Y. Aoustin

A. Formal'sky!

Ecole Centrale de Nantes
Université de Nantes

4472 Mantes Cedex 03, France

Abstract

In this article we propose g method for the design of a nomingl
tragjectory for o flexible one-link maripulator. This najectory
is near time-optimal, The torgue control law CONSISTS of two
parts: the commanded feedforward fargue and the linear an-
gular position and velociey feedbeack. Feedforward sipnal ix
proportional te mominal angular aceeleration af the b, O
the first vime interval, the Seedforward worgue approaches von-
tinuously fo @ value thar is a lile smaller tan the mavimal
possible torque, then it remains consiant, and then it poes
to zero. On the second inmterval, the Seedforwand torgue ap-
proaches continuously 1o a value that 75 g finde Rreqter than
the minimal possible forgue, then it remaing constunt, and then
it goes te zevo. On the thind time interval, Sfeedforvand signal
is zer. We compure the correspending nominal (desived) -
lar acceleration, velocity, and pasitien af the hub as finctions
aof time. The last rwo functions are Sed to the linear feedback
system, The angular aceeleration is such thar, on the Sirst wime
imierval, the hub moves with “large" acceleration in ore ilf-
rection. and the link bends on the afiposite side, On the second
time interval, the hub maves with deceleration, and e link
bends in the direction of the motion. On the thivd time interval
we stabilize the arm near ity desired Posiifon,

In the experiments, the designed control algorithm was
suceessfilly implemented, We analyze there EXpErImMEnts from a
thearetical poinr of view:

1. Introduetion

The synthesis of a contral law for a flexible robot implies
contradictory requirements. The response of the System
must be fast. If the structure of the model of the con-
trolled object and its parameters are knowr, it is possible
to synthesize the fast control law based on the optimal
control theory. However, the model and parameters of the
object are often known only approximately, Moreover,
the time-optimal problem can be difficult thearetically.
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More importantly, time-optimal control is usually discon-
Hnuons {bang-bang control) and, under such a control,
large elastic vibrations appear. This is not acceptable for
a flexible robot. For these reasons, we must discard lime-
optimal control. In this work, we design a control law for
a flexible one-link arm with some compromise nominal
trajectory. First, this control is quasi-time-optimal and,
second, it does not produce large elastic oseillations.

The problem of comrol of a flexible one-link robot has
been studied by many investigators (Akulenko and Bolot-
nik 1982; Berbyuk and Demidynk 1984: Cannon and
Schmitz 1984; Bayo 1987; Bayo et al. 1988: Siciliano
and Book 1988: De Luca and Siciliano 1989:; Chedmail
and Khalil 1989; Lavrovsky and Formal'sky 1989; Pfaif-
fer 1989: Yuan et al, 1989: Cetinkunt and Wen-Lung
1991; Levis and Vandergrift 1993; Pham et al. 1993:
Aoustin et al. 1994, Formal'sky and Lavrovsky 199¢6).
However. to the best of our knowledge, this association
of a feedforward and a nominal trajectory has not yet
been studied. It seems that the approach described here
can be applied to the synthesis of a control for a mechan.
ism with flexible joint (De Luca et al, [985; Spong 19587:
Spong et al. 1987; Isidori 1989: Aoustin 19931, for the
crane with hanged load (Chernousko et al. 1982) and
for other systems for which the number of actuators is
smaller than the number of degrees of frecdom.

The article is organized as follows. Section 2 containg
the statement of the problem. Tn Section 3, the simple
dynamic model of the one-link flexible arm is analyzed.
The properties of the system with discontinuous and
continuous control are considered. Section 4 presents the
distributed parameter model of the arm. The properties of
the system with discontinuous and continuous control are
examined with this more exact model, In Section 5, we
deseribe the desired nominal regime of the motion of the
rigid variable (i.c., the joint angle and the method of its
computation). In Section 6, the control law is described,
Section 7 contains a short deseription of the experimental
device. Section 8 presents the results of experimental
investigations. In Section 9. we analyze theoretically the
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Fig. 1. Scheme of flexible arm.

results of the experiments. Finally, Section 10 containg
our conclusion.

2. Statement of the Problem

Consider a flexible homogeneous arm of length I and
constant cross section S. Let p be the link (beam) ma-
terial density and my = pSL its mass, The arm can
be rotated in a horizontal plane (the plane of Figare 1)
around one of its ends, motionless point . The other
end N is clamped to the center of mass of a load. Let M
and .J denote, respectively, the mass of this load and its
moment of inertia about the mass center V. We show in
Figure 1 the (curved) neutral line ON of the beam. The
moving coordinate axis ©X is tangent to the neutral line
ON at point (. Let © denote the angle between the axis
(X and some motionless direction OF, The motion of
the arm is acated by an electric motor, Let Ji,, denate
the moment of inertia of the motor armature about its
axis, T is the control torque of clectromagnetic forces.
The torque I is usually limited by some constant Iy
The problem is 1o find the control I that transfers the
manipulator from its initial position

B(0) = O(0) =0 (1
to an arhitrary final position
Al =0y, =0 (2)

and keeps it in this position. Here &, is the desired angle
of rotation of the arm. The time 7" is not given, but it

is required that this time should be as short as possible.
The initial and final elastic deformations are desired to be
ZEro,

The rigid one-link arm is described by equation

an®) =1, 7| < Iy (3
Here, the value
l 5
an = Qo+ zmel? + M2 ()

is the moment of inertia of the arm with the motor ar-
mature and the load about point 0. It is well known
{Pontryagin et al. 1969) that it &4 = 0, then the time-
optimal control T'it) for the system (3) can be written in
the following form:

Py, ifo<e =<2

Ty, if S <@ =@y (5)
0, ife.=0

=

The minimal time is (Pontryagin et al. 1969):

+ 1f2

T:z(—at*a“) i (6)
T

The time-optimal control (5) and corresponding accel-
eration contain jumps. In Sections 3 and 4, it is shown
that these jumps are not acceptable for the flexible arm
because large elastic vibrations of the link appear. It is
better to use “luent” control { Akulenko 1991, This con-
clusion follows not only from theoretical study, but also
from the experiments.

3. Simple Mathematical Model

The mathematical models of flexible robats have been
considered by many researchers. Using the well-known
methed of finite number of modes (Book 1984; Can-

non and Schmitz 1984; Siciliano and Book 198%; De
Luca and Siciliano 1989, 1991, 1993} or a finite element
method (Bayo 1987; Chedmail and Khalil 1989; Ched-
mail et al. 1991} we can design a simple linear mathemat-
ical model of the Aexible arm,

a1|{:1'+ ra.gﬁ =T, (7)
a2 O 4 and + hé =0,

Here, & is the displacement of point N (Fig. 1), The
cnefficients wiy (a2 = aa), np and stiffness coefficient &
are positive constants. Numerically, the constants obtained
using the method of finite number of modes (Book 1984;
Cannon and Schmitz 1984; Siciliano and Book 1988;

De Luca and Siciliano 1989, 1991, 1993) or a method
developed by Chedmail and Khalil (1989), and Chedmail
et al. (1991} are similar, but different,
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Fig. 2. “Fluent" control.
Equations (7) can be rewritten as:
48 — a2kf = agl [£:3]
r.!ﬁ+a“k5 = —apl’ (d=ap0mn — nl.le
Leat
_Jo, ift<
e { Ty, ift=0 (Tp= const) ©)

Under control (9) the system (7) or (8) has a stationary

solution:
aal’y

i, =

v 0
) ank {90

In formulas (10}, the deflection 6 is in opposite phase
(De Luca and Siciliano 1989) to the acceleration . If,
for example, acceleration @ is positive, the deflection & is

negative.
If
#(0) = 8(0) = 0, (1)
the solution of the system (8) under contral (%) is;
. )
&y = 10 (1+mcnsw!). (12)
(2511 ff y

g AL .2_2_”_"“)
() = —“”k (1 — coswt) (w iy .

Formulas (12) describe the oscillations of the system near
the stationary motion (10).

Consider now, instead of control (9) with a jump of
the torque at time § = 0, other control which changes
continuously (see Fig. 2):

0, ifi<0
Todiie
Hr. if0<t<ty (13)

To, iftxt

38

In the interval 0 = # < £, the system (), (13) has the .
following solution:

: apply
Py " L
ity

&l]kh (]4j

8 =

If the initial conditions are given by formulas (113, then
under “fluent” control (12} we have the following solution
of the system (8):

]-.U ﬂ%z . e
—(f——_smwt N if0<t=<t
iy ank
é’= T, 2 " k
o [, ofw2sing
i = e " el 2 wit — )+ ]
il ES R sin [w(t — #;) + -p]}
if ity =<t
(15)
—anly (s—lsinut). if0<t<i
R||J|€f| i
&= = wh
"ﬁ.urn 4 ZSII'I—Z" A
e {1; e sin [w(t — i) + ,-9]}.
ift) <t

(16)

(ctw = —Ig%)

Formulas (15} and (16) show that, if the value {; is large,
then the amplitude of the vibrations of the acceleration &
and the deflection & near the values

I
=Lt o<t
0 apnty
0= (1M
=L U F -tk
an
=tal, g ave,
ki
&= f (18)
—italy .
—, ity =i
apk Al

is small. Thus, if functions (17) and (18) describe the
desired motion, then it is possible, by the choice of the
time ¢, to make the vibrations small near this motion, as
desired. It is especially relevant for time § = ;.

4. More Exact Mathematical Model

Denote by w(x,t) the deviation of the point with coordi-
nate x of the link neutral line at time { from the moving
axis O (Fig. 1) In the framework of the linear the-
ory of thin straight nonextensible beams (Lur'ye 1961;
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Vol 'mir 1967; Timoshenko et al. 1974; Cannon and
Schmitz 1954), the motion equations of the arm with
distributed flexibility can be written as:

ELo™ (e, 1) + pSligz. t) + 20(6)] =0 (19)
JmB(t) =T + EI"(0,1) (20)
JI (L, 8 + B = —ETv"(L. 1),

21

w0, 1) =00, ) =0,
MIB(L, ) + LB = El(L.1)

Here ' means the derivative with respect to variable @, B
is the Young's module of the material, [ is the constant
moment of inertia of the beam cross section about the
vertical axis. Equation {19) describes the plane transverse
vibrations of the beam (Lur've 1961; Timoshenko et al.
1974), given the angular acceleration @ of the moving
axis 0X. The equation does not take into account the
centrifugal force and the energy dissipation during the
maotion. In the experiments that are described below,
the centrifugal force pSuvir, 1) is essentially smaller
than the force pSr@, because the end-point deflection
&(ty = w(L,1) is less than 0.03 m. The drive motion is
described by equation (20}, the second term on the right-
hand side of which is the torque of the forces acting on
the armature from the beam. Equations (21) describe the
boundary conditions.

Under control torque (9) the system (19)—(21) has the
following stationary selution (see analogous solution
(1

O.= T, (22)
an
vz, 1) = Wix)
sipel 3 M o5
_a”EI[ 120" a“’“ 7))+

1 I+ m.«,L
—E(ML = +I) ]

It is easy to see that if [y > 0, the function W(z) is
negative for all 0 < « = L. This means that i the
hub (axis UX) rotates counterclockwise with constant
acceleration ©, the link deviates from the axis 0X in the
other side. If @ < 0, the function Wix) is positive for all
0 < r < L. Thus, the deviation of the beam is in opposite
phase to the acceleration. For I'y = 0, the derivative
W(x) is negative in the interval 0 <z = L.

It can be shown that the general solution of the non-
homogeneous system (1921} under control (9) can be
expressed in the form:

- I = :
Bty = ﬁ — 3" Xi(Owf(Ar coswit + By sinuwyt)
£=]

(23)

oo
v, £) = Wix) + Y _[Ke() = 2 XG0
=1 s (Ap coswet + By sinwyt)

Here wy (see Section 9) and X(x) are eigen frequencies
and eigen functions of the homogeneous boundary value
problem (Cannon and Schmitz 1984; Lavrovsky and
Formal'sky 1989)

Efu'a, t) +
Elu"(0,1),
JH(L 8 = =Elu'(L.t),

plie, )y =10
w0, =10
Mi(L, t) = BETu" (L, 1).

Tl (0,8) = (24)

where the new variable,

wla, ) = vlz, 1) — Wie) + z[B(1) = 9,(1)]
characterizes the difference between the total deviation
v, 1) 4 20(t) of the deformed beam from the motionless
axis OF and its total slalironaly deviation Wix) + 20 ,(t)
from this axis. System (2)) is conservative; therefore. its
eigen values Mg are imaginary, Ay = dwp. The constants
Ay, B are determined by initial conditions.
1If

B(0) = B.(0),

(25)

v(r, 0) =0, 00 =0, 8(0) = 8,0

then

L
Ay = _f Wi Xe(z)de, By=10
0

Formulas (23) describe the vibrations of the system
(19)-(21), (9) near the stationary motion (22), as the
formulas (12).

Consider now the “fluent” control (13). Under this
control, the system (19)-(21) in the interval 0 = £ <
has a solution (see analogous solution (14)):

O, =10,

(26)
oy |L

vo(@,t) = W)
9]

The general solution of the system (19)-(21). (13} in
the interval 0 < £ < {; can be written in the form:
Ty
(i) = —-1 — E Y,.{D)wg(/l; coswyt + Ly sinwyt)
(27)

vz t) = W( r}— + Z[Xéu) — =X
{1 i=1  x (Aycoswet + Bysinwel)
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Fig. 3. Desired (nominal) acceleration.
Under conditions (25) we have Here
L Fu
g ! 4 1 iy o By =—
Ag=0 Bp= —;— W)X () di )
e

By choosing time t; sufficiently large we could make
the vibrations of the system beside the motion (26) suffi-
ciently small. Thus, to the time { = {; the differences

Iy t

Oty — ——

t
Lovia b — Wi —,
£ oe) I'ij

and their derivatives with respect to time ¢ would be
small, as desired, Therefore, for { > {; the mation of the
system (193—(21), (13) would be near to the motion (22),
as desired.

Thus, the consideration of the simplest model in Sec-
tion 3 and the more exact model in this section shows
that the “fluent” control (13) enables the manipulator
to reach the desired angular acceleration of the hub and
avoid the “large” elastic vibration of the arm, This fact
is clear from a physical point of view. Therefore, we use
the function (13) for the synthesis of the control law for a
flexible one-link arm.

5. Determination of Desired Nominal Regime

We design for 6, > 1) the desired nominal accelera-
tion (:),g[f.) of the flexible one-link arm in the following
“trapezoidal” form (see Fig. 3).

By, if0<t<i

Bgit) = ¢ € ifh <t Ly
ifrE -y <f<t
(28)
: —OuT -1, fL<e<T
buy = { 2
=10 T <t

40

is a constant, which is smaller than the maximal possible
acceleration
I

M = “
(T'p < Upg)e
)

By integrating the expression (28) we can obtain the
analytical expression for the desired velocity ©,4(1). It
is abvious that ©4(T) = 0. By integrating the function
Bty it is easy to write the analytical expression of the
desired position ©;(f). Let the final position &5 be given,
as well as the acceleration (—;JU and the time {;. Then it is
passible to compute numerically the time T for which the
relation B,(7°) = B is rue, After this, we can design
nominal acceleration ©,(1), velocity E4(t) and position
Bq(t). We calculate the torque feedforward as:
Uy = an©alf). (29)
If the angle B, is small, the acceleration l""'?‘d{t_] can
have the other form (Fig. 4):

Gy ifo<t<t
B =4 ¥ G o

%{zr;—tp. if ) <t<2

(307

. —B (4t — if < <
8.0 = { Bty — 8., if 2 << 4ty

0 ifde <4
Here 46, =T

Observe that wrque control (29) with acceleration (28)
or {30) is time-optimal control for the boundary value

The Inrernarional Jowrnal of Robovics Research



Fig. 4. Desired (nominal) acceleration for “liile” 64,

problem (1}, (2) with the following motion equation and
turque constraints:

r’lnf"‘) =T,
| < [y, ([‘ra - D)
ty

6. Control System

IT| = Ty (g = ay &),

If the final angular position &, is given, the computer
calculates at first the time T During the motion, it cal-
culates the commanded values Tg(t), B0ty O40t) and
control torgque 1'(¢), which consists of linear position
and veloeity feedback, combined with feedforward a(t)
(Cannon and Schimitz 1984; De Luca et al. 1985; Bayo
1987; Bayo et al. 1988; Spong [987; Lavrovsky and For-
mal'sky 1989; Aoustin and Chevallerean 1993; Aoustin et
al. 1994),

I'= &[Ba(t) — O] + HE[Oa(t) — O+ Tyt)  (31)
The feedback gain [ is constant, but the gain 4 is first
constant, then continuously increases, and then is constant
again:
fo=t<T

ifT<t<T+ AT
T+ AT < ¢

Bo.
o= { Bio+ 8t —T), (32)

Gy + BAT,

The increase of the coefficient (% enables us 1o decrease
the static error. Due to fluent increase of this coefficient,
we avoid a jump in the contrel torque.

Note that in the work by Lavrovsky and Formal'sky
(1989, 1996), it is proved for the case when J = 0 that
the state,

v, =0, () =86, = const,

is an asymptotically stable state of the system (19)—(21)
with closed-loop control

['=31(8y —8) - 58,

if the coefficients /3, % are positive constants.

7. Experimental Device
In Figure 5, the experimental planar one-link arm is
shown, The parameters of this arm are the following:

L=1.005m, my=204kg,
J = 0M7kg - m?,

M =6.79kg,

(33)
Jo = 00018 ke - m®,  ET =4725N . m?,
T','.; =35N-m

The lowest frequency of the vibrations of our robot
with cantilever elamped hub is approximately (.72 Hz.
The axis of the rotational joint is vertical. The motion
of the arm is controlled by a tarque motor. The extrem-
ity of the arm has air bearing to avoid gravity effects
and. as much as possible, friction between the arm and
the horizontal table. The arm is equipped with an op-
tical sensor that measures the angle @ in the joint and
with two deformation sensors (tensometrical sensors)
that enable evaluation of the deflection & of the arm
end-point N. We obtain the angular velocity ©& by us-
ing numerical calculation and filter. Using the mechanical
characteristics (33) of the manipulator, we can calculate
its whole moment of inertia (4) a;; = 7.59kg - m” . From
the experiments we have obtained a;;, = 7.0kg - m*.
This value we have used for caleulating the feedfor-
ward torque (29) in the experiments with control law
(31).

8. Experiments

By the experiments we have found that if ©q/t, <
1.0~ then the amplitude of elastic vibrations is not
large. The inclination Gy /¢, has been chosen 105, We
have used in the experiments the value 8y = 0485 2,
For this value, a8 = 3,36 N-m. This product is smaller
than the maximum torque I'yy = 3.5N - m, Other para-
meters of control law (31) are the following:

,.“J‘:S.s"'. 5l

ﬂm = [0, AT =185, .'32 =125
In Figure 6A-H for B, = 3 the angle ©,4(1), the de-
sired angle ©4(2), the tracking error B(t) — Bg4(1t), the
velocity ©(¢), the desired velocity ©,4(t), the desired ac-
celeration 9 4(¢), the elastic deflection &t} of the arm

end, and the torque I'(L). respectively, are displayed. In
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Fig. 5. The experimental arm,

the desired trajectory, the time T of the transitional pro-
cess is 3.55. The optimal time, calculated from formula
(6}, is 4.9s. This time is smaller than time 5.55 by 11%.
The difference |B(t) — &,(1)| is smaller than 0.04 and
the angle €)(f) tracks the desired angle € 4(¢) correctly,
Small static error exists at the end of the tracking process.
The deflection |6(#)| is smaller than 0.03 m. In control law
(31) the term with displacement & is absent, because the
elastic vibrations with high frequency are not large, and it
15 not required to damp them especially, We can decrease
the amplitude of high-frequency vibrations by decreas-
ing the value Qw’!;. but the time of transitional process
would be greater in this case.

In Figure 7A-H, the behavior of the same variables is
displayed for &y = (.5, The static error at the end of this
tracking process is close to 0.01, It is possible to decrease
the static error by adding to torque (31) the torgue

5 e { Msgn@y, fF0<t<T
0, ifT <1
that can compensate for the torque of the friction forces.
By the experiments, we estimated this torque and used
the constant value I = 0.1 N - m.

For the other given values O, the transitional processes
are similar (o those shown in Figures 6 and 7. Some
experiments were recorded on film,

For changing the final position &, of the arm, we need
only change the parameter €, in the control program.
The program itself computes the time 1", the desired

42

acceleration G(t), velocity (L), position B,4(1), and
feedforward torque 1 ,(t).

9. Theoretical Analysis of the Experiments

Figures 6 and 7¢/ show that the deflection & changes
mainly in the opposite phase (De Luca and Siciliano
1989) to the feedforward torque (desired acceleration) and
has one oscillation. The frequency of this oscillation is
defined by the frequency of the desired acceleration. Tt
seems that we can describe this main motion by using the
function Wiz) (see formulas (22), (26)) that present the
stationary solution of the system (199—(21). It is correct
evidently to use the stationary function Wiz} for the
design of the model of the kind (7), assuming that the
deflection W(L) = 4 is the new variable (elastic). We
have derived the models of the kind (7), using, first, the
function W(r) and, second, the eigen function (De Luca
and Siciliano 1989), corresponding to the first mode of
the boundary value problem (19, (21) for the flexible
beam with cantilever clamping of the hub (9(t) = 0),
It occurs that the numerical values of the coefficients
Mz, 23, & for parameters (33) are “practically” the same
in both cases. We can discern the normalized (W(L) = 1}
function W(x) and the normalized first eigen function,
inspecting them in “large™ scale only.

We see in Figures 6 and 7¢¢ the vibrations of the arm
end point with a high frequency that is equal to approx-
imately 6 Hz. (We can find this frequency by calculating

The Infernational Jowrnal of Roborics Research
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the number of the vibrations and the corresponding time.)
During the period of such vibrations the control torque
changes litle. Therefore, it is natural to suppose that
these high-frequency vibrations are the eigen vibrations
of the homogeneous boundary value problem (24) for the
flexible beam. The characteristic equation of this bound-
ary value problem is transcendenial,

Fedpr (cos vehy — 1) + [+ Jod = 1 (34)
% (chisiny — cos v shie)
+ jmjpﬁlf_chtt sin 1 + cos pshe)
— b (cos v chi + 1)
— 2pw shy sin v
- Z‘J'Exjchu cosy =0
Here
_ dm it M
T ompd?’ ripl?’ - ey
are the dimensionless moments of inertia of the motor
armature and of the load and the load mass. For the fre-
quencies we and fr (2w fe = we) we have the following
expressions:

Jm

myld
2ar’ | EI

2
1 2 _

frz

Here, vy is the root of the characteristic equation (34).
The first positive root 4 of equation (34) with manip-
ulator parameters (33) is 2.82, the corresponding fre-
quency fp is 6.05 Hz. Thus, the assumption that the high
frequency of elastic vibrations is the lowest frequency
of the homogeneous boundary value problem (24) is
confirmed.

10. Conclusion

A method to design a nominal trajectory for a flexible
one-link arm is developed, The proposed trajectory

is close to a time-optimal vne, but the corresponding
nominal acceleration has no jumps, and the large elastic
oscillations of the arm do not appear under the control
torque, which uses this trajectory as the nominal ane.
Successful experiments have been made with a flexible
manipulator under this control.

The article contains some theoretical analyses of the
experiments. It is shown that the frequency of the fast
elastic vibrations coincides with the lowest eigen fre-
quency of the boundary value problem (24). Mote that
if the control torque changes slowly, the simple math-
ematical model (7) can be derived using either the first
mede of the flexible beam with cantilever clamping of the
hub (De Luca and Siciliano 1989), or the stationary solu-
tion (221 of the boundary value problem (19)—(21) with
I' = const.

References

Akulenko, L. D. 1991, Quasi stationary finite motion
control of hybrid oscillatory systems. Appl. Mark.
Mechanics. 35(2):183-192.

Akulenko, L. D., and Bolotnik, N, N, 1982, On con-
trolled rotation of an elastic rod. Appl. Marh. Mechan-
iex d6(4):465—471.

Aoustin, Y. 1993, Robust control for Aexible joint robuots:
A single link case study with unknown joint stiffness
parameters. Proc. IEEE Int. Conf. on Systems, Man
and Cybernetics, Yol 4, pp. 45-30.

Aoustin, Y., and Chevallerean, C. 1993, The singular
perturbation control of a two-flexible-link robot. Proc.
JEEE Int. Conf. en Robotics and Awiomarion, Allanta,
GA, pp. 737-742.

Aoustin, Y., Chevallereau, C., Glumineau, A., and Moog,
C. H. 1994, Experimental results for the end-effector
control of a single flexible robotic arm. [EEE Trans.
Control Sys. Technology 2(4):371-381,

Bayo, E. 1987, A finite-clement approach to control the
end-point motion of a single-link flexible robot. J.
Robor. Sys. 4(1):63-75.

Bayo, E., Movaghar, R., and Medus. M. 1988, [nverse
dynamics of a single-link flexible robot. Analytical
and experimental results, Jnr. J. Robot. Antomation
3(3n150-157.

Berbyuk, V. E., and Demidyuk, M. V. 1984, Controlled
motion of an elastic manipulator with distributed para-
meters. Mechanics of Solids 19(2):5T-66.

Book, W. 1. 1984, Recursive Lagrangian dynamics of
flexible manipulator arms. fnt. J. Robor, Kes. 3(3):87-
101.

Cannon, R. H., and Schmitz, E. 1984, Initial cxperiments
on the end-point control of a flexible one-link robaot.
Int. J. Robot. Res. 33)162-T5.

Cetinkunt, 8., and Wen-Lung, Yu. 1991, Closed-loop
behavior of a feedback-controlled fAexible arm: A
comparative study. Int. J. Robor, Res. 10(3):263-275.

Chedmail, P, and Khalil, W. 1989, Nonlinear decoupling
contrel of flexible robots, ICAR'S8%, Columbus, OH,
pp. 138-145

Chedmail, P, Aoustin, Y., and Chevallercau, C. 1991,
Modeling and control of flexible robots, Jur. J. Numer-
ical Meth, Eng, 32(8):1595-1619.

Chemous' ko, F L., Akulenko, L. D., and Sokolov, B. M.
1982, Control by Vibrarions. Moscow: Nauka, In Rus-
sian.

e Luca, A., and Siciliano, B. 1989, Trajectory control
of a non-linear one-link flexible arm. fur. J. Conrrol
S0{5):1692-1715.

De Luca, A., and Siciliano, B. 1991, Closed-form dy-
namic model of planar multi-link lightweight robots.
[EEE Trans. Svs. Man Cyberner. 21(4):326-839.

Aoustin and Formal'sky 45



De Luca, A., and Siciliano, B. 1993. Regulation of flexi-
ble arms under gravity. [EEE Trans. Robot. Automation
(41463467,

De Luca, A., Isidori, A., and Nicolo, F. 1983. Control of
robot arm with elastic joints via nonlinear dynamic
feedback. Proc. 24th. IEEE Conf. on Decision and
Conirol, Ft, Lauderdale, FL, pp. 1671-167%.

Formal'sky, A. M., and Lavrovsky, E. K. 1996. Stabi-
lization of flexible one-link arm position: Stability
domains in the space of feedback gains. fnt. J. Rebor.
Res. 15(3): 492-504.

Isidori. A. 1988, Nonlinear Control Systems. New York:
Springer-Verlag.

Lavrovsky, E. K., and Formal’sky, A. M. 1989, On the
stabilization of the angular position of an elastic rod.
Technical Cybernetics (6):115-123. In Russian.

Levis. E. L., and Vandergrift, M. 1993. Flexible robot arm
control by a feedback linearization/singular perturba-
tion approach. Proc. JEEE Int. Conf. en Robotics and
Antomation, Atlanta, GA, pp. 729-736.

Lur've, A. I 1961, Analyrical Mechanics. Moscow:
Fizmatgiz. In Russian.

Pleiffer, F. 1989, A feedforward decoupling concept for
the control of elastic robots, J. Robot. Sys. 6(4):407-
416.

46

Pham, C. M., Khalil, W., and Chevallereau, C. 1993,

A nonlinear model-based control of flexible robots,
Robotica 11{1):73-82.

Pontryagin, L. 5., Boltyanskii, V. G., Gamkrelidze, R. V.,
and Mischenko, E. F. 1969, Mathematical Theory of
Optimal Processes. Moscow: Nauka. In Russian.

Siciliano, B., and Book, W. 1988, A singular perturbation
approach to control of lightweight flexible manipula-
tors. fnt. J. Rebot. Res., T(4):79-90.

Spong, M. W. 1987, Modeling and control of elastic joint
robots. Trans. ASME 109(4):310-319.

Spong, M. W., Khorasani, K., and Kokotovic, F. V. 1987,
An integral manifold approach to the feedback control
of flexible joint robots. JEEE Trans. Robot. Automation
3(4):291-299.

Timoshenko, 5., Young, D. H., and Weaver, W. 1974,
Vibration Problems in Engineering. New York: John
Wiley.

Vol'mir, A. S. 1967, Swability of Deformable Systems.
Moseow: Nauka, In Russian,

Yuan, B. S.. Book, W. J., and Siciliano, B. 1989, Direct
adaptive control of a one-link flexible arm with track-
ing. J. Robot. Sys. 6(6):663-680.

The International Journal ~F Robotics Research



