
Improved Subset Simulation for the SLS Analysis of Two Neighboring Strip 
Footings Resting on a Spatially Random Soil 

 
 Ashraf Ahmed1 and Abdul-Hamid Soubra2 

 
1University of Nantes, Department of Civil Engineering, Bd. de l’université, BP 152, 
44603 Saint-Nazaire cedex, France. PH: (0033)240905106; FAX: (0033)240905109; 
email: Ashraf.ahmed@univ-nantes.fr,  
2University of Nantes, Department of Civil Engineering, Bd. de l’université, BP 152, 
44603 Saint-Nazaire cedex, France. PH: (0033)240905108; FAX: (0033)240905109; 
email: Abed.Soubra@univ-nantes.fr,  
 
ABSTRACT  

 
The computation of the failure probability of geotechnical structures with the 

consideration of the soil spatial variability is generally performed using Monte Carlo 
Simulation (MCS) methodology. This method is very time-consuming when 
computing a small failure probability. As an alternative, Subset Simulation (SS) 
approach was proposed by Au and Beck (2001) to efficiently calculate the small 
failure probability. In the present paper, a more efficient approach called the 
improved Subset Simulation (iSS) is employed. In this approach the efficiency of SS 
is increased by replacing the first step of SS by a conditional simulation in which the 
realizations are generated outside a hypersphere of a given radius. This approach is 
illustrated here through the probabilistic analysis at the serviceability limit state 
(SLS) of two neighboring strip footings that rest on a soil with spatially varying 
Young’s modulus. A comparison between SS and iSS approaches has shown that a 
considerable reduction in the number of realizations can be achieved when using the 
iSS approach. 

 
KEY WORDS: subset simulation; improved subset simulation; conditional 

simulation; strip footings; differential settlement.   
 
INTRODUCTION  
 

The classical Monte Carlo Simulation (MCS) methodology is generally used 
to calculate the failure probability of problems involving a spatial variability of the 
soil properties. This method is very time-consuming when computing a small failure 
probability. This is due to the large number of realizations required in such a case. As 
alternative to MCS methodology, the Subset Simulation (SS) approach was proposed 
by Au and Beck (2001) to calculate the small failure probability. The first step of SS 
method is to generate a given number of realizations of the uncertain parameters 
using the classical MCS technique. The second step is to use the Metropolis-Hastings 
(M-H) algorithm to generate realizations in the direction of the limit state surface 
(i.e. G=0). This step is repeated until reaching the limit state surface. It should be 
emphasized here that in case of a small failure probability, SS requires the repetition 
of the second step many times to reach the limit state surface. This leads to a high 
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computational time. To reduce the computational cost of SS, Defaux et al. (2010) 
proposed an improved subset simulation (iSS) method. In this method, the efficiency 
of SS is increased by replacing the first step by a conditional simulation. In other 
words, instead of generating realizations directly around the origin by the classical 
MCS, the realizations are generated outside a hypersphere of a given radius. 
Consequently, the number of realizations required to reach the limit state surface is 
significantly reduced. Notice that Defaux et al. (2010) have employed the iSS to 
calculate the failure probability in the case where the uncertain parameters are 
modeled by random variables. In the present paper, the iSS is employed in the case 
where the uncertain parameters are modeled by random fields. This method is 
illustrated through the computation of the probability (Pe) of exceeding a tolerable 
differential settlement between two neighboring strip footings resting on a soil with a 
spatially varying Young’s modulus. The footings are subjected to central vertical 
loads with equal magnitude. The random field is discretized using the Karhunen-
Loeve (K-L) expansion. The differential settlement between the two footings was 
used to represent the system response. The deterministic model used to compute the 
system response is based on numerical simulations using the commercial software 
FLAC. 
 
REVIEW OF THE CLASSICAL SUBSET SIMULATION (SS) APPROACH 

 
Subset simulation was proposed by Au and Beck (2001) to compute the small 

failure probabilities. The basic idea of the SS approach is that the small failure 
probability can be expressed as a product of larger conditional failure probabilities. 
Consider a failure region F defined by the condition G<0 where G is the performance 
function and let (s1, …, sk, ..., sNt) be Nt samples located in the space of the uncertain 
variables where s represents a vector of random variables. It is possible to define a 
sequence of nested failure regions F1, …, Fj, ..., Fm of decreasing size where 

FF...F...F mj1 =⊃⊃⊃⊃  as shown in figure 1. An intermediate failure region Fj can be 

defined by Gj<Cj where Cj>0. Thus, there is a decreasing sequence of positive 
numbers C1, …, Cj, ..., Cm corresponding respectively to F1, …, Fj,…, Fm where 
C1>…>Cj>...> Cm=0. The Nt samples (s1, …, sk, ..., sNt) will be divided into groups 
of equal number Ns of samples (s1, …, sk, ..., sNs). Thus, Nt=mxNs where m is the 
number of failure regions. The Νs samples of the first group are generated by MCS 
methodology according to a target PDF (Pt). The corresponding failure probability 
P(F1) is calculated as follows: 

∑
=
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where 1I
1F

=  if 1Fs ∈  and 0I
1F

=  otherwise. On the other hand, the samples of the 
remaining groups are generated using Metropolis-Hastings algorithm according to a 
proposal PDF (Pp). The failure probability corresponding to an intermediate failure 
region Fj where j≠1 is calculated as follows: 
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1I
jF =  if jFs ∈  and 0I

jF =  otherwise. The failure probability P(F) of the failure region 

F can be calculated from the sequence of conditional failure probabilities as follows: 

∏
=

−=
m

2j
1jj1 )FF(Px)F(P)F(P               (3)  

 
IMPROVED SUBSET SIMULATION (iSS) APPROACH 
 

As mentioned previously, the basic idea of iSS is to replace the first step of 
SS by a conditional simulation (Defaux et al. 2010) in which, the realizations are 
generated outside a hypersphere of a given radius β (figure 2). 

  

 
Figure 1. Nested failure domain Figure 2. Samples generation outside 

a hypersphere of radius β 
 
Based on this conditional simulation, the failure probability P(F1) corresponding to 
the first level of subset simulation (i.e. level 0) is calculated as follows (Defaux et al. 
2010): 

∑
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βχ−=
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where Mχ  is the chi-square distribution with M degrees of freedom and 1I
1F

=  if 

1Fs ∈  and 0I
1F

=  otherwise. The advantage of using the conditional simulation is to 
generate realizations in the proximity of the limit state surface leading to a reduction 
in the number of realizations required to reach this surface. Notice finally that the 
realizations of the remaining levels (i.e. levels 1 to m-1) are generated using 
Metropolis-Hastings algorithm. The failure probability of a given level j where j≠1 is 
calculated using Eq. (2) and the final failure probability P(F) is calculated using Eq. 
(3). 
 
IMPLEMENTATION OF iSS IN THE CASE OF RANDOM FIELDS 
 

As mentioned before, this paper aims at employing the iSS approach for the 
computation of the failure probability in the case of a spatially varying soil property. 
To achieve this purpose, a link between SS and K-L expansion is performed. For a 
Gaussian random field E(X, θ), where X denotes the spatial coordinates and θ 
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indicates the random nature of this random field, the random field can be 
approximated by the K-L expansion as follows (Spanos and Ghanem 1989): 

)()X() (X, E ii

M

1i
i θξφλ+μ≈θ ∑

=

            (5) 

where μ is the mean of the random field, M is the size of the series expansion, λi and 
iφ  are the eigenvalues and eigenfunctions of the covariance function C(X1, X2), and 

ξi(θ) is a vector of standard uncorrelated random variables. In the present paper, the 
random field E was assumed to follow a log-normal probability density function so 
that ln(E) is a normal random field with mean value μln and standard deviation σln. 
For a lognormal random field, the K-L expansion given in Eq. (5) becomes (Cho and 
Park 2010):  

⎥
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On the other hand, the random field was assumed to follow an exponential 
covariance function as follows: 
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where (x1, y1) and (x2, y2) are the coordinates of two arbitrary points in the domain 
over which the random field is defined and lln x and lln y are respectively the 
horizontal and vertical lengths over which the values of ln(E) are highly correlated. 
Notice that in the case of an exponential covariance function, the eigenvalues and 
eigenfunctions are given analytically. Their solutions are presented in Spanos and 
Ghanem (1989).  
      

Notice that the basic idea of the link between SS and K-L expansion was 
given in Ahmed and Soubra (2011) and is briefly presented herein in the case of iSS 
approach applied to a random field problem. This link is performed through the 
standard normal random variables 

M...,,1ii}{ =ξ  appearing in Eq. (6) as follows: for a 
given random field realization discretized by K-L expansion, the system response is 
calculated in two steps. The fist step is to substitute the vector

M...,,1ii}{ =ξ  of this 
realization in Eq. (6) to calculate the value of the random field at each point in the 
domain according to its coordinates. The second step is to use the deterministic 
model to calculate the corresponding system response. The algorithm of iSS 
proposed in this paper for the case of a spatially varying soil property can thus be 
described as follows: 
1. Prescribe a radius β for the hypersphere and generate a vector of standard normal 

random variables {ξ1, …, ξi, ..., ξM} by MCS methodology. This vector must 
realize that its norm is larger than the prescribed radius β.   

2. Substitute the vector {ξ1, …, ξi, ..., ξM} in the K-L expansion (Eq. 6) to obtain the 
first realization of the random field. Then, use the deterministic model to 
calculate the corresponding system response.  

3. Repeat steps 1 and 2 until obtaining a prescribed number Ns of realizations and 
their corresponding system response values. Then, evaluate the corresponding 
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values of the performance function to obtain the vector }G,...,G,...,G{G Ns
0

k
0

1
00 = . 

Notice that the subscript ‘0’ refers to the first level (level 0).   
4. Prescribe a constant intermediate failure probability P(Fj) for all the failure 

regions Fj and evaluate the first failure threshold C1 which corresponds to the 
failure region F1 where C1 is equal to the [(NsxP(Fj))+1]th value in the increasing 
list of elements of the vector G0. Thus, among the Ns realizations, there are 
[NsxP(Fj)] ones whose values of the performance function are less than C1 (i.e. 
they are located in the region F1). The failure probability P(F1) is then calculated 
by Eq. (4)     

5. The vectors of {ξ1, …, ξi, ..., ξM} corresponding to the realizations that are 
located in the region F1 (from step 4) are used as ‘mother vectors’ to generate 
additional [(1-P(Fj))Ns] vectors of {ξ1, …, ξi, ..., ξM} using Metropolis-Hastings 
algorithm. These new vectors are substituted in Eq. (6) to obtain the random field 
realizations of level 1. Then, the values of the performance function 
corresponding to these realizations should be calculated and gathered in an 
increasing order in the vector of performance functions }G,...,G,...,G{G Ns

1
k
1

1
11 =  . 

6. Evaluate the second failure threshold C2 as the [(NsxP(Fj))+1]th value in the 
increasing list of the vector G1.    

7. Repeat steps 5 and 6 to evaluate the failure thresholds C3, C4, …, Cm 
corresponding to the failure regions F3, F4, …, Fm. Notice that contrary to all 
other thresholds, the last threshold Cm is negative. Thus, Cm is set to zero and the 
conditional failure probability of the last level [P(Fm׀Fm-1)] is calculated as: 

∑
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where 1I
mF =  if the performance function G(sk) is negative and 0I

mF =  otherwise. 
8. Finally, the failure probability P(F) is evaluated according to Eq. (3).  

 
EXAMPLE PROBLEM 
 

In this section, the efficiency of the iSS is illustrated through an example 
problem. In this example, a probabilistic analysis at SLS of two neighboring strip 
footings resting on a soil with a spatially varying Young’s modulus was performed. 
Each footing is subjected to a central vertical load P=1000kN/m. Due to the soil 
heterogeneity, the two footings exhibit a differential settlement δ. This differential 
settlement is calculated as the absolute difference 21 δ−δ=δ  where δ1 and δ2 are 
the settlements (computed at the footing center) of the two footings. The differential 
settlement δ is used to represent the system response. The Young’s modulus is 
modeled by a random field and it was assumed to follow a log-normal distribution. 
Its mean value and coefficient of variation are respectively μE=60MPa and 
COVE=15%. It was discretized using K-L expansion. An exponential covariance 
function (Eq. 7) was used in this paper. Although an isotropic random field is often 
assumed in literature (e.g. Fenton and Griffiths 2002, 2005), the vertical 
autocorrelation length tends to be shorter than the horizontal one. A common ratio of 
about 1 to 10 for these autocorrelation lengths can be used (Baecher and Christian 
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2003). Notice however that in this paper, different values of autocorrelation lengths 
were studied and analyzed in order to explore some interesting features related to the 
autocorrelation lengths. The performance function used to calculate the probability 
(Pe) of exceeding a tolerable differential settlement is defined as follows: 

δ−δ= maxG                              (9) 
where δmax is a prescribed tolerable differential settlement and δ is the computed 
differential settlement due to the soil heterogeneity. The deterministic model used to 
calculate the differential settlement δ is based on numerical simulations using FLAC. 
For this computation, two footings (each of width b) were considered in the analysis 
(Figure 3). The two footing centers are separated by a distance D. A non-uniform 
optimal mesh composed of 1290 zones was employed. Although this paper presents 
an SLS analysis, the soil behavior was modeled by a conventional elastic-perfectly 
plastic model based on Mohr-Coulomb failure criterion in order to take into account 
the possible plastification that may take place near the footing edges even under the 
service loads. The strip footings were modeled by a linear elastic model. They are 
connected to the soil via interface elements. The values of the different parameters of 
the soil, footings and interfaces are given in Table 1. 

  
 

 
Figure 3. Soil domain and mesh used 

in the numerical simulations 

Table 1. Shear Strength and Elastic 
Properties of Soil, Footing, and Interface

Variable Soil Footing Interface 

c 20kPa N/A 20kPa 
φ 30o N/A 30o 

ψs=2/3 φ 20o N/A 20o 
E 60MPa 25GPa N/A 
ν 0.3 0.4 N/A 

Kn N/A N/A 1GPa 
Ks N/A N/A 1GPa 

 
In order to calculate the differential settlement for a given random field 

realization, (i) the coordinates of the center of each element of the mesh were 
calculated; then, Eq. (6) was used to calculate the value of the Young’s modulus at 
each element, (ii) geostatic stresses were applied to the soil, (iii) the obtained 
displacements were set to zero in order to obtain the footing displacement due to 
only the footings applied loads and finally, (iv) the service loads were applied to the 
footings and the vertical displacements at the footings centers due to these loads are 
calculated. The differential settlement is calculated as the absolute difference 
between the two footings displacements. It should be noticed that, for all the 
probabilistic analyses performed in this paper, a normal PDF was used as a target 
PDF (i.e. it was used to generate the Ns realizations of the first level). However, a 
uniform PDF was chosen as a proposal PDF (i.e. it was used to generate the Ns 
realizations of each one of the remaining levels). The intermediate failure probability 
P(Fi) was chosen equal to 0.1. Also, the tolerable differential settlement δmax was 
assumed equal to 3.5x10-3 m. It should be mentioned here that lln x and lln y were 
normalized with respect to the distance D between the centers of the two footings 
(i.e. Lln x=lln x/D and Lln y=lln y/D). The numerical results have shown that this 
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assumption is valid when the ratio D/b is constant. Notice that all the probabilistic 
results presented in this paper correspond to a ratio of D/b=2. Finally, the number of 
terms of K-L expansion used in this paper is M=100 terms except in the two 
following cases (Lln x=Llny=0.25 in case of an isotropic random field and, Lln x≤0.25 
and Lln y≤0.25 in case of an anisotropic random field) where 500 terms were required. 

 
Probabilistic results  
 

This section presents the probabilistic results of the example problem 
described above. First, the number of realizations Ns to be used in the different levels 
of iSS has to be selected. This number must be sufficient to provide accurate Pe 
values. Different values of Ns were considered. For each Ns value the failure 
thresholds C1, C2, etc. were calculated and presented in Table 2 when the radius β is 
equal to zero. This table shows that the value of the failure threshold decreases with 
the successive levels until reaching a negative value at the last level. 

 
Table 2. Evolution of the Failure Threshold with the Different Levels of the iSS 

and with the Number of Realizations Ns (β=0, Lln x=2.5 and Lln y=0.25) 
Failure 

threshold 
Cj for each 

level j 

Number of realizations at each level (Ns) 

200 400 600 800 1000 1200 

C1 0.00191 0.00199 0.00189 0.00204 0.00191 0.00195 
C2 0.00103 0.00099 0.00096 0.00110 0.00102 0.00103 
C3 0.00041 0.00032 0.00021 0.00037 0.00036 0.00034 
C4 - 0.00009 - 0.00051 -0.00036 - 0.00037 - 0.00039 - 0.00038

 
For each Ns value presented in Table 2, Pe corresponding to each level j was 
calculated by iSS as follows: 

)(...)()()( 1121 −= jjj FFPxxFFPxFPFP               (11) 
These Pe values were compared to those computed by the crude MCS methodology 
using a number N=30,000 realizations (Figure 4). Notice that at a given level j, the Pe 
value is calculated by MCS methodology as follows: 

∑
=

=
N

k
kFj GI

N
FP

1
)(1)(                  (12) 

in which, Gk is the value of the performance function at the kth realization and IF=1 if 
Gk<Cj and IF=0 otherwise. The comparison has shown that for Ns=1,000 realizations, 
the Pe value computed by iSS at the different levels is very close to that computed by 
the crude MCS methodology. Thus Ns=1,000 realizations will be used in all the 
probabilistic analyses performed in this paper. Notice that when Ns=1,000 
realizations, the coefficient of variation of Pe by iSS is COVPe=31.5%. However, 
COVPe by MCS methodology using 30,000 realizations is equal to 31.3%. Notice 
also that when β=0, four levels of SS were required to reach the limit state surface 
G=0. This means that a total number of realization Nt=1,000+(900x3)=3,700 
realizations were required to calculate Pe. Thus, for the same accuracy, the number of 
realizations (and consequently, the computation time) is reduced by 87.7% with 
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respect to MCS when β=0. (i.e. when the classical SS is used). This number can be 
again reduced by increasing β (i.e. by using iSS). Table 3 shows that, when β 
increases, the total number of realizations decreases. When β=11.5, only 2 levels are 
required. Thus, the total number of realizations is Nt=1000+900=1,900 realizations. 
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Figure 4. Comparison between Pe computed by iSS and that computed by MCS 
methodology at each level of iSS (β=0, Lln x=2.5 and Lln y=0.25). 

 
As a conclusion, the number of realizations (and consequently, the computation time) 
required by SS approach could be reduced by 48.6% by employing the iSS approach.  
    
Table 3. Effect of the Radius of the Hypersphere on the Number of Realizations 

Required to Calculate Pe (Lln x=2.5 and Lln y=0.25)     

 MCS β=0 
(Classical SS)

iSS 
β=10 β=11 β=11.5

Pe (x10-4) 3.40 3.65 3.58 3.36 3.45 
Number of levels - 4 3 3 2 

number of realizations 30,000 3,700 2,800 2,800 1,900 
computation time (minutes) 210,000 25,900 19,600 19,600 13,300 

 
Effect of the autocorrelation length on Pe in the case of an isotropic random field  
 
 Figure 5 shows the effect of the autocorrelation length on the Pe value in the 
case of an isotropic random field. This figure indicates that Pe presents a maximum 
value when Lln x=Lln y=1. This can be explained by the fact that when the 
autocorrelation lengths are very small, one obtains a highly heterogeneous soil in 
both the vertical and the horizontal directions with a great variety of high and small 
values of the Young’s modulus beneath the footings. In this case, the soil under the 
footings contains a mixture of stiff and soft soil zones. Due to the high rigidity of the 
footings, their movements are resisted by the stiff soil zones. This leads to a small 
value of the footings displacements (i.e. to a small differential settlement) and thus, 
to a small value of Pe. On the other hand, when the autocorrelation lengths are large, 
the soil tends to be homogenous. This means that the differential settlement tends to 
be very small (close to zero) which leads to a very small value for Pe. For the 
intermediate values of the autocorrelation lengths corresponding to (Pe)max, there is a 
high probability that one footing rests on a stiff soil zone and the other on a relatively 
soft soil zone. This leads to a high differential settlement and thus to a high Pe value. 
This configuration corresponds to the case where Lln x=Lln y=1.  
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Figure 5. Effect of the autocorrelation lengths on Pe (isotropic random field) 

 
Effect of the autocorrelation lengths on Pe in the case of anisotropic random field 
      

Figures 6 shows the effect of Lln x on Pe when Lln y=0.25. This figure shows 
that Pe presents a maximum value when Lln x=1. For the very small values of Lln x 
compared to Lln y, one obtains a vertical multilayer composed of thin sub-layers 
where each sub-layer may have a high or a small value of the Young’s modulus. The 
sub-layers with high values of the Young’s modulus prevent the movements of both 
footings and thus lead to a small value of Pe. On the other hand, when Lln x is very 
large compared to Lln y, one obtains a horizontal multilayer (case of a one-
dimensional vertical random field) for which each sub-layer may have a high or a 
small value of the Young’s modulus. This leads to the same displacement for both 
footings and thus to a very small value of Pe. Finally, when Lln x is equal to 1, the 
horizontally extended stiff layers become less extended and thus one obtains a 
greater differential settlement and consequently a greater value of Pe. 
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Figure 6. Effect of Lln x on Pe when     

Lln y=0.25 
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Figure 7. Effect of Lln y on Pe when     

Lln x=2.5 
The effect of Lln y is presented in Figure 7 when Lln x=2.5. This figure shows that the 
Pe value increases with the increase in Lln y. This can be explained as follows: when 
Lln y is very small, the two footings rest on a horizontal multilayer composed of thin 
sub-layers where each sub-layer may have a high or a small value of the Young’s 
modulus. This means that δ1 and δ2 are almost equal. Thus, the differential settlement 
δ is very small which results in a small value of Pe. On the other hand, when Lln y is 
very large, the soil tends to the case of a one-dimensional horizontal random field. In 
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this case, one obtains vertically extended stiff sub-layers adjacent to vertically 
extended soft sub-layers. For the chosen value of Lln x, there is a high probability that 
one footing rests on a vertical stiff layer and the other one rests on a vertical soft 
layer which leads to a high differential settlement and thus to a great value of Pe.    
 
CONCLUSION 
 

This paper presents an efficient method to perform a probabilistic analysis of 
geotechnical structures that involve spatial variability. This method is an 
improvement of the classical subset simulation approach to calculate the small failure 
probabilities using a reduced number of realizations. It was illustrated through an 
example problem in which, a probabilistic analysis at SLS of two neighboring strip 
footings was performed. The footings rest on a soil with a spatially varying Young’s 
modulus. The proposed procedure has significantly reduced the number of 
realizations required by the classical subset simulation approach to calculate the 
probability Pe of exceeding a tolerable differential settlement. A parametric study to 
investigate the effect of the autocorrelations lengths on Pe has shown that: (i) in case 
of an isotropic random field, Pe presents a maximum value when the autocorrelation 
lengths are equal to the distance between the footings centers, (ii) in case of an 
anisotropic random field, for a given Lln y value, Pe presents a maximum when Lln 

x=D. However, for a given value of Lln x, Pe increases with the increase in Lln y and 
then it attains an asymptote corresponding to the case of a one-dimensional random 
field.  
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