Ceotextiles
and
Geomembranes

ELSEVIER Geotextiles and Geomembranes 16 (1998) 27-44

Variational displacement method for
geosynthetically reinforced slope
stability analysis
I1. Global stability

P. Lemonnier?, A.H. Soubra®, R. Kastner®

* Aalborg University, Dpt. Civil Engineering, Aalborg, Denmark
®Ecole Nationale Supérieure des arts et Industries, Strasbourg, France
¢ Institut National des Sciences Appliquées, Villeurbanne, France

Abstract

This paper presents the global stability analysis of geosynthetically reinforced slopes. It is
a development of the French “displacement method” (Gourc et al., 1986) for geosynthetically
reinforced slope stability analysis. The global stability analysis requires the determination of the
reinforcement tensions, which is presented in a companion paper (Lemonnier et al., 1998). In
this paper, the variational limit equilibrium method, formulated by Baker and Garber (1977) in
the case of unreinforced slopes, is applied to the case of reinforced slopes. This variational
analysis has shown that the results obtained by Baker and Garber are still valid in the present
case.

A parametric study showing the influence of different geometrical parameters on the design is
presented and discussed. These results are compared with those of the original “displacement
method”, in order to show the improvement of the method. © 1998. Published by Elsevier
Science Ltd.
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Notation

Cy adhesion of the soil-geotextile interface
hg; height of soil above reinforcement i

J tensile stiffness of the reinforcements

L; length of reinforcement i
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n, number of reinforcement sheets

T adm admissible tension in the reinforcements

L pmini minimum rate of linear behaviour of the anchorage zones

Uy minimum soil-geotextile relative displacement which mobilises the ulti-
mate shear stress of the soil-geotextile interface 7,

Vi vertical displacement at the top of the slope

o friction angle characterising the soil-geotextile interface

Tp ultimate shear stress of the soil-geotextile interface.

1. Introduction

The stability analysis of geosynthetic reinforced slopes is currently carried out using
the conventional limit equilibrium methods modified to account for the reinforcement
effect (Jewell, 1982; Rowe and Soderman, 1985; Hird, 1986 and Low et al., 1990).
Beside these methods, there is the finite element method (Andrawes et al., 1982) or the
methods derived from earth pressure considerations (Steward et al., 1977; Broms,
1978; Collin, 1986 and Bonaparte et al., 1987). The limit equilibrium methods are
popular in the practice of geotechnical engineering since they are simple and give
relatively accurate solutions. These methods are based on assumptions concerning the
shape of the slip surface and the normal stress distribution along this surface.
Furthermore, in the case of reinforced slopes, other assumptions are made concerning
the determination of the reinforcement tension at the failure surface.

In this paper, the global stability analysis of the reinforced slope is made using
a variational approach applied to the limit equilibrium method in order to avoid any
assumption concerning the shape of the slip surface and the normal stress distribution
along this surface. This analysis is an extension of the variational limit equilibrium
method developed by Baker and Garber (1977) in the case of unreinforced slope
stability analysis. The assumptions concerning the determination of the reinforcement
tensions are examined in detail in a companion paper (Lemonnier et al., 1998) where
a theoretical variational approach was developed: It allows this determination by
using the concept of the anchored membrane in the neighbourhood of the failure
surface, together with a prescribed vertical displacement at the top of the slope to
mobilise the tensions in the reinforcements.

In the following sections, one firstly presents the variational limit equilibrium
method for the reinforced slope. Secondly, a two-layers geotextile reinforced wall is
analysed by the present model. The corresponding results are then presented and
discussed. Finally, a combined parametric and comparative study is presented consid-
ering the same previous example. This shows the influence of several geometrical
parameters on the determination of the safety factor, the reinforcement tensions and
their inclinations. These geometrical parameters include (i) the prescribed vertical
displacement at wall top, (ii) the elevation of a single sheet in the slope and (iii) the
number of reinforcement sheets. The corresponding results are then compared with
those obtained from the original “displacement method” in order to show the
improvement of the method.
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2. Present variational analysis

Fig. 1 shows a slope inclined at § with the horizontal direction, reinforced with
n, geosynthetic sheets. Each sheet i has fixed length L; and ordinate Y. In this paper,
our aim is to determine the safety factor of the reinforced slope. The present analysis is
based on the following assumptions:

o The slope, which has a unit soil weight y, height H and mechanical characteristics
¢ and c, is assumed to be homogeneous and isotropic;

o The safety factor F, is defined as the minimum value of the ratio F of the maximum
shear stress over the mobilised one on the failure surface PR (Fig. 1), along which
it is assumed to be constant. Therefore, reduced parameters ¢, = ¢/F and
tg(¢.) = tg(¢)/F are considered in the present analysis;

o Only overturning stability analysis is considered in this paper. Therefore, a failure
by sliding along a geotextile sheet, for example, is not considered herein;

e The failure surface PR is assumed to pass through the toe of the slope. The case of
a failure surface passing below the toe is not considered herein;

e The geotextile reinforcement is assumed to have no flexion rigidity. Thus, the
tensions are tangential to the sheets;

e The failure surface is assumed to intersect the geosynthetic sheets at points of
maximum tension;

e Asin the original “displacement method” (Gourc et al., 1986), a prescribed vertical
displacement is assumed to occur at the top of the slope. This displacement induces
vertical local displacements for the geotextile sheets in the neighbourhood of the
failure surface and thus, allows the mobilisation of tensions in the reinforcements.
Then, the concept of the anchored membrane (Gourc et al., 1986)is adopted and the
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Fig. 1. Geotextile reinforced slope stability analysis.
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reinforcement tensions are determined by means of a minimisation procedure based
on a variational analysis (see companion paper).

In the framework of the reinforced slope stability analysis, different assumptions
have been made by numerous investigators concerning the shape of the slip surface: (i)
planar (Steward et al., 1977; Broms, 1978; Collin, 1986, Bonaparte et al., 1987 and
Leshchinsky and Reinschmidt, 1985), (ii) polygonal (Blanchier, 1982; Murray, 1984;
Bordairon, 1986; Ratel, 1987 and Schmertmann et al.,, 1987), (iii) circular (Ingold and
Miller, 1984; Ratel, 1987; Bordairon, 1986; Hird, 1986 and Kaniraj, 1994), (iv) log-
spiral (Anthoine, 1990 and Leshchinsky and Reinschmidt, 1985).

In this paper, the limit equilibrium method is used. This method has already been
used by several investigators (Leshchinsky and Reinschmidt, 1985). For the present
model, an extension of the variational limit equilibrium method proposed by Baker
and Garber (1977) is applied to the reinforced slope (Fig. 1) in order to find the failure
surface which gives the minimal value of the safety factor and for which the three limit
equilibrium equations of the sliding mass PQR are simultaneously satisfied.

This sliding mass (active zone) is contained between the slope ¥(X) and the
unknown failure surface Y(X). In Fig. 1, the geotextile sheets have been represented
horizontally, which is the at rest position. These sheets play their reinforcement role
by mobilising a tension force at the intersection with the failure surface. These tension
forces are directed from the active to the resistant zone, and are inclined at an angle
o; to the horizontal direction (after deformation of the sheets).

The forces acting on the sliding mass are the following (see Fig. 1):

¢ Sliding mass weight W;

e Normal and tangential stress distributions (o, 1) along the failure surface;
e External load g on the top of the slope;

e Tension T; in each geotextile sheet i at the failure surface.

The limiting equilibrium equations of the sliding mass are given as follows:
b¢
J (c+atan¢—F.a.Y’)dX—|—FZ T;coso; =0, (L1
0 i

”

X
J {Y{c+otang)+ Flo —y(Y — Y) — g1} dX + FY Tisino; =0, (1.2)
0 i

X
f {(c+otang)(Y — Y'X)— F[o(X + YY)~ [(Y — Y) + q].X])dX

)
+ F) Ty(Y;cosa; — X;sina;) = 0. (1.3)

It is assumed that, for each failure line Y(X) considered, each tension T ;18
determined by the above-mentioned procedure based on the anchored membrane
concept (see companion paper). These tensions depend on Y and Y’, but are indepen-
dent of X. Consequently, the only unknown parameters of the problem are the factor
F, and functions Y(X) and o(X).
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The terms F, T;, ;, X;, and Y; which appear in Egs. (1.1)«(1.3) under the sum
symbols are independent of X, thus these terms can be included under the integral
symbols. Then, these equations can be expressed as follows:

X
<c+otan¢~F.aY’+—X€2Ticosoc,->dX=0 (2.1)
JO i
rX _ F
{Y'(c +otan¢) + F.[o — (Y — Y) — 4] +?Z Tisinfxl}dX =0, (22)
Jo i
rX _
{(C +otand)(Y — Y'X)— Flo(X + Y.Y)— [y(Y — Y) + q] X]
Jo

+ ;Z T{Y;cosa — X;sin 1,~)} dXx =0. (2.3)

The quantity F, for which the soil reaches the state of limit equilibrium, depends on
the two kinematical and stress functions mentioned above (Y(X) and o(X), respective-
ly). Thus, F may be considered as a functional of two functions termed the safety
functional. The safety factor F, is the minimum value of F:

Fy=min F{Y(X);0(X)} = F[Y{X).0/X)]. 3)

(Y,0)

where Y. (X) and o (X) represent, respectively, the extremal kinematical and stress
functions.

Consequently, as for the unreinforced slopes (Baker and Garber, 1977), the varia-
tional problem can be stated as follows: Find a pair of functions Y(X) and od{X)
which realise the minimum value F of the safety functional F, and simultaneously
verify the three limit equilibrium equations (Egs. (2.1)~(2.3)).

This safety functional F can be expressed by the ratio of two integrals. Indeed, if F is
defined by Eq. (2.1), one obtains:

{¥(c + otan¢)dX

: 4
I (a y 2o Ticos® Tl;os “") dx “

F =

/

Note however that safety functional F has another property which did not occur in
the case of unreinforced slopes: The abscissa X of the variable endpoint R (see Fig. 1)
appears in the integrals of the three limit equilibrium equations.

Following the same variational calculus procedure proposed by Baker and Garber
(1977), the initial problem can then be transformed to the following one: Find the
minimum value of the functional G defined as follows:

x FY Tcosa
sz <c+atan¢~FaY'+--Z'—T)~(éC—(’s—°‘i>dX (5)
(

)
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subject to the condition: min G = 0, and to the three following integral constraints:

X Fy, T, i
J <c +otand — Foo Y. + M)dx —0, 6.1)
0 Xe

X _ F.¥. T;sina;
J {Y’e(c+oetan¢)+F5.[ae‘y(Y— Y. —4q] +———Z—’—f--—a}dX=0,

0 e

(6.2)

X,
J {(C toctan @) (Y. — YeX) — Foloo(X + Y. Y) — [7(Y — Yo) + ¢] X]

0
F ¥, Ti{Y;coso; — X;sina)
* X

}dX o (6.3)

It is to be noted that these three integral constraints depend on the safety factor F,
the extremal functions Y (X) and oX), and on the fixed parameter X, which
corresponds to the extremal value of the parameter X.

The solution to this problem may be obtained using the method of Lagrange
undetermined multipliers. Thus, instead of considering functional G, an auxiliary
function H is defined as follows:

H=H,+ A Hy + 1, Hy (7)

where 2y, 4, are the Lagrange multipliers, and H,, H; and H, are obtained by
identification from Egs. (6.1)-(6.3) respectively.

In the case of the standard problem of the calculus of variations (Petrov, 1968), two
Euler equations and a transversality condition for each variable endpoint, have to be
written to find the solution. In the present case (dependency on the variable endpoint
abscissa X.), it can be shown (Lemonnier, 1995) that the two Euler equations are
identical to the standard case, but the transversality condition is modified.

In applying the first Euler equation to function H, one obtains the same family of
critical slip surfaces as for unreinforced slopes, that is the log-spirals of angle ¢, (see
Fig. 2). This suggests that the reinforcement tensions do not affect the shape of the
critical slip surface (but certainly its location as it is shown further in Section 4.1).

Note that the log spiral function has a particular property, that the resultant of the
elementary forces (o ds) and (tg¢, o ds) passes through the pole of the spiral. Hence, the
moment equation about the pole is independent of the stress distribution ¢(X), and
may be used for the determination of the safety factor F,. The two remaining
equilibrium equations may be satisfied by every (X) distribution that has two degrees
of freedom. Thus, one has to find the critical 0, and 0, angles (see Fig. 2) which satisfy
the moment equilibrium equation and give the minimum value of the safety functional
F. This is done by a two-dimensional minimisation procedure of F with respect to
By and 6,.

The independence of the safety functional F on the normal stress distribution o(X)
may also be shown in another way (Baker and Garber, 1977), considering a special
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129
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Fig. 2. Global stability of the reinforced slope. Extremal failure surface.

property of this functional. Indeed, for purpose of clarity the function H can be written
as follows:

H=mXX.Y.Y)+ on(X.X.,Y.Y0). (8)

This function is linear in ¢, and independent of ¢,.. Hence, the application of the first
Euler equation gives: n(X,X,,Y,,Y.) = 0. The substitution of this equation into Eq. (8)
shows that H is independent of a., ie.

H=mXX.Y,Y.).

Furthermore, it has been shown (Baker and Garber, 1977) that the second Euler
equation and the transversality condition give the normal stress distribution o(X).
Now, this distribution is not necessary for our problem, that is the determination of
the safety factor F; of the reinforced slope. Consequently, it is possible to solve the
reinforced slope stability problem by simply minimising the new function H without
specifying the normal stress distribution.

3. Computational procedure

As shown before, the safety factor F; of a reinforced slope, is determined considering
a log spiral as the failure surface and by writing the only moment equilibrium
equation of forces acting on the sliding mass around the pole of this log spiral. This
curve depends on two angular parameters ), and 8, and a factor F (whose minimum
is F). Thus, for each couple (6,, 6,), there is only one F value which satisfies the
moment equilibrium equation, which can be written as follows:

1M - AMO -+ z ]\/Ii = O. (9)

i=1



34 P. Lemonnier et al. /Geotextiles and Geomembranes 16 (1998) 2744

where M is the sum of moments concerning the reinforced slope, M; is the moment
due to tension T; in reinforcement i at point M; (see Fig. 2), and M, the sum of
moments concerning the unreinforced slope (i.e. neglecting the reinforcement effects):
Mo =M, + M, + M, where M, the moment due to the weight of the sliding mass;
M, is the moment due to the uniform surcharge on top of the slope; M. the moment
due to cohesion forces in the soil along the failure surface.

Hence, for a given couple (6o, 8,), one has to determine the unique F value which
vanishes the sum M. Note that Eq. (9) is implicit and nonlinear in F. Thus, a numer-
ical procedure is used to obtain the unique factor F; corresponding to couple (8, 0,)
and verifying the moment equilibrium equation. That is, Eq. (9) may be written as

J(00,01,F1) = 0. (10)

Then, the safety factor F, of the reinforced slope is attained by a two-dimensional
minimisation with respect to 6, and 6,.

Fig. 3 presents the general flow chart which summarises the different steps of this
calculation. A computer program, based on this scheme and on the reinforcement
tension calculation procedure (cf. companion paper), has been written in FORTRAN.

The first step is the data input. These data (see Fig. 3) may be divided into
two groups: The first concerns the soil and the slope, the second concerns the

1. Data input:
- Soil: ¢, ¢,y - Slope: H, o, B, @, v

- Reinforcements: J-Tadmvtamini'nlv{(Livhgi J,i =1to n‘}

- Interface : ¢; ,Cq, Up

¥
2. Calculation of the safety factor of the unreinforced
slope : Fyo = optimal couple: (6, )
¥
3. Calculation of safety factor F, associated to the previous
couple, taking into account the reinforcement effects.

4.a. The geotextile sheets do not
@ S fparticipate to the reinforcement of
the slope: Fi=F
no
5. Discretisation of F; where (09, 8,, F)) =0

Minimum value: Fymin (discrete value).

¥
6. Minimisation of F; with respect to 8, 6
(initial value Fimin) One obtains Fs = min (F|)
¥

7. Results: Optimal log-spiral (87,67F, ), tensions
distribution {T;, o, (i = 1 to ny)} and local displacements

Fig. 3. Flow chart showing the calculation scheme of safety factor F, of reinforced slopes.
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reinforcements and the soil-geosynthetic interfaces. At this step, the rupture of the
reinforcements by excessive strain is checked. The elongation at rupture is usually
given by the geosynthetic manufacturers.

Secondly, safety factor F,, corresponding to the unreinforced slope is determined.
Note that this factor, which is given by Eq. (9) reduced to M, = 0, is a lower bound of
safety factor F, corresponding to the reinforced slope.

Then, it is interesting to determine factor F; corresponding to couple (¢5,07) (the
triplet (84,61,F;0) defining the optimal log spiral of the unreinforced slope) and taking
into account the effects of the reinforcements (i.e. satisfying the implicit Eq. (10)).
Indeed, if one obtains F;, = F,, for this couple, no other couples (6,, 6,) give smaller
factor F;. Then, in this particular case (step 4a, Fig. 3), the reinforcements have no
effect on the slope stability, and another configuration of the structure has to be
proposed by the designer for an effective reinforcement. For such a case, factor
Fy corresponding to (6,,0) is greater than F,,, and so is the safety factor F, of the
reinforced slope.

The numerical procedure to determine F, is rather complex because the considera-
tion of the reinforcement tensions in the analysis induces discontinuities for function
Fi(0, 6;) which has to be minimised, and function M(F) whose zero has to be found
(cf. Lemonnier, 1995). Hence, a discretisation of the plane (8,, 0,) is done in order to
find a correct starting value for the minimisation process of factor F; (step 5, Fig. 3).
Finally, one obtains the optimal log spiral of the reinforced slope: (5,07,F.) which
gives an evaluation of the stability, together with the position of the failure surface and
the associated results of the local stability analysis (reinforcement tensions and
relative displacements).

4. Numerical results

Fig. 4 shows the configuration of the case study considered in this entire section. It
is a vertical wall reinforced by two geosynthetic sheets. The stability analysis of the
unreinforced slope gives a safety factor F,o = 0.893. Thus, this slope is unstable and
needs to be reinforced.

4.1. Minimisation of the safety function

Fig. 4 also shows the results of the present stability analysis. It shows that, by taking
into account the reinforcement effects, the safety factor F, is increased by nearly 65%
and that the failure surface is moved off the face wall. Concerning the critical tensions
in the reinforcements, note that (i) they are much smaller than the admissible one
(40 kN/m), (ii) the lowest sheet is more utilized than the other one, and (iii) tension
Ta, 1s more inclined than T,;.

All the other results concerning the local behaviour of the geosynthetic sheets are
presented in Table 1. The following comments can be made:

e Local displacements y;: Note that y(sheet 1) > y,(sheet 2). This is due to the
assumption that these displacements are induced by the critical failure
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yi=6cm

TA1=16.66 kN/m
oa=27.27°

H=5m|

Ta2=22.25 kKN/m

oa2=33.36°

Reinforcements:
*J=800kN/m
1a0ini=20%

o T ym=40kN/m
ofree anchorage
Interface:

/

i reinforced slope :

6,,0, =324, 70°
rp =6m F; = 1472

*tg(dg)=0.7xtg()
oc,=0
sup=5cm

| unreinforced slope :

60,6, =543, 72.1°
I =108m Fy = 0893

Fig. 4. Configuration of the case study. Results from the present model.

Table 1

Local results from the present model — Case of Fig. 4

Sheet 1 Sheet 2
Local displacement y1 (mm) 28.9 26.5
Rates of linear behaviour tag (%) 100 100
tag (%) 100 100
Reinforcements lengths L, (m) 3.189 3.873
Ly (m) 1.811 1.127
I, (m) 3.059 3774
Iy (m) 1.682 1.028
Relative soil-geosynthetic displacements up (mm) 1.1 0.1
ug (mm) 6.1 7
g, (mm) 10.9 9
upg (mm) 16.9 15.7
Tensions Tgy (kN/m) 8.609 10.022
Tga (kN/m) 12.594 15.802
Ta (kKN/m) 16.656 22.246
Inclinations aa (%) 27.267 33.362
Xamax () 73911 61.639
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surface, which is steeper in the neighbourhood of sheet 1 than that of sheet 2 (see
Fig. 4);

e Linear behaviour rates tag and tag: Since the soil-geotextile interface in the four
anchorage zones (2 for each sheet) behave elastically (i.e. tag = tag = 100%), there
is no danger concerning the breakage of the reinforcements by a lack of adherence
at the soil-geosynthetic interface;

¢ Reinforcement lengths L,, Ly, I, and Ig It is to be noted that (i) the upstream
anchorage zones are longer than the downstream ones (i.e. L, > L), (ii) the length
of the membrane zone is in a proportion of 5.2% with respect to the total length for
sheet 1 (respectively 3.9% for sheet 2). These resuits are qualitatively in concordance
with several experimental observations showing that the shear zone is relatively
narrow;

¢ Relative soil-geosynthetic displacements ug, ug, up, and ugg: Note that the relative
displacements at point F are much smaller than those at point G (see Fig. 2), that is
up < ug and ug, < ugy. This can be explained using the following results (see
Lemonnier, 1995): If u represents the relative displacement at the soil-geosynthetic
interface (which can be either ug, ug, up, Or ugg) then one can write: if L, or
L, increases then u decreases;

e Tensions Ty, Ty, and Tpy Note that tensions Tg; (j = u or d) are smaller than
tensions T 4. This is in concordance with the assumption concerning the location of
maximum tensions in the reinforcements. Furthermore, tensions in sheet 2 are the
largest;

e Inclinations of the critical tensions: Note that the maximum inclinations
®amax (Which correspond to tensions tangent to the failure surface) are much larger
than the critical inclinations a, (see Table 1 and Fig. 4).

4.2. Comparative study

The aim of this study is, on one hand, to show the influence of some parameters
on our model and, on the other hand, to compare the results obtained from the
present model to those obtained from the original “Displacement method” (Gourc
et al., 1986). This latter method (“Cartage” software) allows the determination
of the safety factor for a given failure line (no automatic process to find the critical
one). Thus, for the comparison with our results, the critical failure line obtained
from the present model has been considered for the determination of the safety
factor and the corresponding mobilised tensions from “Cartage™. It is to be
noted that it has been impossible to use all the options of “Cartage” for the
modelisation of the membrane. Indeed, with “Cartage”, the designer has the
choice between three different simplified models of the membrane which are the
following: (i) “Small displacements” (8D), tension T, at the failure surface remains
horizontal, which is the most conservative; (ii) “Large displacements 17, tension T, is
tangent to the failure surface; and (i) “Large displacements 2” (LD), tension
T 4 remains horizontal, which is the less conservative. The second modelisation gives
results, in terms of safety factor and reinforcement tensions, which lie between those of
the other two.
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Only the first (SD) and third (LD) modelisations give results for the considered
failure surfaces (log-spirals) and are considered in this section. Indeed, for the second
modelisation, problems for the calculation of the normal stress distribution o(X) (see
Fig. 1) have occurred. Hence, for the following results obtained from “Cartage”, the
tensions are assumed to remain horizontal. The three following sections deal with the
case study presented in Fig. 4.

4.2.1. Influence of the vertical displacement on top of the slope (y,)

The choice of y, allows the designer to impose a limitation on the displacements in
the structure. Fig. 5a and b show the influence of y, on the determination of the safety
factor and the reinforcement tensions for the three models (present one, “Cartage” SD
and LD), and the inclinations of the tensions are given for the present model. Since the
same failure surface (the one obtained from the present model) has been considered for
the three models, and their associated safety factors F,, corresponding to the unrein-
forced slope are also the same (0.893), the differences between the F;, values obtained
by these models arise only from the determination of the reinforcement tensions.

These two figures show that the variations of F,, T,, and T, versus y, are similar
for these three models, and that “Cartage SD” gives much smaller values than the two
others. The following comments may be added:

o Concerning the safety factor (Fig. 5a): (i) The present model gives values very close
to those of “Cartage LD, (ii) F, increases with y,, which is due to the fact that the
reinforcements are more utilized for a larger local displacement y; up to a point
where the sheet should reach its ultimate strength (not shown on the figures) and (iii)
The variations of F, of all models are quasi rectilinear for y, = 1-6 cm. The increase
of F, on this interval is about 52.6% for the present model and the scatter with
“Cartage” is in average of 18.8% for “Cartage SD” and 0.3% for “Cartage LD”;

o Concerning the reinforcement tensions (Fig. 5b): (i) the present model gives values
which lie between the two modelisations of “Cartage”, (ii) T4, and T,, increase
with y, and (iii) The scatter with the present model concerning T, is in average of
187% for “Cartage SD” and 20% for “Cartage LD” (91% and 15%, respectively,
for Ty,). The scatters between the results obtained from the present model and
those from “Cartage LD are relatively not significant, since the models of the
membrane are quite different in the two methods;

o Concerning the tension inclinations (Fig. 5b): As mentioned before, no comparison
can be done in terms of inclinations. However, note that the critical inclinations
241 and a,,, as given by the present model, decrease slightly when y, increases. This
can be explained by the fact that the relative displacement ug, which satisfies the
displacement compatibility condition, increases with y, (see Lemonnier, 1995). This
term has a major influence on the determination of the reinforcement tensions and
their inclinations (see companion paper): Its increase produces the decrease of the
critical inclinations.

Finally, note that if a safety factor F, of 1.5 is required to ensure the wall stability,
both the present model and “Cartage LD” give this result for y, = 6 cm, while
“Cartage SD” gives only F, = 1.15.
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Fig. 5. (a) Influence of y, on the safety factor. (b) Influence of y, on the critical tensions and their

inclinations.

4.2.2. Influence of the position of a sheet in

the reinforced slope

Figs (6a and 6b) show the influence of the position hy of the sheet on the determina-
tion of the safety factor, the critical tensions and their inclinations for the case study in
Fig. 4 excepted that: (i) only one geosynthetic sheet reinforces the wall, (ii) the depth
h, varies from 0.5 to 4.5 m and (iii) a vertical top displacement y, = 4 cm is selected.
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Fig. 6. (a) Influence of h, on the safety factor. (b) Influence of h, on the critical tensions and their inclinations.

The variations of F, and T, are strictly increasing with h, for the present model,
while they pass through a maximum value for both assumptions of “Cartage” (around
hg = 3.5m for LD and h, = 4 m for SD).

The following comments may be added: (i) the scatter between the results of the
present model and those of “Cartage LD” concerning F, (Fig. 6a) is not significant
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(about 1.8%), (ii) concerning T4 (Fig. 6b), the scatter is larger (around 22%), and (iii)
“Cartage SD” gives much smaller values than the two other models for both F, and
T 5. The scatter with the present model is about 12% for F, and 137% for T,.
Finally, concerning the inclination a, given by the present model (Fig. 6b), it
increases significantly (about 42%) when the depth increases from 0.5 to 4.5 m.

4.2.3. Influence of the number of reinforcement sheets

Fig. 7 shows the influence of the number of reinforcement sheets on the determina-
tion of the safety factor for the case study in Fig. 4 excepted that the wall is reinforced
by one to four geosynthetic sheets, and a top vertical displacement y, = 4 cm is
selected. The spacing between the reinforcement sheets is constant.

It shows that (i) the variations of F; are similar for the three models, (ii) the safety
factor increases with the number of reinforcing sheets, (iii) the results given by the
present model are quite close to those of “Cartage LD” (average scatter of 1.5%), and
much greater than those of “Cartage SD” (average scatter of 27%). Note, that for
a number of reinforcement sheets greater than 2, the present model gives larger values
than “Cartage LD”. This is probably due to the fact that the present model allows for
the inclination of the reinforcement tensions, and therefore a larger mobilisation of the
geosynthetic sheets. The scatters between these two methods are 2% for three sheets,
and 6% for four sheets.

If a safety factor of 1.5 is required to insure the wall stability, then both the present
model and “Cartage LD” give this result for three reinforcement sheets, while
“Cartage SD” gives only F, = 1.15 in this case.

Finally, Fig. 8 shows the distribution of T, along the failure surface for the three
methods and w4 for the present model in the case of four reinforcement sheets. For the

¢=40° c=10kPa y=20kN/m’
H=5m q=0kPa y=4cm
Reinforcements (1 to 4 sheets) :
| J=800KN/m tamin=20% L=Sm
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"_—k—
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Fig. 7. Influence of the number of sheets on the safety factor.
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Fig. 8. Distribution of the reinforcement tension along the failure surface case of four reinforcement sheets.

present model, these distributions are very similar to those of Fig. 6b. As in the two
previous sections, “Cartage SD” gives much smaller results than those of the two
other. Concerning “Cartage LD”, T, is the same as that from the present model for
the upper sheet, then the present model gives larger values, and the scatter between the
two methods increases with the depth (from 1 to 32%).

5. Conclusion

A new development of the French “displacement method” for geosynthetically
reinforced slope stability analysis has been presented in this paper. The variational
limit equilibrium method, which has already been applied with success to the case of
unreinforced slopes (Baker and Garber, 1977), has been presently used for the global
stability analysis of geosynthetically reinforced slopes. The local stability analysis of
the present model, which is performed independently from the global one, is presented
in a companion paper (Lemonnier et al., 1998).

The present analysis has shown that the results obtained by Baker and Garber
(1977) are still valid in the present case. Indeed, considering a safety factor F, defined
with respect to the shear characteristics of the soil, the critical shape of the failure
surface (i.e. the one giving the minimum value of F,) is a log-spiral of angle ¢, (reduced
friction angle). Furthermore, the three limit equilibrium equations of the sliding mass
are all satisfied, and no assumption has been made concerning the normal stress
distribution along the failure surface.
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A computer program has been performed for the implementation of this model. Its
use has shown that the model is rather complex from the numerical point of view. It is
due to the nonlinearity of the implicit equation in F,, together with discontinuities of
some functions occurring in the calculation process. These discontinuities are induced
by the consideration of the reinforcement tensions.

A parametric study has been presented in order to show the influence of several
geometrical parameters on the analysis in the case of a 5 m high reinforced vertical
wall. The following results have been obtained: The safety factor and the reinforce-
ment tensions, as given by the present model, increase with (i) the vertical displace-
ment at top of the wall; (i1) the depth at which is placed a unique sheet; and F, increases
with (iii) the number of reinforcement sheets.

Finally, the results obtained from the original “displacement method” (“Cartage”
Software), which considers a simplified modelisation of the membrane with two
different assumptions (small and large displacements, the reinforcement tensions
remaining horizontal), have been compared to the present ones. It has shown that the
assumption of small displacements gives much smaller values in terms of the safety
factor and of the reinforcement tensions, compared to those of the present model and
those of “Cartage large displacements”. These two latter models give quite the same
results in terms of safety factor. Finally, it can be concluded that this comparative
study seems to show that the present model (i) is less conservative than the original
“displacement method” in the case of the small displacements assumption, and (ii)
gives very close results to the ones of the large displacements assumption.
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