =-
0.5] referred to hereafter as the reference case. For this configuration, the discretization of the two 
random fields c and φ has led to a total number of random variables NT equal to 24 (12 random 
variables for each random field as was shown in Al-Bittar and Soubra (2011, 2012)). By using the total 
number of random variables NT, Al-Bittar and Soubra (2011, 2012) have shown that a third order SPCE 
was sufficient to reach a target accuracy of 0.999. An ED involving 800 points was needed to solve the 
regression problem given in Eq. (4) (i.e. to obtain a well-conditioned regression problem for which the 
rank of the matrix 1( )Tη η −  is larger than or equal to the number of unknown coefficients). By using the 
present SPCE/GSA procedure, a GSA was performed to detect the most influential random variables. 
Different SPCE orders (i.e. orders 2, 3, and 4) were considered in order to check if the SPCE order has 
an impact on the most influential random variables.  
Figure 2 depicts the values of Sobol indices for the 24 random variables, as given by SPCEs of orders 2, 
3 and 4. The first 12 random variables [i.e. ξi for i=1, …, 12] correspond to the cohesion random field 
and the last 12 random variables [i.e. ξi for i=13, …, 24] are those corresponding to the friction angle 
random field. Figure 2 shows that whatever the SPCE order is, the two first random variables of both 
fields, (i.e. ξ1, ξ2, ξ13, ξ14) are the most influential. For the two random fields, a very fast decay in the 
weight of the random variables is noticed with quasi negligible values beyond the first two random 
variables. In fact, the first two random variables of the two random fields, which correspond to the first 
two eigenmodes of both fields involve 95% of the response variability as may be seen from Table 2. 
This is logical since the system response (i.e. the ultimate bearing capacity) is an averaged quantity over 
the soil domain which is therefore quite insensitive to small-scale fluctuations of the spatially varying 
shear strength parameters c and φ.  
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Figure 2. Sobol indices for SPCEs of orders 2, 3 and 4 using the total number of eigenmodes ξi (i=1, …, 24) 
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Table 2. Sobol indices for the reference case where ax=10m, ay=1m, and r(c,φ)=-0.5 
ξi (i=1, ..., 12) for the cohesion random field 

 ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9 ξ10 ξ11 ξ12 
Sobol index 0.50 0.17 0.002 0.002 0.03 0.002 0.009 0.0002 0.0002 9 x10-05 0.0002 7 x10-05 

ξi (i=13, ..., 24) for the friction angle random field 
 ξ13 ξ14 ξ15 ξ16 ξ17 ξ18 ξ19 ξ20 ξ21 ξ22 ξ23 ξ24 

Sobol index 0.2 0.08 0.001 0.0008 0.002 0.0005 0.0006 0.0003 0.0001 4 x10-05 4 x10-05 5 x10-05 
 
Figure 2 clearly shows that the Sobol indices of the different random variables do not significantly 
change with the SPCE order. Thus, a second order SPCE is sufficient to identify the influential random 
variables (i.e. those that have a significant weight in the variability of the ultimate bearing capacity). 
Increasing the SPCE order has led to the same influential random variables which justify the small 
SPCE order chosen to perform the preliminary investigations. The main advantage of a small SPCE 
order is that a small ED is sufficient to solve the regression problem. As shown in Table 3, 150 calls of 
the deterministic model are needed to solve the regression problem for a second order SPCE. This 
number attains 800 for a fourth order SPCE. This significant increase is because the number of 
unknown coefficients significantly increases from 29 to 144 when one chooses a fourth SPCE order 
instead of a second SPCE order. 
 
Table 3. Number of unknown coefficients and model evaluations for different SPCE order 

SPCE order 2 3 4 
Number of unknown 

coefficients P 29 35 144 

Number of model 
evaluations  150 350 800 

 
To choose the number of random variables which will be retained hereafter, the different random 
variables of the two random fields are firstly sorted in a descending order according to the values of 
their Sobol indices (cf. first and second columns in Table 4). A threshold of acceptance ta is then fixed 
as a percentage of the most influential (weighted) random variable. In the present paper, the most 
influential random variable is ξ1 and it has a Sobol index equal to 0.5. Different values of the threshold 
were tested (cf. first line in Table 4). The random variables having a Sobol index smaller than the 
prescribed threshold ta are discarded. In this paper, a threshold of 2% of the Sobol index of the most 
weighed random variable is considered as sufficient; the corresponding retained random variables 
provide 98% of the total variance of the system response as may be seen from column 6 of Table 4. For 
this threshold, an 'effective dimension' Ne=5 is obtained (i.e. 5 random variables are considered to be the 
most weighed). The 5 retained random variables will now be used with the already existing 150 model 
evaluations which were firstly employed to approximate the second order SPCE with the total number 
of random variables NT=24.  
The reduction in the number of random variables from NT=24 to Ne=5 provides the possibility to use 
higher SPCE orders (i.e. p>2) with the same ED (i.e. the 150 model evaluations). The use of a higher 
SPCE order is necessary to lead to an improved fit of the SPCE since the leave-one-out error estimate 
Q2 given in Eq. (8) increases when the SPCE order increases as shown in Table 5 for both the classical 
SPCE approach (using the total number of random variables NT=24) and the present SPCE/GSA 
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procedure (where the effective dimension is equal to 5 (i.e. Ne=5)). Using the SPCE/GSA procedure, an 
SPCE up to p=8 was reached using only 150 model evaluations. From Table 5, one can notice that with 
the use of the SPCE/GSA procedure, the Q2 increases with the increase of the SPCE order and stabilizes 
beyond the order 5. This means that no improvement in the fit is obtained beyond this order. On the 
other hand, the value of Q2  given by the present approach is smaller than the classical SPCE approach 
with a fourth order. This is because 19 random variables were discarded which slightly affect the 
goodness of the fit.  
Figure 3 shows the PDF of the ultimate bearing capacity as obtained by both the classical SPCE 
approach (with the total number of random variables NT =24) and the proposed SPCE/GSA procedure 
(using only five random variables). Table 6 provides the corresponding statistical moments and error 
estimates. Notice that the results of the present SPCE/GSA approach are given in Table 6 for different 
values of the model evaluations (from 150 to 800). From this table, one can see that the error estimate of 
the SPCE/GSA procedure is quasi constant with the increase in the number of model evaluations. This 
means that 150 model evaluations are sufficient and there is no need for more model evaluations to 
improve the accuracy of the fit. On the other hand, one can observe (see Figure 3 and Table 6) that the 
first two statistical moments are well estimated with the present SPCE/GSA approach using the 150 
model evaluations. However, the third and fourth statistical moments need more model evaluations (800 
model evaluations) in order to converge to their reference values given by the SPCE approach (cf. Table 
6). This demonstrates the efficiency of the present SPCE/GSA procedure to compute the first two 
statistical moments with a much reduced number of the model evaluations with respect to the classical 
SPCE approach.  
As for the Sobol indices of the two random fields c and φ, Table 7 shows that the SPCE/GSA procedure 
with only 150 model evaluations gives the same results obtained by the classical SPCE approach using 
800 model evaluations which demonstrates once again the efficiency of the present SPCE/GSA 
procedure.   
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Table 4. Sobol indices of the different random variables and the retained random variables for the different values of 
the threshold of acceptance 
Random 
variable 

Sobol 
index   

ta=0.5% x ξ1   
=0.0025 

ta=1% x ξ1   =0.005 
ta=1.5% x ξ1  

=0.0075 
ta=2% x ξ1  

=0.01 
ta=2.5% x ξ1  

=0.0125 
ta=3% x ξ1   =0.015 

ta=4% x ξ1  
=0.02 

ta=5% x ξ1  
=0.025 

ξ1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
ξ13 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
ξ2 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 
ξ14 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 
ξ5 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 
ξ7 0.009 0.009 0.009 0.009      
ξ6 0.002 0.002        
ξ17 0.002 0.002        
ξ3 0.002 0.002        
ξ4 0.002 0.002        
ξ15 0.001         
ξ16 0.0008         
ξ19 0.0006         
ξ18 0.0005         
ξ20 0.0003         
ξ8 0.0002         
ξ9 0.0002         
ξ11 0.0002         
ξ21 0.0001         
ξ10 9.0 x10-05         
ξ12 7.0 x10-05         
ξ24 5.0 x10-05         
ξ22 4.0 x10-05         
ξ23 4.0 x10-05         

Sum of 
Sobol 

indices 
1.001 0.997 0.989 0.989 0.98 0.98 0.98 0.98 0.98 

 
 
Table 5. SPCE using the total and the reduced number of random variables  

 SPCE order 2 3 4 5 6 7 8 

Total number of 
random variables NT 

Coefficient of 
determination R2 0.998 0.999 0.999 - - - - 

Leave-one-out cross-
validation Q2 0.824 0.932 0.9943 - - - - 

Reduced number of 
random variables Ne 

Coefficient of 
determination R2 0.961 0.963 0.968 0.970 0.972 0.972 0.972 

Leave-one-out cross-
validation Q2 0.791 0.883 0.957 0.961 0.963 0.963 0.963 
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Figure 3. PDF of the ultimate bearing capacity for both the classical SPCE with the total number of random 
variables NT =24 and the proposed SPCE/GSA procedure with only five random variables Ne =5. 

 
 

Table 6. Error estimates of the SPCE and statistical moments of the ultimate bearing capacity as given 
by the classical SPCE approach and by the present SPCE/GSA procedure  

 
Number of 

model 
evaluations 

Mean µqult 
(kPa) 

Standard 
deviation σqult 

(kPa)  

Skewness δu 
(-) 

Kurtosis κu 
(-) R2 Q2 

W
ith

 th
e 

to
ta

l 
nu

m
be

r o
f r

an
do

m
 

va
ria

bl
es

 N
T=

24
 

800 658.2 93.57 0.287 0.163 0.999 0.995 

W
ith

 th
e 

re
du

ce
d 

nu
m

be
r o

f r
an

do
m

 
va

ria
bl

es
 N

e=
5 

 

150 657.84 90.80 0.105 0.0129 0.972 0.957 
200 658.98 91.53 0.168 0.0563 0.972 0.951 
250 659.90 92.10 0.188 0.0630 0.964 0.956 
300 659.73 92.15 0.202 0.0600 0.962 0.963 
400 660.05 90.95 0.291 0.0500 0.969 0.960 
500 659.50 90.81 0.296 0.0430 0.970 0.963 
600 659.75 90.99 0.272 0.116 0.968 0.963 
700 659.50 90.85 0.280 0.1637 0.968 0.963 
800 659.85 91.20 0.30 0.160 0.970 0.967 
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Table 7. Sobol indices as computed from the classical SPCE approach and the present SPCE/GSA 
procedure. 

 
Number of 

model 
evaluations 

i Si (i=1, ..., 12) i Si (i=13, ..., 24) ( )
12

1
i

i

S c S
=

=∑  ( )
24

13
i

i

S Sϕ
=

=∑  

W
ith

 th
e 

to
ta

l n
um

be
r o

f 
ra

nd
om

 v
ar

ia
bl

es
 N

T=
24

 

800 

1 0.5 13 0.2 

0.715 0.285 

2 0.17 14 0.08 
3 0.002 15 0.001 
4 0.002 16 0.0008 
5 0.03 17 0.002 
6 0.002 18 0.0005 
7 0.009 19 0.0006 
8 0.0002 20 0.0003 
9 0.0002 21 0.0001 

10 9.0 x10-05 22 4.0 x10-05 
11 0.0002 23 4.0 x10-05 
12 7.0 x10-05 24 5.0 x10-05 

 
Number of 

model 
evaluations 

i Si (i=1, 2, 3) i Si (i=4, 5) ( )
3

1
i

i

S c S
=

=∑  ( )
5

4
i

i

S Sϕ
=

=∑  

W
ith

 th
e 

re
du

ce
d 

nu
m

be
r o

f r
an

do
m

 
va

ria
bl

es
 N

e=
5 

 150 
 

1 0.510 4 0.076 

 
0.721 

 
0.279 2 0.200 5 0.190 

3 0.010   

 
 

6. Conclusions 
 
An efficient combined use of the SPCE methodology and the global sensitivity analysis (GSA) has been 
proposed. The aim is to reduce the cost of the probabilistic analysis of computationally-expensive 
deterministic models. This methodology was validated in this paper using a relatively non-expensive 
deterministic model. The validation consists in comparing the results of both the classical SPCE 
methodology with the total number of random variables and the proposed combination between the 
SPCE and the GSA. Satisfactory results were obtained using a much smaller number of model 
evaluations with the proposed methodology. The first two statistical moments and the Sobol indices 
have been well estimated with the very small number of model evaluations. On the other hand, the third 
and fourth statistical moments need more model evaluations in order to converge to their reference 
values obtained using the classical SPCE. Since the present SPCE/GSA procedure was shown to be 
efficient for the probabilistic computation with a reduced calculation cost with respect to the classical 
SPCE approach, this approach may now be applied with confidence to costly deterministic models. 
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Appendix A 

 
Illustrative Example 
In order to illustrate the PCE theory in a simple manner, a PCE of order p=3 using only M=2 random 
variables (ξ1 and ξ2) will be considered in this illustrative example. Using the classical truncation 
scheme, Table A.1 presents the retained PCE terms which are those having a first order norm 

1
α smaller than or equal to p (i.e. p=3). These terms are presented in Table A.1 in bold characters. As 

may be easily seen from Table A.1, the PCE basis contains P=10 terms whose expressions are computed 
using Eq.(2).  
 

 
Table A.2 presents the expressions of the PCE basis βΨ . Using Table A.2, on can write the PCE 
expression as function of the input random variables (ξ1 and ξ2) as follows: 

( ) ( )
0 0 1 1 9 9

2 2 2 2 3 3
0 1 1 2 2 3 1 2 4 1 5 2 6 1 2 7 1 2 8 1 1 9 2 2

( ) ...

+a ( 1) ( 1) 1 1 ( 3 ) ( 3 )
PCEY a a a

a a a a a a a a a

ξ

ξ ξ ξξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ

=Γ = Ψ + Ψ + + Ψ =

+ + + − + − + − + − + − + −
 (A.1)

In this expression, the unknown coefficients can be computed using Eq.(4) by simulating an ED which 
contains K initial realizations of the two random variables (ξ1, ξ2) and computing the corresponding 
responses from deterministic calculations. It should be mentioned here that the size K of the ED should 
ensure the numerical stability of the regression problem and thus it can be enriched each time the matrix 

1( )Tη η −  is badly-conditioned.  
The first order Sobol indices for the two random variable (ξ1 and ξ2) can be easily obtained once the 
coefficients a0,…, a9 are computed using Eq. (10). The only additional step is to compute ( )2E βΨ  

corresponding to these two random variables. Table A.2 shows the values of ( )2E βΨ  computed using 

Eq. (12) for the different βΨ  terms. The expression of the first order Sobol indices of the two random 
variables ξ1 and ξ2 are written as follows: 

2 2 2 2 2 2
1 4 8 2 5 9

1 22 2 2 2 2 2 2 2 2 2 2 2
1 4 8 2 5 9 1 4 8 2 5 9

2 6 2 6( ) ; ( )
2 6 2 6 2 6 2 6

a a a a a aS S
a a a a a a a a a a a a

ξ ξ+ + + +
= =

+ + + + + + + + + +  
(A.2)

with 
( ) ( )1 21,4,8 ; 2,5,9I I= =  (A.3)

 
 
 

Table A.1.  Terms retained using the classical truncation scheme for M=2 and p=3 
α1 0 1 0 1 2 0 2 1 2 3 0 3 1 3 3 3 
α2 0 0 1 1 0 2 1 2 2 0 3 1 3 2 3 3 

1
α  0 1 1 2 2 2 3 3 4 3 3 4 4 5 6 6 
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Table A.2. Basis of the PCE with the classical truncation scheme for M=2 and p=3 

β PCE order p 
1

( )
=

Ψ =∏ i

M

i
i

Hβ α ξ ( )2

1

!
M

i
i

E β α
=

Ψ =∏
0 P=0 H0(ξ1)xH0(ξ2)=1 α1! x α2!=0!x0!=1 
1 P=1 H1(ξ1)xH0(ξ2)=ξ1 α1! x α2!=1!x0!=1 
2 H0(ξ1) xH1(ξ2)= ξ2 α1! x α2!=0!x1!=1 
3 

P=2 

H1(ξ1) xH1(ξ2)= ξ1 ξ2 α1! x α2!=1!x1!=1 

4 H2(ξ1) xH0(ξ2)= 2
1 1ξ −  α1! x α2!=2!x0!=2 

5 H0(ξ1) xH2(ξ2)= 2
2 1ξ −  α1! x α2!=0!x2!=2 

6 

P=3 

H2(ξ1) xH1(ξ2)= ( )2
1 21ξ ξ−  α1! x α2!=2!x1!=2 

7 H1(ξ1) xH2(ξ2)= ( )2
1 2 1ξ ξ −  α1! x α2!=1!x2!=2 

8 H3(ξ1) xH0(ξ2)= 3
1 13ξ ξ−  α1! x α2!=3!x0!=6 

9 H0(ξ1) xH3(ξ2)= 3
2 23ξ ξ−  α1! x α2!=0!x3!=6 
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