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Abstract

This, and a companion paper (Lemonnier et al., 1998), present a theoretical model, allowing
the assessment of the safety factor of a geosynthetically reinforced slope. The present paper
deals with the local stability problem, that is the determination of tension and strain distribu-
tions in the reinforcements. The global stability analysis of the reinforced slope, which includes
this local stability analysis for each sheet of reinforcement, is described in the companion
paper. As an improvement of the French ‘displacement method’, (Gourc et al., 1986), the
present theoretical model for the local stability analysis is based on the anchored membrane
concept. Its originality is the use of the variational calculus applied to the equilibrium of the
membrane. It allows the determination of the optimal shape of the membrane, which gives the
minimal tension at the failure surface. This optimal shape has been found to be a log-spiral.
A numerical study shows the influence of several geometrical parameters on the determination
of the reinforcement tension. Finally, a case history comparison involving results obtained
from six current design methods is presented and discussed. © 1998. Published by Elsevier
Science Ltd.
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1. Introduction

The problem of internal and external stability is one of the most important in the
design and analysis of geosynthetic reinforced soil slopes. The internal stability
includes the rupture of reinforcement and pullout failure. The external stability
includes sliding, overturning, bearing capacity and overall stability. The majority of
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methods available in literature concerning the determination of the safety factor
against failure are based on lateral earth pressure considerations (Steward et al., 1977;
Broms, 1978; Collin, 1986; Bonaparte et al., 1987) or employ the approach commonly
used in conventional slope stability analysis, modified to account for the inclusion of
the tension in the reinforcements (Blanchier, 1982; Leshchinsky and Reinschmidt,
1985; Delmas et al., 1986; Hird, 1986, Huisman, 1987; Low et al.,, 1990; Kaniraj, 1994).
The latter methods have used different assumptions concerning the magnitude and the
inclination of the reinforcement tension at the failure surface. The different directions
that have been assumed by some investigators are (1) horizontal (Leshchinsky and
Reinschmidt, 1985; Delmas et al., 1986; Hird, 1986), (2) tangential to the failure surface
(Delmas et al., 1986), (3) in the direction of the bisector to the horizontal and the
tangential directions (Huisman, 1987; Low et al.,, 1990; Kaniraj, 1994) and (4) ortho-
gonal to the radius of the log-spiral slip surface (Leshchinsky and Reinschmidt, 1985).

Furthermore, there is a number of other design methods available for geosynthetic
reinforced slopes based on a displacement approach. These methods have considered
a prescribed displacement at the top of the slope in order to mobilise the tensions in
the reinforcements. The original method, called the ‘displacement method’ (Gourc
et al.,, 1986), is being widely used in France and in several other countries for the
design of such structures. The use of this method to estimate the failure limit state
of such structures can now be considered to give satisfactory results. Geotechnical
engineers have built up this reliance from several experimental investigations and
theoretical validations all over the world (GourGourc et al.,, 1992; Gourc et al.,
1992; Yoshioka et al., 1990; Delmas et al., 1992; Fidler et al,, 1994). This method
1s based on the principle of soil limit equilibrium, associated with the anchored
membrane behaviour of the geosynthetic reinforcement. The original method
(‘Cartage’ French software) considered a simplified mechanism for this membrane
(rectilinear shape). Later on, a more rigorous mechanism (circular shape) was pro-
posed. The advantage of this method is its ability to take into account the extensibility
of the reinforcements in the design, which is a major characteristic of geosynthetics.
Also, it allows one to take into account the complex soil-geotextile interaction
mechanism that actually occurs, and one can check the soil-reinforcement strain
compatibility.

In this paper, an extension of the ‘displacement method’ presented by Gourc et al.
(1986) is proposed. It allows the determination of the geometry of the membrane,
which gives the minimum value of the tension in the reinforcement at the failure
surface and simultaneously satisfies the three static equilibrium equations of this
membrane using a variational approach. In the following section, the ‘displacement
method’ given by Gourc et al. (1986) is briefly reviewed, and then the present
variational formulation is presented.

2. Determination of the tension in the reinforcement

This study takes place in the general framework of geotextile reinforced slope
stability analysis. Fig. 1 shows a geosynthetic reinforced slope inclined at B (with the
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horizontal direction). This paper only considers the determination of tension T'; in the
reinforcement i at the intersection with the failure surface Y(X) (see Fig. 1).

As mentioned above, Gourc et al. (1986) have suggested a displacement approach
and have considered an anchored membrane in the neighbourhood of the failure
surface (see Fig. 2). They have made assumptions concerning the magnitude
and the direction of the uniform pressure distribution, p, applied to this membrane.
These authors have shown that the assumed distributions lead to a membrane
that has the form of a circle or a hyperbola, and to a constant tension in the
membrane.
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Fig. 1. Geotextile reinforced slope stability analysis.
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Fig. 2. Anchored membrane concept for geotextile reinforcement (Gourc et al., 1986).
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In this paper, a new method for the determination of the reinforcement tensions is
proposed. It is based on the following assumptions:

e The total membrane B, B, (see Fig. 3) is assumed to be symmetrical with respect to
point 4. This is in conformity with published results from model tests (Galera,
1990). Thus, tension T 4 in the geotextile sheet at point A, is determined by means of
the equilibrium of a half membrane,

e The location of maximum tension in the reinforcement coincides with the failure
surface,

e Tension T, is assumed to be tangential to the membrane since the reinforcement
has no flexion rigidity,

e The mechanical behaviour of the soil-reinforcement interface is characterised by
a friction angle ¢, and an adhesion c, that are assumed to be constant on both sides
of the reinforcement. These parameters should be determined by soil-geosynthetic
direct shear tests.

The present method includes the four following points (see Fig. 3):

1. Application of the variational calculus to the equilibrium of upstream membrane
AB, (upstream refers to the failure surface). It allows the determination of the
extreme shape of the membrane 4B, that (1) minimises tension T ,, and (2) satisfies
simultaneously the three static equilibrium equations of the membrane. This will
lead to a relationship between the tension forces at points 4 and B, (ie. T
and Tyy).

2. Determination of tension Tjp,, using the tension—displacement relationship of the
anchorage B, F. This relationship allows the determination of the tensions T and
the relative soil-geotextile displacements u at any point of the anchorage as
functions of uy (relative displacement at point F). This calculation scheme is based
on the work of Gourc et al. (1986);

3. Determination of unique solution for u, value, and consequently for 7,, using the
displacement compatibility equation of the upstream zone.
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Fig. 3. Anchored membrane. Notations.
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4, Equilibrium of the downstream membrane in order to check the validity of the
solution with respect to the failure by breakage or sliding of the reinforcement.

Note that points 1, 3 and 4 are new considerations, whereas point 2 is part of the
existing ‘displacement method’. These four points are detailed in the following
sections.

2.1. Variational approach applied to the membrane

As shown in Fig. 3, a geosynthetic reinforcement is placed at a depth h; below the
ground surface, and subjected to a known vertical displacement y, at point A. Note
that, for the purpose of clarity, the representation of y, in Fig. 3 is exaggerated.

B,, B, are the unknown points of the reinforcement that separate the anchored and
membrane zones. Thus, the two zones GB, and B, F, which behave as anchorages,
remain horizontal, whereas the zone B,B,, which behave, as a membrane, gets an
unknown shape. In the following, we are looking for the shape of this membrane that
gives the minimum value of the reinforcement tension at the failure surface. The
justification of such a statement is that when a state of limit equilibrium is reached, the
upstream membrane 4B, and the neighbouring soil deform in such a manner to attain
the least lateral pressure as possible by developing the active zone, that is to mobilise
the minimum value of T,.

Thus, the problem is to assess the unknown tension force T, (magnitude and
direction: T, (x,). As shown in Fig. 4, upstream membrane AB, is described by an
unknown function y(x) in the (4, x, y) coordinate system. It is subjected to tension
T, at point A4, to tension T, at point B; and finally to normal and tangential stress
distributions ¢, and 7, (resp. ¢ and 1) on the upper (resp. lower) face of the membrane.
The equilibrium equations are given as follows:

o Horizontal equilibrium;

4 4
(tcos{ — osin{) ds+j(rlcosg“+alsin{)ds (L.1)
[¢]

T cosay =Ty, +f

0

Y G C: B, T
(2 J A g
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Fig. 4. Free body diagram of upstream membrane AB,.
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e Vertical equilibrium:

/

(4
T sina, = J (tysin{ — o4 cos {)ds + f (rsin{ + o cos {)ds (1.2)

0 0

¢ Moment equilibrium around point A:
,
Tpy: = f [(e —oy)sin{ —(z —1,)cos )y
0]

+((t + ty)sin{ + (60 — g,) cos{)x] ds, (L.3)

where { = {(s) represents the inclination of the membrane at point M to the
horizontal direction, (x,, y;) are the coordinates of point B, in the local (4, x, y)
reference system, s is the curvilinear coordinate of point M, and £ is the length of the
membrane (i.e. AB,).

Note that tension T g, which appears in these equations, is determined through the
equilibrium of the upstream anchored zone B4 F (see Fig. 3) as will be shown later.
Furthermore, one assumes that a state of limit equilibrium is reached for the
soil-membrane interface and that the Mohr—Coulomb criteria are satisfied on both
sides of the membrane.

T =0tgd, + ¢,

2
(1, = 011g,) + ¢, @

The quantity T, required to bring the soil-membrane interface to a state of limit
equilibrium depends on the choice of the three functions y(x), a(x) and ¢(x). Note that
the friction on this membrane is mostly mobilised on the concave face (i.e. on the
lower face of this membrane). Therefore, the authors think that it would be dangerous
to make any assumptions concerning the normal siress distribution on this face [i.e.
a(x)]. However, the normal stress distribution ¢, on the upper face of the membrane is
essentially due to the soil weight above this membrane. Hence, T 4 necessarily depends
on depth h, (see Fig. 3). Now, this term does not appear in the equilibrium equations
(Egs. (1.1,1.2,1.3,2), (1.2,1.3,2), (1.3,2) and (2)). Thus, in order to relate T, to hg, four
different assumptions (namely models 1-4) concerning the ¢, distribution are made.
They are defined as follows:

1. Model 1: One assumes that o, the resultant of the elementary stresses ¢; and
g1 tg ¢, equals soil weight above the membrane (see Fig. 5):

as:7h+q

where 7 represents the effective unit weight of the soil, h the height of soil above
point M, and ¢ the uniformly distributed normal surcharge at the top of the
reinforced slope. Thus, o, stress can be written as follows:

oy = (yh + g).cos P, (3)
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Fig. 5. Model 1 for o, distribution.

2. Model 2: The magnitude of the normal stress is expressed as follows:
gy = (vh + gq) cos® { 4)

This expression of ¢, is sometimes called the ‘Fellenius stress’ in the slope stability
analysis. Indeed, it refers to the equilibrium of a vertical slice of soil whose base is
inclined at { to the horizontal direction, assuming that interslice forces are parallel
to the base of each slice. Fig. 6 shows the normal stress ¢; and the resultant stress
o, as defined in model 1. .

3. Model 3: This model is the one proposed by Faure (1986) in his slope stability
analysis method. The principal directions are assumed to be the horizontal and
vertical ones. The principal stresses are thus expressed as follows:

6, =vh +q on a horizontal facet

o, unknown on a vertical facet

Then, the normal stress o, that acts on a facet inclined with an angle { to the
horizontal direction, can be assessed by a simple construction of the Mohr’s circle.
It can be written as follows:

h 1 —cos 2 _1
o= (4 cosar) 4+ 082 | GleosA — D)
2 ta* E_Jrﬁ t E+?§
9\37 2 A VI

4. Model 4: This model is based on the assumption of Bishop concerning inter-slice
forces in his slope stability analysis method. The normal stress ¢, which acts on
a base of a slice inclined with an angle { to the horizontal direction, corresponds to
the equilibrium of a vertical slice of soil whose inter-slice shear forces are neglected.
Thus, the following expression is obtained:

(5)

yh —ctgl + g

g1 = L T
1 + tgegtgl

In the following, the variational calculus is applied to the equilibrium of the

upstream membrane AB; considering model 1, then the obtained results will be
extended to the three other models.

(6)
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G = (Y.h+q).cosx{

o = (7. h+ q).coszwgg 1
S cos g, /

Fig. 6. Model 2 for o, distribution.

2.1.1. Variational approach—Model 1

The normal stress distribution g, is given by Eq. (3). The depth h of soil above
M can be expressed in the local (4, x, y) coordinate system (see Figs. 3 and 4) as
follows:

h=hg+ s~y (.1
Furthermore, one can write
and
dx
ds = . 73
’ cos{ (7.3)

Substituting Egs. (2) and (3) into Egs. (1.1,1.2,1.3), (1.2,1.3) and (1.3), taking into
account Eqgs. (7.1,7.2,7.3), (7.2,7.3) and (7.3), three limit equilibrium equations of the
upstream membrane can be expressed as follows:

X1

0

Tycosa,=Tp + f [ZCg + altgdy — V) + k[y(hy + y1 — y) + ¢]

y sin ({ + ¢,,)] dx

cos {

(8.1)

Xy

0

Ty sina, = J [chy' + altgde.y' + 1) — k[y(hy + y1 — y) + q]

x M—-—j———w]dx (8.2)

cos .
w |kl + y1 — y) + q] [Sm g):g(p“) y+ Cosc(i:g 2 xJ
=Ty, = J. dx.

0

+ [2¢, + o(tgdy — y')]y — [2cy’ + rtgdy — ¥ + 1)]x

(8.3)
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Note that T, appears in the two equilibrium Equations (8.1) and Eq. (8.2). This
tension may be expressed from one of these equations, in terms of the two functions
y(x) and o(x). The quantity T,, for which the membrane attains a state of limit
equilibrium, depends in general on the kinematical and the statical functions y(x) and
a(x), respectively. Therefore, T, is a functional of two functions. This functional is
termed the tension functional, and the critical tension T 4,;,; is the minimum value
of Ty:

Tamini = min T {y(x); 0(x)} = Ty[ydx), (0(x)],

»o

where y(x) [resp. o.(x)] defines the critical shape of the membrane (resp. the critical
normal stress distribution). The problem of the equilibrium of the membrane can now
be stated as follows: find a pair of functions y(x) and ¢.(x) that realises the minimum
value T 4min; (critical tension) of the tension functional T ,, such that the three limit
equilibrium equations (Eqgs. (8.1,8.2,8.3), (8.2,8.3) and (8.3)) are satisfied. This problem
is solved using variational calculus as proposed by Baker and Garber (1977) in the
case of unreinforced slope stability analysis. The calculus is briefly presented here. The
reader can find more details elsewhere (Lemonnier, 1995).

The terms cosa, and sin «, that appear, respectively, in Eq. (8.1) and (8.2), give the
tension functional a particular property: its dependence on y;, which represents the
slope of the membrane at point A. Indeed, if we choose Eq. (8.2) to define the
functional, the problem can be expressed as follows:

0

, Ve, :
minT, = J { N : [2cgy +0(tgpey + 1) — [y(hg + y1 — y) + 4]
Yo

« M]} dx o
cos{ ,
subject to the two following constraints:
) ’ sin ({ +
J [2cg + Ue(tg¢g - ye) + ["/(hg + yl e ye) + q] _____ﬁ]dx
0 cos {
= T Amini COS X4 — T, 9.2)
sin ({ + cos (¢ +
X1 [y(hg + Vi — ye) + q] (Q ¢g) Ve + (C ¢g)x +
J cos { cos {
dx
" |[2ee + oo ltgdy = vl ye = 2y ve + 0019 — v+ 1] x
- e 9.3)

where the angle a4, corresponds to the inclination of T 4, that is to the critical
position. Egs. (9.2) and Eq. (9.3), which are the integral constraints, are derived from
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Egs. (8.1) and (8.3), respectively. The tension functional can be reduced to the
following form:

JZJ TA(x?y’y’Os y,.,O')dX
0]

Note that one endpoint of the functional is null, and the other (i.e. x,) is variable.
Furthermore, the two integral constraints are of the following type:

f ki(x,y, ¥, vo,0) = x; Vie{l,2,3},
4]

where k; and x; are obtained by identification. Thus, this problem is a standard
isoperimetric one with a variable endpoint. The solution to this problem can be
obtained using the method of Lagrange’s undetermined multipliers. Following the
same procedure as in Baker and Garber (1977), an auxiliary function R may be
introduced as follows: R = F + (; K, + A,K,, where F, K,, K, are intermediate
functions.

Therefore, the functions y,.(x) and o,.(x) that constitute the solution to the problem
have to satisfy the following conditions:

1. Two Euler differential equations for the function R, namely:
First equation:

d
R, — —

Ro, =0 10.1
dx Te (10.D

Second equation:
R, — YRy =0 (102)
Ye dX Ye = .

2. Two integral constraints (Egs. (9.2,9.3) and (9.3)).
3. Two boundary conditions for each end-point:
o fixed end-point 4: x =0 and y = 0.
o variable end-point B;: x = x;. For this type of end-point, a variational boundary
condition, known as the transversality condition, is to be satisfied.

2.1.1.1. First Euler equation.

R is independent of ¢, and dependent on g, (cf. Egs. (9.1,9.2,9.3), (9.2,9.3) and (9.3)),
the first Euler equation (Eq. (10.1)) is a first-order differential equation in y, only.
Solving this equation in terms of polar co-ordinates (r,, 6,), one obtains

P = ry 00 00Wh:, (11)
Eq. (11) represents the equation of log-spirals of angle ¢,, with pole at (x,, y.) (see
Fig. 7).

As shown in Fig. 7, r, decreases when angle 6, increases, for ¢, # 0. In case of
¢, = 0, r, remains constant when 0, varies; thus, one obtains, in this case, a circle
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Fig. 7. Shape of the upstream membrane from the present variational analysis.

whose radius is r,. At point B,, the tangent to the membrane remains in the
horizontal direction. This condition implies that angle 8, is constant and equals
(n/2 — ¢,). Consequently, the family of possible critical shapes of the membrane is the
one of log-spirals, which are defined by only one parameter, ie. angle 8,,. Further-
more, note that the log-spiral has a particular geometrical property, that the resultant
of the elementary forces (¢ ds) and (tg¢, o ds) passes through the pole C of the spiral.
Hence, the moment equation about the pole is independent of the stress distribution
o(x) and may be used for the determination of the critical tension T 4ui.;. The two
remaining equilibrium equations may be satisfied by every o(x) distribution that has
two degrees of freedom. Thus, one may find the critical 0,; value that simultaneously
satisfies the moment equation (Eq. (12.1)) and gives the minimum value of T, (Eq.
(12.2)). This is done by a one-dimensional minimisation procedure of T 4 with respect
to O, .

Ymdfe1) =0 Ty =T 0,1, Tp) (12.1)

T gmini = min (T 4). (12.2)
9x|
2.1.1.2. Second Euler and transversality equations.

Since the aim of this study is the determination of the critical tension and its
inclination, the results obtained so far are sufficient to solve the problem. Indeed, it
has been shown by Baker and Garber (1977), in the case of unreinforced slope stability
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analysis, that the second Euler and the transversality equations give the normal stress
distribution o(x). In the present analysis, it is also the case, but since the o(x)
distribution is not necessary to assess Tymin; and oy, we will not express these
equations.

2.1.2. Variational approach—Other models
Let us note o} the o, distribution corresponding to model i (i = 1, 2, 3 or 4), then
Egs. (3)H6) may be expressed as follows:

o = si(yh + g)cos ¢,

where
S = 1
. cos?{
27 cosg,
- —1
5= I 4 cos 20 + 1 — cos 2 cglcos 20 — 1)
2cos ¢,

+
tg2<g + %) tg <g + %)(wh +4q)
(yh + q) — c,tg

% = oot de(vh + @)1 + tgpgtgl)’

Thus, by multiplying ¢, corresponding to model 1, by a coefficient s; defined above,
one obtains ¢}’ corresponding to model i. However, these coefficients depend on y(x)
and y'(x) (through h and {, respectively), but are independent of the o(x) distribution.
Consequently, since the first Euler equation concerns the partial derivative of the
functional with respect to o(x), one can easily show that the variational calculus
applied to the three other models gives the same conclusions obtained for model 1.
Nevertheless, the critical tension is not the same for each model.

2.2. Equilibrium of the downstream membrane

As mentioned above, membrane AB, is assumed to be symmetrical to AB; with
respect to point A. Thus, membrane AB, is subjected to (see Fig. 8): critical tension
T 4mini; tension Tg,, which remains horizontal; normal and tangential stress distribu-
tions ¢, and 1, (resp. ¢’ and 7’) on the lower (resp. upper) face of the reinforcement.

Furthermore, the following assumptions for zone AB, will be adopted here:

1. A state of limiting equilibrium is assumed to occur on both faces of downstream
membrane AB,, that is:

T =a'tgp, + ¢,

(13)
T, =0,tgP, + ¢
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Fig. 8. Free body diagram of downstream membrane AB,.

2. The interface friction is mostly mobilised on the concave face of the membrane, that
is on its upper face. Thus, no assumption will be made for the ¢’ distribution.

3. Concerning ¢, distribution, an assumption is presently made in order to simplify
the resolution: it is assumed to be null, that is the membrane decollates at its lower
face.

Note that the two first points are the same as for zone AB,, whereas point 3 is
different.

Thus, writing the only moment equilibrium equation about the pole of the known
log-spiral defining AB, zone, one obtains Ty, without any assumptions concerning
normal stress distribution ¢’(x). For the same reason as for the upstream membrane,
the two other force equilibrium equations are implicitly satisfied.

2.3. Tension—displacement relationship of the anchorage

To determine the tensions in the anchorage, one considers the model of the
soil-geotextile interaction proposed by Gourc et al. (1986). It is based on the following
two relationships (see Fig. 9):

1. A linear elastic tension—strain relationship for the geotextile:
T = Je, (14)

where T is the tension force, J the tensile stiffness and ¢ the strain in the geotextile;
2. An elasto-plastic relationship for the friction behaviour of the soil-geotextile
interface:

{lu if u<u,
T =

T, if uzu,

(15)
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model of the interface

T
T T (N/m) behaviour
T
Tllm et ieiieettrataesctcscacas ‘ \
real stress-strain
i relationship of the
i interface
J : Al
1 F e® of1 u
o Eim Up
a) Tension-strain relationship b) Stress-displacement relationship
of the geotextile. of the soil-geotextile interface.

Fig. 9. Tensile and friction behaviour of the inclusion.

where 7 is the mobilised shear stress at any point M of the interface, u the relative
soil-reinforcement displacement at this point, A the slope of the straight line that
characterises the elastic behaviour of the interface, 7, the ultimate shear stress and
u, the minimum value of u that mobilises 7, (see Fig. 9(b)). The relative displace-
ment u, should be determined by a laboratory friction test.

Thus, considering that a state of limiting equilibrium is reached on both
soil-geotextile interfaces, the Mohr—Coulomb criterion has to be satisfied:

T, = Oatgd, + ¢, (16)

Combining Eq. (14) with Eqgs. (15) and (16) for each anchorage zone, one obtains
two relationships giving the displacement u and the tension T at any point of the
anchorage for a prescribed boundary condition at point G (see Fig. 3). This boundary
condition may be either: (1) free anchorage where T = 0 and ug # 0, or (2) fixed
anchorage where T; # 0 and ug = 0. Let us consider the free anchorage; then these
relationships may be reduced as

Ty, = f(up), (17.1)
Ty, = f(ug) (17.2)

Note that zones GB, and B, F (see Fig. 3) are characterised by the rates of linear
behaviour of these zones (called ta; and tay, respectively). These rates are defined as
the ratio of the length of the portion that behaves linearly (called x,s and x,p,
respectively) over the total length of the anchorage for each zone (B, F and GB,,
respectively):

xpF
tay = —~—
=BT
XpG
tag = —=
¢ GB,
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These computed rates (tag and tay) have to be larger than a minimum value fapyn;
prescribed by the designer:

tag > tnini
tag > lQmini

These conditions assure the non-failure of the geotextile reinforcement by lack of
adherence (sliding of the sheet).

2.4. Displacement compatibility

The analysis done so far leads to a problem with one degree of freedom. That is, the
critical tension and its inclination depend on the relative displacement uy (cf. Egs.
(12.1,7.1) and (17.1)). The missing equation is the one that allows the satisfaction of the
displacement compatibility for the zone AF of the geotextile. Indeed, one must verify
that the original length of the geotextile reinforcement in the resistant zone plus the
corresponding change in length due to the extension must equal the total length after
deformation. This condition allows the determination of a unique u; value and thus
(T, u) distributions along the reinforcement.

Since the displacement of point A of the reinforcement is led by the global failure
surface of the slope, the displacement compatibility condition depends on the location
of this surface. To express this condition, it has been assumed that the global slip line
is a log-spiral characterised by two angular parameters 6, and 6,, as shown in the
companion paper. Fig. 10 shows such a line in a wall reinforced by a geotextile sheet.
The reinforcement is represented before (dashed line) and after (bold-faced) deforma-
tion of soil. The upstream zone of the reinforcement includes two different parts:

e Curvilinear zone 4, B, corresponding to the deformed membrane. Before deforma-
tion, this zone was rectilinear and of length A4yBy;

2

global log-spiral

o (sisant one

B] Bo Fl FO
A .
local log-spiral

Fig. 10. Displacement compatibility.
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e Rectilinear zone B, F corresponding to the deformed anchorage. Before deforma-
tion, this zone was of length B,F,.

Let us note Al, and Al, the respective changes in length of zones A,B, and
By F,. Thus, the displacement compatibility equation may be written as follows:

AlBl +BIF1 :A0F0+A11 +A12 (18)
Length B, F, may also be expressed as follows:
BIFI =BlFo—uF=AOF()—AoBl _uF. (19)

Substituting Eq. (19) into Eq. (18), one obtains the displacement compatibility
condition:

u}+AoBl _AlBl +All +A[2=0 (20)

It has been shown (Lemonnier, 1995) that Al, may be expressed as a non-linear
function in terms of up. Therefore, the unique theoretical uy value, satisfying the
compatibility condition, is reached by means of incremental calculation until Eq. (20)
is satisfied. Thus, for any u, value, one has to determine four terms: 4,B,, 4, B,, Al,
and Al,. These terms may be expressed with respect to (1) the angular parameters of
both the global and the local log-spirals; (2) the polar co-ordinates of point A4, (i.e. 6;,
ri, see Fig. 10); (3) the length of the upstream anchorage zone I, = B,F,; (4) the
mechanical parameters of the soil-geotextile interface and of the inclusion: 4, J, 755 (5)
the relative soil-geotextile displacement uz (Lemonnier, 1995). In the following, for the
purpose of clarity, Eq. (20) is reduced to v(uz) = 0.

3. Computational procedure

Fig. 11 represents the flow chart giving the computational procedure to obtain the
critical tension T 4p;y; and its inclination o 4,. The design data are the soil-geotextile
friction angle and adhesion (¢, c,), the soil unit weight 7, the depth of soil over the
reinforcement h,, the vertical local displacement y,, the tensile stiffness J of the
geotextile, the initial length of the reinforcement in the upstream zone L,, the minimal
value of the rate of linear behaviour of the anchorage tan;,; and finally the parameters
defining a particular failure surface.

Note that each uy value corresponds, if it exists, to T 4min; and a4, values. Tension
T4mini has to satisfy the two following conditions (see step 5, Fig. 11):

e It should not exceed the allowable tensile force to avoid failure of the reinforcement;
e It should not exceed the available adhesive and frictional forces along the reinforce-
ment length A, F, to avoid sliding of the reinforcement.

Now, a unique u; value satisfies the displacement compatibility condition (see step
6, Fig. 11): our) = 0. Thus, steps 2-6 have to be executed for different u values until
this condition is satisfied.
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1. Equilibrium of the resistant zone
(AB+BF) :One imposes an initial value
UF=UEmax(Urmax COrresponding to tap=tany;n)

| 2, Minimisation of T with respect to 6

3. One obtains : Tamini» Ogim: Cam and (u, T)
distribution along the reinforcement
¥
4. Equilibrium of the active zone (AB+B,G)|

5. Check failure criteria:
e Tamini < Tmax
e taG > tamin

5.a. decrease
of ur and
return at step 2

6.a. Increase or
ol|decrease of ur
according to v(uf) sign
and return at step 2

yes

6. Compatibility 7 \2
(i.e. 1v(up) I <€ )

yes
7. Solutions: T amini, Bglm, Olam

Fig. 11. Flow chart showing the calculation scheme of tension T pmin;.

4. Numerical resuilts

The present theoretical analysis is now completely defined. In this section, one
firstly presents a parametric study concerning a unique geotextile sheet reinforcing
a vertical wall (see Fig. 12). The influence of uy, L, and y, on the determination of the
reinforcement tension T ,, in case of model 4 of the ¢, stress distribution, is presented
and discussed. Then, the influence of the different assumptions (i.e. models 1-4)
concerning the o, stress distribution on the determination of the reinforcement
tension, is presented. Secondly, a comparative case study, with results obtained from
other current design methods and with some data measured in situ, is presented and
discussed.

4.1. Parametric study

4.1.1. Influence of relative soil-geotextile displacement ug

Fig. 13 shows the variation of T 4 versus 6,, for several uy values. It appears that for
each ur value, there is one 0, value that realises an absolute minimum for function
T 4. These numerical results confirm the theoretical ones concerning the application of



18 P. Lemonnier et al. [ Geotextiles and Geomembranes 16 (1998) 1-25
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interface : ¢y=20° ; cg=0kPa ; uy=Scm
geotextile stiffness:J=800 kN/m

Soil : y=20 kN/m’

-~ Failure surface of the reinforced slope
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Fig. 12. Case study.
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Fig. 13. Variation of T, versus 6, for ur = 5-30 mm (Model 4).

the variational calculus to the upstream membrane. This minimum is the critical

tension T ymy; relative to this uy value, and is reached at an angle u,, which gives the
optimal inclination 6, ,, Of T 4p;n; as follows:

Ut = Oy + @y — g
This minimum value T,,,;.; increases, and 0,,m decreases when uy increases. That
means that a greater up value corresponds to a lesser « 4, value, that is the membrane
tends to become flatter.
Fig. 14 shows the influence of ur on the location of the critical position of the
upstream membrane. It clearly shows that (1) the membrane tends to become flatter as
the up value increases; (2) T, variation is similar to that of T 4minis (3) these tensions
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Fig. 14. Critical positions of the membrane for uz = 1-5 mm (Model 4).

increase significantly with uy and (4) tension T y;s; is always greater than tension Ty, .
Note that point (4) concurs with the assumption concerning the location of maximum
tension in the reinforcement (cf. Section 2).

4.1.2. Influence of the anchorage length in the upstream zone

Fig. 15 shows the variation of the critical position of the upstream membrane for
a fixed uy value (5 mm), the total anchorage length in the upstream zone L, varying
from 2 to 3.5 m. It shows that when L, increases, the membrane tends to become
flatter and tensions Tymin; and Tjp, increase significantly.

4.1.3. Influence of the vertical displacement of point A

In this section, the length L, = 2.5 m is considered. Fig. 16 shows the variation of
the critical position of the upstream membrane for a fixed uy value (5 mm), the vertical
displacement y, of point A, varying from 1 to 4 cm.

It shows that when y, increases, (1) the critical tension T,n;,; increases slightly;
(2) tension T 5, decreases slightly; (3) o 4,, increases; and (4) the length of the membrane
increases.

4.1.4. Influence of the model of the o stress distribution

Fig. 17 represents the variation of T 4,;n; and oy, versus uy for the four proposed
models of the o, stress distribution. It shows that these distributions have a negligible
effect on the determination of T 4, for all up values considered. Concerning o,
there is a significant effect for small uy values. From a particular uy value (approxim-
ately 7 mm), the four models give quite the same results. The influence on the moment
of tension T 4pin; about the pole of the given global log-spiral has also been considered.
The results, which are not presented in this paper, are very similar to these ones.
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Fig. 15. Critical positions of the membrane for L, = 2 to 3.5 m (model 4).
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Fig. 16. Critical positions of the membrane for y, = 1-4 cm (model 4).

4.2. Comparative case study

In this section, the results obtained from the present model are compared with those
obtained from some of the most current design methods available for geosynthetically
reinforced slope stability analysis in the case of a large-scale model geogrid reinforced
wall [presented in a paper by Bathurst et al. (1988)]. Fig. 18 shows the geometry of
this wall, which is referred to as the RMC model wall (Royal Military College
of Canada). The surcharge of 50 kN/m, acting on top of the wall, was the one
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Fig. 17. Influence of the ¢, stress distribution on T spin; and a,,, as given by the present four models.
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Fig. 18. RMC model wall configuration [after Claybourn (1990)], and failure surfaces considered in the
design methods.

corresponding to failure. The above-mentioned current design methods were already
applied to this model wall by Claybourn (1990). These methods are:

AN o e

Broms (1978) method;
Collin (1986) method,;
Bonaparte et al. (1987) method,

Schmertmann et al. (1987) method.

Forest service method (Steward et al., 1977, revised 1983);

Leshchinsky and Reinschmidt (1985) method;
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These methods may be classified into two main groups:

1. The first one includes methods (1){4) (referred to as the tied-back wedge methods),
which are based on lateral earth pressure considerations. That is the reinforcement
tensions, which are assumed to act in the horizontal direction, balance the horizon-
tal forces due to lateral earth pressures tending to cause instability. In these
methods, a planar failure surface through the reinforced mass described by
a Rankine active failure condition is typically presumed.

2. The second one includes methods (5) and (6), which are based on the approach
commonly used in conventional slope stability analysis (i.e. analysis of stresses on
a failure surface) modified to take into account the effect of the reinforcement
tensions. Method (5) is based on a variational approach applied on limiting
equilibrium analyses. Method (6) is based on limiting equilibrium analysis using
wedge failure models.

Because of the significant variations among the methods, Claybourn (1990) has
chosen to consider the ultimate wide width reinforcement tensile strengths and set all
safety factors to 1.0. This author has then presented the results, in terms of reinforce-
ment tensions, obtained from the different methods along with the measured rein-
forcement stress reported by Bathurst et al. (1988). These results, together with those
obtained from the present model, are presented in Fig. 19. The latter results corres-
pond to a particular value of the vertical displacement on top (y, = 19.7 mm) for
which the minimum factor of safety F, equals 1, considering a log-spiral as failure
surface (see companion paper).

—e— Bonaparte W

—u— Forest Service
1 —a— Schimertmann

~—3— Broms

n

: —%— Collin
I —e— Leshchinsky

[ —-4—- measures

w

Layer from top to toe

' +-+0--- Present model

4 + &

Calculated reinforcement tension (kN/m)

Fig. 19. Reinforced tension calculated for RMC wall configuration.
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Furthermore, the limit soil/geotextile displacement u, (cf. Fig. 9) that is required for
the present model is not available in the RMC wall report. Nevertheless, the influence
of this parameter on the determination of the reinforcement tension is not significant
(cf. Ratel, 1987). For the present case, the value of 2.5 cm for u, has been selected,
which is a realistic value according to several experimental studies on the determina-
tion of this parameter considering granular material reinforced with geogrids (Ratel,
1987; Gotteland, 1991).

The results presented in Fig. 19 show that the present model gives similar results to
those using Schmertmann et al.’s method in terms of the magnitude of the reinforce-
ment tension distribution along the failure surface. It should be noted that, among
these six methods, Schmertmann et al.’s method is (1) the only one that is specific to
geogrid-reinforced soil slopes and (2) except for the lowest sheet, the one that gives the
best prediction of the actual behaviour of the structure. However, the RMC Model
Wall report indicated that the low bottom layer stress was probably influenced by the
model set-up (Claybourn, 1990). Therefore, the comparison with the experimental
data, for the fourth layer, is meaningless.

In terms of acting direction of the critical tensions, methods (1)-6) consider it as
horizontal. Furthermore, method (5) considers also the reinforcement tensions acting
in the direction of the failure plane (for the Rankine active failure plane, the inclination
equals 71.5° with respect to the horizontal direction). The values of these inclinations,
obtained from the present model, are given in Table 1, in which the maximum
inclination values correspond to the direction of the failure plane. Since the inclination
of the membrane at the failure surface was not measured in this project, no compari-
son can be made with measured data. Nevertheless, the results from the present model
show that the inclination tends to increase with the depth, and that the values are
clearly smaller than the maximum one.

The obtained critical failure surface (log-spiral), shown in Fig, 18, is close to the plane
described by a Rankine active failure condition, and describes a bigger sliding mass.

Finally, in the RMC wall report, an effective reinforcement length is given
(L, = 1.189 m). This is the length beyond which the performance of the wall is
presumed (by the current design methods) to be unaffected by further lengthening of
the reinforcement for the loading condition at failure. The effective reinforcement
length obtained from the present model is slightly smaller L, ~ 1.07 m (a difference of
11.6%).

Consequently, this result and the one concerning the inclination of the critical
tensions show that, for this particular case, our model seems to be less conservative
than the current design methods.

Table 1
Inclinations of the reinforcement tensions as given by the present model

Layer number 1 2 3 4

2, (deg) 48.71 50.47 51.69 52.52
a, max (deg) 72.31 70.14 68.04 66.09
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5. Conclusions

All methods currently used for the design of geosynthetic reinforced slopes are
based on assumptions regarding the determination of reinforcement tension. The
present model is a more rational one since it allows the determination of these
tensions with a reduced number of assumptions. This reduction has been made
possible by the use of a variational approach together with the concept of the
anchored membrane (Gourc et al,, 1986). Thus, the variational calculus has been
applied to the equilibrium of the upstream membrane for a given ¢ stress distribution
on its upper face (model 1). The following results have been obtained:

e the shape of the upstream membrane that realises the minimum value of Ty, is
a log-spiral of angle ¢, with only one variable angular parameter 0 ;

e the critical tension T,.;,; and its inclination «,, are independent of the normal
stress distribution o (x) along the lower face of the upstream membrane y(x),

e the only moment equilibrium equation about the pole of the log-spiral is sufficient
to assess the tension T, and its inclination «, associated with this slip line. The two
remaining force equilibrium equations are implicitly satisfied, because every func-
tion of the normal stress distribution ¢ (x) that has at least two degrees of freedom is
a solution to the problem;

e Tymini is Obtained by an unidimensional minimisation procedure with respect to 6.

Three other o, stress distributions have been proposed. It has been shown that (1)
the above results are also valid for these three models, and (2) a numerical study has
shown that these four models give quite the same results for the critical tension T'; and
its inclination «;. Furthermore, the influence of the anchorage length and the vertical
local displacement of the membrane on the critical position of the membrane have
been shown. Finally, a comparative case study, with results obtained from other
current design methods and with some data measured in situ, has shown that, in that
particular case, our model gives (1) a satisfactory prediction of the behaviour of the
reinforced structure in terms of magnitude of the reinforcement tensions, and (2) seems
to be less conservative than the current design methods.
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