

Example of a thin section of rock

Example of an upside down thin section of rock

Orientation of the 3 faces of a block sample from the orientation of its (xy) face

Cutting sections in a core

- A) With orientation of the dip
- B) With orientation of the top arrow

302 SW 76 = 122 / 76 dip at + 90

Conversion to the right hand rule

🧟 Intercepts	2
File Preprocessing (phase A) Example Option Help	
Image J:\SP0 Toulouse\11AS11terrainA.jpg ITC Title	_
Open ITC No. of Columns, X 3648 Xi 3112 3112 Generation Paint C Erase C Draw Save ITC Image width 20,939 Ri 102 102 Colour Line width —1 ✓ Open image Image width 20,939 Ri 102 102 Colour Line width —1 ✓ No. of Rows, Y 2736 Yi 2692 2692 Colour Line width —1 ✓ Open image Image science 0 1 ✓ Vi 102 102 Copy zoom /4 No. Scale bar selection Bi 92 92 mage mage detail 24 Image Screen image screen phase 0 </td <td>]</td>]
Intercepts Frame	
•••	

It calculates the image width

Use frame to resize the image

Activate the calculation in grey levels

Selection of the grey level detection of intercept : 50 A difference between two pixels greater or equal to 50 grey levels is a boundary

Option visualizing the intercept detection Like for example with intercepts in and out in green and red

Fast calculation by inertia tensor method

Metafile are compatible with Illustrator, Coreldraw, ...

Intercepts map

Roses on image

Display with a line width of 4 pixels to be visible on a zoom / 4

Click on tab to open the table of output; Tranfert to transfert the data; Copy to copy the data Cd copy also sub-window positions for other purposes

Table									×
	#	strike	dip	rake	long axis	short axis	weight	xc	ус
1	1_A	164	18	46,331	0,292344	0,238919	1	728,80	620,00
2	2_A	164	18	67,108	0,212886	0,187021	1	1457,60	620,00
3	3_A	164	18	86,882	0,202492	0,180606	1	2186,40	620,00
4	4_A	164	18	107,174	0,222036	0,194771	1	2915,20	620,00
5	5_A	164	18	31,148	0,245641	0,220170	1	728,80	1240,00
6	6_A	164	18	58,194	0,190721	0,180309	1	1457,60	1240,00
7	7_A	164	18	77,182	0,187691	0,175889	1	2186,40	1240,00
8	8_A	164	18	104,323	0,213017	0,196718	1	2915,20	1240,00
<u> </u>							•		

Coordinates of the sub-windows not used in Ellipsoid

You may add a caption that will be printed between the sub-window number and the code of image group

Click on S% to weight each data to its surface area %

Save your work with all the orientations and the image compressed in "packbit" with 8 bits per pixel (grey level or phase color code)

between shape ratio r and orientation rake of input data and output results for each image section (number, azimuth, plunge)

Results 1 with scale factors: 2 without scale factors; 3 with simple averaging on perpendicular sections. e is an error estimate given by the vector linking input and output long axes

Then click on Add for the following images

Click on Copy (Intercepts)

Immediately after the Copy in Intercepts, click on Paste for the first image

Table							X
	#	strike	dip	rake	long axis	short axis	1 weight
1	1_A	164	18	46,331	0,292344	0,238919	1
2	2_A	164	18	67,108	0,212886	0,187021	1
3	3_A	164	18	86,882	0,202492	0,180606	1
4	4_A	164	18	107,174	0,222036	0,194771	1
5	5_A	164	18	31,148	0,245641	0,220170	1
6	6_A	164	18	58,194	0,190721	0,180309	1
7	7_A	164	18	77,182	0,187691	0,175889	1
8	8_A	164	18	104,323	0,213017	0,196718	1
9	1_B	233	84	21,038	0,255225	0,236516	1
10	2_B	233	84	69,989	0,231758	0,218821	1
11	3_B	233	84	79,430	0,234461	0,217089	1
12	4_B	233	84	63,696	0,265657	0,248884	1
13	5_B	233	84	19,797	0,255281	0,236882	1
14	6_B	233	84	48,419	0,226562	0,211807	1
15	7_B	233	84	57,386	0,224815	0,214955	1
16	8_B	233	84	46,811	0,257021	0,240650	1
17	1_C	122	76	120,700	0,469349	0,303722	1
18	2_C	122	76	113,727	0,300594	0,225036	1
19	3_C	122	76	106,635	0,265071	0,213949	1
20	4_C	122	76	123,777	0,314284	0,237607	1
21	5_C	122	76	120,466	0,231947	0,190056	1
22	6_C	122	76	116,224	0,208138	0,179220	1
23	7_C	122	76	122,482	0,291159	0,239400	1
24	8_C	122	76	121,932	0,226607	0,188581	1
25	9_C	122	76	120,180	0,193104	0,165927	1

F1/2			×
	with	without	e(ab)
- 1 A		11,7%	
2 A		3,6%	
3A		5,6%	
- 4 A		11,1%	
5A		9,3%	
6 A		2,9%	
- 7 A		2,4%	
- 8A		7,7%	
9 B		6,2%	
10 B		1,7%	
11 B		3,8%	
12 B		0,9%	
13 B		6,3%	
14 B		1,7%	
15 B		1,3%	
16 B		2,0%	
17 C		15,4%	
18 C		7,5%	
19 C		8,5%	
20 C		5,5%	
21 C		1,1%	
22 C		5,6%	
23 C		1,8%	
24 C		2,5%	
25 C		5,0%	

N.L*M.L : normalized length (in arbitrary unit) times mean length (in metric unit)

	Ħ	37	nl	rake	r	rake 1	r 1	e1	rake 2	12 1	е2	rake 3	13	e 3
1	1 4	164.0	18.0	46.3	1 224	Tako I			67.9	1.088	14.0%	Take e	10	
2	2 A	164.0	18.0	67.1	1 1 38				67.9	1.088	4.9%			
3	3 A	164.0	18.0	86.9	1.121				67.9	1.088	4.6%			
4	4 A	164.0	18.0	107.2	1.140				67.9	1.088	8.7%			
5	5 A	164,0	18,0	31,1	1,116				67,9	1,088	6,6%			
6	6 A	164.0	18.0	58.2	1,058				67.9	1,088	3.1%			
7	7 A	164,0	18,0	77,2	1,067				67,9	1,088	2,3%			
8	8_A	164,0	18,0	104,3	1,083				67,9	1,088	5,1%			
9	1 B	233,0	84,0	21,0	1,079				58,7	1,064	4,7%			
10	2_B	233,0	84,0	70,0	1,059				58,7	1,064	1,3%			
11	3 B	233,0	84,0	79,4	1,080				58,7	1,064	3,0%			
12	4_B	233,0	84,0	63,7	1,067				58,7	1,064	0,7%			
13	5_B	233,0	84,0	19,8	1,078				58,7	1,064	4,7%			
14	6_B	233,0	84,0	48,4	1,070				58,7	1,064	1,3%			
15	7_B	233,0	84,0	57,4	1,046				58,7	1,064	1,7%			
16	8_B	233,0	84,0	46,8	1,068				58,7	1,064	1,4%			
17	1_C	122,0	76,0	120,7	1,545				120,6	1,238	27,4%			
18	2_C	122,0	76,0	113,7	1,336				120,6	1,238	9,2%			
19	3_C	122,0	76,0	106,6	1,239				120,6	1,238	5,2%			
20	4_C	122,0	76,0	123,8	1,323				120,6	1,238	7,7%			
21	5_C	122,0	76,0	120,5	1,220				120,6	1,238	1,6%			
22	6_C	122,0	76,0	116,2	1,161				120,6	1,238	7,0%			
23	7_C	122,0	76,0	122,5	1,216				120,6	1,238	2,1%			
24	8_C	122,0	76,0	121,9	1,202				120,6	1,238	3,3%			
25	9_C	122,0	76,0	120,2	1,164				120,6	1,238	6,6%			

Click on this row to display the data of this section in the graphic

F1/2

1 A 2 A

ЗA

4 A

5A

6A

7 A

843

9 B

10 B

11 B

12 B

without

11,7%

3,6%

5,6%

11,1%

9,3%

2,9%

2.4%

7,7%

6,2%

1,7%

3,8%

0,9%

e(ab)

with

13 B 6.3% Calculation WITHOUT scale factor 14 B 1.7% 15 B 1,3% Section # 7 : 164,0° / 18,0° / 77,2° : 1,07 (67,9° : 1,09) Caption 16 B 2,0% Distribution N. faces Inverse Shape Matrix 17.0 15,4% 25 -4,54E-01-4,97E-01 0,75 4,294 18 C 7.5% -4,54E-01 4,657 ,6880, 19.0 8,5% F¹/₂: - $\rightarrow \sqrt{\tilde{F}}$ 4.8% -4,97E-01 ,6880, 4,023 20.0 5,5% С В A compatibility 21.0 1,1% Eigenvalue 3,523 3,988 5,464 22.0 5.6% index 0,324 0,809 -0,490North 23.0 1,8% Dir. Cos. East -0,393 0,586 0,708 between all 24 C 2,5% Down 0,861 -0,0370,507 25 C 5,0% 2D ellipsoidal N.L*M.L ,2562 ,2408 ,2057 sections and 1,098 1,032 0,882 Norm, L S. Wmf Trend 309,5° 215,9° 124,7* the 3D 59.4° 2,1* 30,5* Plunge C. Bmp ellipsoid A/C 1.245 Flinn 0,374 Print 1,064 1,254 A7B P' Сору 1,171 0,435 B/C Input data long axis 214.7° 59.5° Lirake -92,4° Long axis found on the Foliation Flinn section of the ellipsoid A/C 1,294 ±0,271 0,624 ±0,802 1.097 1,303 ±0,275 A/B ±0,116 P' $(F_{\frac{1}{2}}=2.4\% \text{ and } e=2.3\%)$ ±0,157 B/C 1,178 Т 0,285 ±0,544 Mean $F^{1/2}$: $\sqrt{\tilde{F}}$ \rightarrow В С A 3,7% 1,024 0,872 1,123 compatibility ±5,5% ±0,110 ±0,044 ±0,089 σ index 223,1° 129,8° ABC axes 312,1° Trend distribution Plunae 57,5° 0,2* 28,9* between 2D ±55.5° ±57.4° ±26,5° ellipsoidal gc 2 Ŧ ±19,5° ±10.7° ±9,9° 1.30 1.40 1.50 1,00 1,10 1,20 1,60 1,70 1,80 1,90 sections and Ν. 576 $\overline{\mathbf{v}}$ display σ 576 ellipsoids the 576 intermediate

3D ellipsoid

Order number; azimuth, pitch, shape ratio (ellipse pitch, shape ratio)

Check the consistency between the full ellipsoid and the mean ellipsoid of the 576 combinations of sub-windows.

Be careful when using scale factor!

A strong F ¹/₂ indicates that sizes may be wrong (not consistent between images)

Consistent P' parameters

Not consistent P' parameters The full ellipsoid P' is not in the center of the could of subdata

Table							×
	#	strike	dip	rake	long axis	short axis	(1) weight
1	1_A	164	18	46,331	0,292344	0,238919	1
2	2_A	164	18	67,108	0,212886	0,187021	1
3	3_A	164	18	86,882	0,202492	0,180606	1
4	4_A	164	18	107,174	0,222036	0,194771	1
5	5_A	164	18	31,148	0,245641	0,220170	1
6	6_A	164	18	58,194	0,190721	0,180309	1
7	7_A	164	18	77,182	0,187691	0,175889	1
8	8_A	164	18	104,323	0,213017	0,196718	1
9	1_B	233	84	21,038	2,55225	2,36516	1
10	2_B	233	84	69,989	2,31758	2,18821	1
11	3_B	233	84	79,430	2,34461	2,17089	1
12	4_B	233	84	63,696	2,65657	2,48884	1
13	5_B	233	84	19,797	2,55281	2,36882	1
14	6_B	233	84	48,419	2,26562	2,11807	1
15	7_B	233	84	57,386	2,24815	2,14955	1
16	8_B	233	84	46,811	2,57021	2,40650	1
17	1_C	122	76	120,700	0,469349	0,303722	1
18	2_C	122	76	113,727	0,300594	0,225036	1
19	3_C	122	76	106,635	0,265071	0,213949	1
20	4_C	122	76	123,777	0,314284	0,237607	1
21	5_C	122	76	120,466	0,231947	0,190056	1
	<u> </u>	100	70	Naciona	0.000100	0.170000	

Calculation WITHOUT scale factor

Capt	ion						
Distribu	ution	N. f	aces		Inver	se Shape	Matrix
0,75	5	2	25	1	,090	-1,15E-0	1-1,26E-01
				-1,1	5E-01	1,182	,1746
1	<i>[Ť</i>	4,	8%	-1,2	26E-01	,1746	1,021
	-				A	В	С
	E	ligen	value	0	,894	1,012	1,387
		1	North	0	,324	0,809	-0,490
Di	r. Co	s.	East	-0	,393	0,586	0,708
		[Down	0	,861	-0,037	0,507
		NI	×мт	1	009	0.949	0.810
		No	orm L	1	098	1.032	0.882
S. W	∕mf	-	Frend	- 30	09.5°	215.9°	124.7*
0.0		Р	lunae	5	9.4°	2.1°	30,5°
С. В	mp						0.074
			∆ / L∵		245	Elinn	0.374
Pri	nt						4 05 4
Pri	nt		A/B	1	.064	P'	1,254
Pri Cop	nt Py		A / B B / C	1 1	,064 ,171	P' T	1,254 0,435
Pri Cop Folia	nt py ition	214	A / B B / C 4,7°	1, 1, 5	,064 ,171 9,5°	P' T L rake	1,254 0,435 92,4°
Pri Cop Folia	nt Py ition 1,2	214 294	A / B B / C 4,7° ±0,2	1, 1, 5 71	,064 ,171 9,5° Flinn	P' T L rake 0,624	1,254 0,435 92,4° ±0,802
Pri Cop Folia A/C A/B	nt Py tion 1,2 1,0	214 294 197	A / B B / C 4,7° ±0,2 ±0,1	1, 1, 5 71 16	,064 ,171 9,5° Flinn P'	P' T L rake 0,624 1,303	1,254 0,435 92,4° ±0,802 ±0,275
Pri Cop Folia A/C A/B B/C	nt py tion 1,2 1,0 1,1	214 294 197 78	A / B B / C 4,7° ±0,2 ±0,1 ±0,1	1, 1, 71 16 57	,064 ,171 19,5° Flinn P' T	P' T L rake 0,624 1,303 0,285	1,254 0,435 92,4° ±0,802 ±0,275 ±0,544
Pri Cor Folia A/C A/B B/C	nt py tion 1,2 1,0 1,1	214 294 197 78 Ř	A / B B / C 4,7° ±0,2 ±0,1 ±0,1	1, 1, 71 16 57	,064 ,171 9,5° Flinn P' T A	P' T L rake 0,624 1,303 0,285 B	1,254 0,435 92,4° ±0,802 ±0,275 ±0,544 C
Pril Cop Folia A/C A/B B/C	nt Py 1,2 1,0 1,1 √] 3,7	214 294 197 78 Ř	A / B B / C 4,7° ±0,2 ±0,1 ±0,1	1, 1, 57 16 57	,064 ,171 9,5° Flinn P' T A ,123	P' T L rake 0,624 1,303 0,285 B 1,024	1,254 0,435 92,4* ±0,802 ±0,275 ±0,275 ±0,544 C 0,872
Pri Cop Folia A/C A/B B/C	nt Py 1,2 1,0 1,1 √] 3,1 ±5,	21 94 97 78 78 7% 5%	A / B B / C 4,7° ±0,2 ±0,1 ±0,1 L σ	1, 1, 71 16 57 1 ±(,064 ,171 9,5° Flinn P' T A ,123),110	P' T L rake 0,624 1,303 0,285 B 1,024 ±0,044	1,254 0,435 92,4* ±0,802 ±0,275 ±0,275 ±0,544 C 0,872 ±0,089
Pril Cop Folia A/C A/B B/C	nt Py 1,2 1,0 1,1 √] 3,7 ±5,	214 194 197 78 7% 5%	A / B B / C ±0,2 ±0,1 ±0,1 L σ Trend	1, 1, 1, 57 71 16 57 1 ±0 3	,064 ,171 (9,5° Flinn P' T ,123 (,110 12,1°	P T L rake 0,624 1,303 0,285 B 1,024 ±0,044 223,1°	1,254 0,435 92,4* ±0,802 ±0,275 ±0,544 C 0,872 ±0,089 129,8*
Prii Cop Folia A/C A/B B/C ABC a distrib	nt py tition 1,2 1,0 1,1 1,1 (1,1 3,7 ±5, axes uution	214 194 197 78 78 78 5%	A / B B / C ±0,2 ±0,1 ±0,1 L σ Γrend lunge	1, 1, 5 71 16 57 1 ±(3 5	,064 ,171 (9,5° Flinn P' T ,123 (,110 12,1° (7,5°	P T L rake 0,624 1,303 0,285 B 1,024 ±0,044 223,1° 0,2°	1,254 0,435 92,4* ±0,802 ±0,275 ±0,544 C 0,872 ±0,089 129,8* 28,9*
Prin Cop Folia A/C A/B B/C ABC a distrib	nt py 1,2 1,0 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1	214 197 78 7 7 5% 9 P	A / B B / C ±0,2 ±0,1 ±0,1 L σ Trend lunge	1, 1, 5 71 16 57 1 ±0 3 5 ±±	,064 ,171 (9,5° Flinn P' T ,123 (,110 (2,1° (7,5° (55,5°	P" T L rake 0,624 1,303 0,285 B 1,024 ±0,044 223,1° 0,2° ±57,4°	1,254 0,435 92,4* ±0,802 ±0,275 ±0,544 C 0,872 ±0,089 129,8* 28,9* ±26,5*
Prin Cop Folia A/C A/B B/C ABC a distrib	nt py 1,2 1,0 1,1 √] 3,1 ±5, axes uution	214 197 78 27 7% 5% P	A / B B / C ±0,2 ±0,1 ±0,1 L σ Irend lunge σ1 σ2	1, 1, 1, 57 71 16 57 1 ±(3) 57 ±(±) 57 ±(±)	,064 ,171 (9,5° Flinn P' T ,123 (),110 (2,1° (7,5° 55,5° 10,7°	P" T L rake 0,624 1,303 0,285 B 1,024 ±0,044 223,1° 0,2° ±57,4° ±19,5°	1,254 0,435 92,4* ±0,802 ±0,275 ±0,544 C 0,872 ±0,089 129,8* 28,9* ±26,5* ±9,9*
Prin Cop Folia A/C A/B B/C ABC a distrib	nt py tion 1,2 1,0 1,1 $\sqrt{1}$ 3,1 $\pm 5,$ axes uution 57	214 197 78 7% 5% 1 P	A / B B / C ±0,2 ±0,1 ±0,1 L σ Irend lunge σ1 σ2	1, 1, 5 71 16 57 1 ±(3 5 ±(3 5 ±(3 5 ±(1) ±(3 5 ±(1)	,064 ,171 (9,5° Flinn P' T ,123),110 (2,1° (7,5° 55,5° 10,7° olay <i>o</i>	P" T L rake 0,624 1,303 0,285 B 1,024 ±0,044 223,1* 0,2* ±57,4* ±19,5*	1,254 0,435 92,4* ±0,802 ±0,275 ±0,544 C 0,872 ±0,089 129,8* 28,9* ±26,5* ±9,9*

The sizes of the long and short axes of the B section have been multiplied by 10 to show that calculation with a wrong scale factor may give false results whereas calculation without scale factor remains correct.

The gathering of directions along A, B and C is due to an intersection effect which force those directions to rotate toward the image plans or their poles.

Such error can be detected by anomalous standard deviations, hyperboloids or strong F $\frac{1}{2}$ (25% and mean at 37% here).