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Abstract  

This paper focuses on the computation of the tunnel face collapse pressure of a 

shallow circular tunnel driven by a pressurized shield. This allows one to assess 

the necessary pressure to apply to the tunnel face in order to ensure its stability 

against collapse. Two new three-dimensional failure mechanisms based on the 

upper bound limit analysis theorem are proposed. The first failure mechanism is 

an improvement of the two-block collapse mechanism presented by Leca and 

Dormieux [1]. It is composed of several truncated rigid cones. The second 

mechanism (derived from the previous one) has the advantage to consider the 

whole circular face of the tunnel instead of an inscribed vertical ellipse as is the 

case of previous mechanisms [1]. This makes the generation of the second 

mechanism much more complex than the first one because one can not use simple 

geometrical shapes such as cones. The resulting collapse pressures provided by 

the proposed mechanisms are presented and discussed. 

Keywords: Limit analysis, pressurized shield, active failure, collapse pressure, failure 

mechanism. 
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1 INTRODUCTION 

The aim of the stability analysis of tunnels driven by a pressurized shield is to 

ensure safety against soil collapse in front of the tunnel face. This requires the 

determination of the minimal fluid pressure (i.e. air pressure in the present paper) 

required to prevent this collapse. The kinematical limit analysis model by Leca 

and Dormieux [1] is one of the most recent and significant approaches. It uses the 

upper-bound theorem of limit analysis. This theorem states that if a work 

calculation is performed for a kinematically admissible collapse mechanism, then 

the loads thus deduced will be higher than (or equal to) those for collapse. Since 

the tunnel face pressure resists the collapse of soil into the tunnel, it is a negative 

load in the sense discussed above. The kinematical approach will therefore 

provide a lower-bound unsafe estimate of the tunnel pressure required to maintain 

stability (i.e. smaller or equal to that actually required). The aim of this paper is to 

improve the best (i.e. the greatest) existing lower-bound solutions given by [1] 

using the kinematic theorem of the limit analysis theory. The soil considered in 

the analysis is assumed to be frictional (with or without cohesion). The problem 

of computation of the tunnel face collapse pressure σc can be idealized as shown 

in Fig. 1 by considering a circular rigid tunnel of diameter D driven under a depth 

of cover C. Active collapse of the tunnel is triggered by application of surcharge 

σs and self-weight, with the tunnel face pressure σc providing resistance against 

failure. The collapse mechanism presented in [1] (Fig. 1a) provides the best 

existing lower bound of σc. It is composed of two truncated conical blocks in 

translation with opening angles equal to 2φ in order to respect the normality 

condition in limit analysis. It is entirely defined by only one angular parameter. In 

the following sections, one presents two new three-dimensional failure 

mechanisms based on the upper bound limit analysis theorem. This is followed by 

presentation and discussions of the numerical results given by both mechanisms. 

2 MULTIBLOCK MECHANISM 

The first proposed failure mechanism, called here “multiblock mechanism”, is 

described in more details in Mollon et al. [2]. It is an improvement of the two-

block collapse mechanism presented in [1]. This mechanism is composed of n 

truncated rigid cones with circular cross-sections and with opening angles equal 

to 2φ. A mechanism with n=5 is presented in Fig. 1b. The geometrical 

construction of this mechanism is similar to that of Leca and Dormieux [1], i.e. 

each cone is the mirror image of the adjacent cone with respect to the plane that is 
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normal to the contact surface separating these cones. This is a necessary condition 

to ensure the same elliptical contact area between adjacent cones. As for the 

mechanism by Leca and Dormieux [1], block 1 is a truncated circular cone 

adjacent to the tunnel face. The intersection of this truncated cone with the tunnel 

face is an elliptical surface inscribed in the tunnel face. On the other hand, block 1 

is truncated with a plane which is inclined at an angle 1η  with the vertical 

direction. The multiblock mechanism is completely defined by n angular 

parameters ζ and ηi (i=1…n-1) where n is the number of the truncated conical 

blocks (Fig. 1b). The upper rigid cone will or will not intersect the ground surface 

depending on φ and C/D values. 

a.      b.  

Figure 1:  a. Leca-Dormieux mechanism     ;     b. Multiblock mechanism 

3 IMPROVED MULTIBLOCK MECHANISM 

The main shortcoming of the proposed multiblock mechanism is that the circular 

tunnel face is not entirely taken into account in the assessment of the collapse 

pressure. To solve this problem, a so-called “improved multiblock mechanism” is 

considered herein. Firstly, an ‘improved one-block mechanism’ is presented. It is 

followed by the presentation of the ‘improved multiblock mechanism’. The 

improved one-block mechanism considers the whole tunnel face. It is defined by a 

single angular parameter β (Fig. 2a). This angle corresponds to the inclination of 

the velocity of this block with respect to the longitudinal axis of the tunnel. Since 

a failure mechanism involving the whole circular area of the tunnel face is 

explored here, no simple geometrical shape (such as a cone) can be considered. It 
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is necessary to generate the three-dimensional failure surface “point by point” 

using a spatial discretisation technique. It is assumed (Fig. 2a) that the cross-

section of the improved one-block mechanism in the vertical plane containing the 

longitudinal axis of the tunnel is the same as that of the one-block mechanism 

composed of a single conical block with an opening angle equal to 2φ. This is to 

be expected because the conical one-block mechanism involves the entire 

diameter of the tunnel face only along the vertical diameter of the tunnel face. 

a.       b.  

Figure 2: a. One-block improved mechanism           ;           b. Generation of point Pi,1 from 

points Pi-1,0, Pi,0, and Pi+1,0 

The three-dimensional failure surface of the improved one-block mechanism is 

determined here by defining the contours of this surface at nz several equidistant 

vertical planes parallel to the tunnel face (Fig. 2a). The contour in a given plane 

being defined from that in the preceding plane. The first vertical plane to be 

considered is that of the tunnel face for which the contour of the failure surface is 

circular as required. The vertical planes are denoted by index j where j=0, …, nz; 

j=0 being that of the tunnel face (cf. Fig.2a). The contour of the tunnel face is 

discretised by a number nθ of points Pi,0 uniformly distributed along this contour. 

Thus, each point of the failure surface is defined by two indices i (index 

indicating the position of the point in a given vertical plane) and j (index of the 

vertical plane). The generation of point Pi,1 in the first contour makes use of three 

points Pi,0, Pi-1,0, and Pi+1,0 belonging to the tunnel face (Fig. 2b). The position of 

point Pi,1 must satisfy the three following conditions: 

• Pi,1 belongs to plane j=1 

• The triangular surface formed by points Pi,0, Pi-1,0, and Pi,1 should respect 

the normality condition in limit analysis, i.e. the normal to the plane of 

this triangle should make an angle ϕπ +2  with the velocity vector V
r

. 
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This normality condition is necessary for the failure mechanism to be 

kinematically admissible. 

• The triangular surface formed by points Pi,0, Pi+1,0, and Pi,1 should also 

respect the normality condition.  

 

The procedure described above allows one to create for each point Pi,j a 

corresponding point Pi,j+1 in the following plane by respecting the normality 

condition around  Pi,j. This procedure should be repeated for all the nθ points of 

the tunnel face to generate the corresponding nθ points in the plane j=1. Once the 

first contour is generated, the same procedure is again applied to generate the 

points of the plane j=2 from those of plane j=1, and so on up to the plane j=nz. 

The detailed mathematical formulation of this problem can be found in [3].  

 

 

Figure 3:  Generation of a second block 

The improved one-block mechanism described before does not offer a great 

degree of freedom since it is characterized by only one angular parameter. In 

order to get better lower-bound solutions of the collapse pressure, the one-block 

mechanism is generalised to a multiblock mechanism by increasing the number of 

blocks. As mentioned before, the failure surface of the improved one-block 

mechanism was generated from the circular tunnel face, but it can also be 

generated from any arbitrarily section since the surface is generated from the 

discretised contour of the tunnel face and not from its analytical expression. 

Consequently, it is possible to add a second block above the first block (Fig. 3). 

Thus, the first block called ‘block 1’ adjacent to the tunnel face is truncated with a 

plane named ‘Plane 1’ inclined at an angle α2 with the vertical direction. The area 

resulting from this intersection (which has a non-standard shape) is used to 
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generate the second block called ‘block 2’ whose axis is inclined at β2 with the 

horizontal direction. The intersection points between block 1 and plane 1 are used 

for the generation of the second block using exactly the same equations as those 

for the first block except the fact that these equations are now used in the local 

axes related to the contact plane separating both blocks. The geometrical 

procedure of construction of an additional block described above is successively 

applied to generate the multi-block mechanism. This mechanism is entirely 

defined by the 2n-1 as yet unspecified angular parameters αk (k=2,…, n) and βl 

(l=1, …, n) where n is the number of blocks of the failure mechanism. 

4 WORK EQUATION 

For both the multiblock and the improved multiblock mechanisms, the work 

equation is written here for a frictional and cohesive soil. The velocity of each 

block is determined by the condition that the relative velocity between the blocks 

in contact has the direction that makes an angle φ with the contact surface. The 

determination of the different velocities, volumes and lateral surfaces of the 

truncated rigid blocks together with the computation of the different rates of work 

of external forces are detailed in [2] for the multiblock and [3] for the improved 

multiblock. Notice that the external forces involved in the present mechanisms are 

the weights of the different truncated rigid blocks, the surcharge loading acting on 

the ground surface (only in case of outcrop of the mechanism) and the collapse 

pressure of the tunnel face. Since no general plastic deformation of the truncated 

blocks is permitted to occur, the rate of internal energy dissipation takes place 

only along the different velocity discontinuity surfaces. After some 

simplifications, it is found that a lower-bound on the tunnel collapse pressure is: 

c c s s
DN cN N

γ
σ γ σ= − +     (1) 

where Nγ, Nc, and Ns are non-dimensional coefficients (which are different in the 

case of a multiblock or an improved multiblock mechanism). These coefficients 

and consequently σc, depend not only on the mechanical and geometrical 

characteristics c, φ, and C/D, but also on the angular parameters of the failure 

mechanism considered in the analysis. The critical tunnel collapse pressure is 

obtained by maximization of σc given by Eq. (1) with respect to these angular 

parameters. A number of five (resp. three) blocks was found to be a good 

compromise between accuracy and computation time for the multiblock (resp. 

improved multiblock) mechanism. The CPU time necessary for the calculation of 
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the collapse pressure is negligible for the multiblock mechanism and is about 5 to 

10 minutes for the improved multiblock mechanism on a 2.4 GHz quad-core 

CPU. 

5 NUMERICAL RESULTS 

The lower-bound solutions of the tunnel face collapse pressure as determined by 

Leca and Dormieux (1990), by the multiblock mechanism and by the improved 

multiblock mechanism are given in Fig. 4 for two cases of a cohesionless soil, and 

for two cases of a frictional and cohesive soil (soft and stiff clays). One can see 

that the improvement (i.e. increase of the collapse pressure) of the multiblock and 

improved multiblock mechanisms attains 7% and 19% respectively with respect 

to the solution by Leca and Dormieux (1990) for a sand with φ=20°. This 

improvement becomes equal to 24% and 44% respectively for the soft clay, and 

attains 50% and 89% respectively for the stiff clay. Fig. 5 shows a comparison 

between the critical failure mechanisms given by the multiblock and by the 

improved multiblock mechanism in two different cases: (a) a cohesionless soil 

with φ=30° and C/D>0.5 and (b) a soft clay with φ=17°, c=7kPa, and C/D>0.8. 

One can see that the critical failure mechanisms given by both approaches are 

quite similar. Notice however that the multiblock mechanism does not intersect 

the whole tunnel face, the grey part of the tunnel face being at rest. This 

phenomenon is striking and was removed in the improved multiblock failure 

mechanism.  

    

Figure 4: Lower bound of σc as given by [1] and by the proposed mechanisms 
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a.              b.  

Figure 5: Improved multiblock mechanism (left side), and multiblock mechanism (right side)

  a. sand : φ=30° and c=0 kPa    ;    b. soft clay : φ=17° and c=7kPa 

6 CONCLUSION 

Two new multi-block translational failure mechanisms have been presented in 

order to improve the existing lower-bound solutions of the collapse pressure of a 

shallow circular tunnel driven by a pressurised shield. These mechanisms provide 

significant improvement of the best existing lower-bound solutions of the tunnel 

collapse pressure. 
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