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ABSTRACT

As is well known, the classical Kriging-based probabilistic approaches such as the Active learning
method combining Kriging and Monte Carlo Simulations MCS (named AK-MCS method) or the method
combining Kriging and Importance Sampling IS (named AK-IS method) involve the construction of a
surrogate Kriging metamodel based on the responses of a small design of experiments computed us-
ing the mechanical model. This approximate Kriging meta-model is then successively updated via an
enrichment process by selecting new training points that are close to the limit state surface using a learn-
ing function. The essential issues in these approaches are that both the choice of a ‘best new point’
and the stopping criterion are defined from the perspective of individual responses, which may lead to
some extra evaluations of unnecessary added training points. To overcome this shortcoming, a reliable
and efficient probabilistic methodology based on an enhanced Kriging model (called Global Sensitiv-
ity Analysis-enhanced Surrogate GSAS modeling) was proposed by Hu and Mahadevan (2016). In this
method, both the convergence criterion and the strategy of selecting new training points are defined from
the perspective of reliability estimate instead of individual responses of MCS or IS points. A global
sensitivity analysis is performed to select the optimal new training point and the convergence criterion
is reached based on the desired accuracy of the reliability estimate. This method is applied in this paper
in combination with the classical MCS or IS approach in order to reduce the number of calls of the me-
chanical model with respect to the corresponding classical AK-MCS and AK-IS approaches. It is used
for the probabilistic analysis of the ultimate limit state of a strip footing resting on a spatially varying
soil. The aim is the computation of the failure probability against soil punching.

The mechanical model was based on numerical simulations using the finite difference code FLAC3D. The
soil behavior was modeled using a conventional elastic-perfectly plastic model based on Mohr-Coulomb
failure criterion. The soil cohesion c and angle of internal friction ϕ were modeled as two anisotropic
non-Gaussian random fields. An anisotropic square exponential autocorrelation function was used for the
two random fields. EOLE methodology was used to discretize these fields. All the other soil parameters
are assumed to be deterministic.

The numerical results obtained from the combination of GSAS with either MCS or IS are compared to
those obtained from the AK-MCS and AK-IS approaches. A significant reduction in the number of calls
to the mechanical model was observed in both cases where GSAS was introduced in the probabilistic
model. It should be noted that the probabilistic models allow one to obtain not only the failure probability
but also the reliability index and the corresponding design point. The critical realization obtained at the
design point was shown to be symmetrical with respect to the central vertical axis of the foundation with
the weaker soil properties near the footing, the stronger soil being far from the footing.
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1 INTRODUCTION

As is well known, the probabilistic analysis of geotechnical structures involving spatially varying soil
properties is generally time-consuming since the corresponding deterministic models are based on finite
element/finite difference methods. Furthermore, the probabilistic analysis of very heterogeneous soils
significantly increases the computation time as compared to the time required for a homogeneous soil
due to the increase in the stochastic dimension of the treated problem.

Because of the two mentioned issues related to the mechanical modeling and the soil spatial variability,
conventional probabilistic methods such as Monte Carlo Simulation (MCS) are very expensive for the
computation of the failure probability. It becomes unaffordable if an accurate value of the failure proba-
bility (i.e. with a small value of the coefficient of variation of the estimation) is desired. Consequently, a
more advanced probabilistic approach is needed.

Recently, several Kriging-based metamodeling approaches (e.g. AK-MCS, AK-IS, etc.) have been de-
veloped by Echard et al. (2011, 2013) and were shown to be efficient with respect to the classical MCS
methodology as one can obtain an accurate probability of failure needing a smaller number of calls to
the mechanical model. Notice however that the essential issues in these approaches are (i) the choice of
a best new training point for the construction of the metamodel and (ii) the stopping criterion related to
the addition of new training points. Indeed, these issues are defined from the perspective of individual
responses. This may lead to some extra evaluations of unnecessary added training points.

In order to overcome this shortcoming, a Global Sensitivity Analysis enhanced Surrogate (GSAS) mod-
eling was developed by Hu and Mahadevan (2016). Within GSAS, a powerful new stopping criterion
was suggested and a new way of selecting a new training point was proposed. In this respect, both the
convergence criterion and the strategy for selecting new training points are defined from the perspective
of reliability estimate instead of individual responses of MCS points. Indeed, the new training points are
identified according to their contribution to the uncertainty in the reliability estimate and the selection of
new training points stops when the accuracy of the reliability estimate reaches a specific target.It should
be mentioned that Hu and Mahadevan (2016) have validated the proposed method based on several aca-
demic examples where the performance function was given by an analytical equation. The aim of this
paper is to extend the GSAS approach proposed by Hu and Mahadevan (2016) to the case of random
field problems in order to study geotechnical structures involving spatial variability of the soil properties.
More specifically, this paper presents a probabilistic analysis at the Ultimate Limit State (ULS) of a strip
footing resting on a spatially varying soil and subjected to a vertical load. The objective is the compu-
tation of the probability Pf of exceeding the ultimate bearing capacity of the footing under a prescribed
vertical load.

2 PROBABILISTIC MODEL
The mechanical model is based on numerical simulations using the finite difference code FLAC3D. A
strip footing of breadth B = 1m that rests on a soil domain of width 13B and depth 5B was considered in
the analysis (Al-Bittar and Soubra, 2014). It was verified that with these model dimensions, the system
response was not influenced by the artificial boundary effects. As suggested by Der Kiureghian and Ke
(1988), the length of the largest element of the deterministic mesh in a given direction (horizontal or
vertical) was chosen such that it does not exceed 0.5 times the autocorrelation distance in that direction.
Concerning the displacement boundary conditions, the bottom boundary was assumed to be fixed and
the vertical boundaries were constrained in motion in the horizontal direction.

The uncertain soil parameters considered in this paper may be described as follows: the soil cohesion c
and angle of internal friction ϕ were modeled as two anisotropic non-Gaussian random fields. Notice
also that the soil dilation angle ψ was considered to be related to the soil angle of internal friction ϕ

by ψ = 2ϕ/3. This means that the soil dilation angle was implicitly assumed as a random field that is
perfectly correlated to the soil angle of internal friction random field. The statistical parameters of the
two random fields as used in the present paper are presented in Table 1.
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Table 1: Statistical characteristics of the random fields

Random field Mean µ
Coefficient of

variation COV (%)
Type of the probability
density function (PDF)

c 20 kPa 25 Log-normal
ϕ 300 10 Beta (bounds = 00 ; 450)

The EOLE methodology by Li and Der Kiureghian (1993) was used to discretize the two random fields
(i.e. to obtain realizations of the soil cohesion c and angle of internal friction ϕ that respect the correlation
structure of those fields). It should be noted that the same square exponential autocorrelation function
was used for both c and ϕ . This autocorrelation function is given by the following equation

ρ = exp

(
−
(
|∆x|
ax

)2

−
(
|∆y|
ay

)2
)

(1)

where ax and ay are the autocorrelation distances along x and y, respectively. In the present work, the
horizontal and vertical autocorrelation distances are taken equal to 10 m and 5 m respectively.

3 GSAS GENERAL PROCEDURE FOR SPATIAL VARIABILITY PROBLEMS

This section aims at presenting the general procedure of the GSAS method as adapted to the case of
random fields. Firstly, the GSAS-MCS model (which may be considered as an improvement of AK-
MCS) is introduced. Then, the GSAS-IS model based on importance sampling will be briefly described.

3.1 GSAS-MCS procedure

The general procedure of the GSAS-MCS method as adapted to the case of random fields problems can
be summarized as follows:

1. Generation by Monte Carlo simulation of x(i) (i = 1,2, ...,NMCS) points. In this work, NMCS was
taken equal to 500,000. Each point x(i) consists of M standard Gaussian random variables where M
is the number of random variables needed by EOLE methodology (Li and Der Kiureghian, 1993)
to accurately discretize the cohesion and friction angle random fields. In this work, 6 random
variables were adopted for each random field, thus leading to a small value of the variance of the
error (=1.6%). This means that sufficiently accurate random fields discretization was adopted in
the analysis.

2. Random selection of a small design of experiments (DoE) from the generated population (a DoE
of 20 points was used in this work). Then, use of EOLE methodology to transform each point
into realizations of the soil cohesion c and angle of internal friction ϕ that respect the correlation
structure of those fields. For each selected point, the performance function G is evaluated using
the following equation:

G =
qu

qs
−1 (2)

where qu is the ultimate bearing capacity computed based on FLAC3D software and qs is the
vertical load applied to the footing.

3. Based on the DoE and the corresponding performance function evaluations, an approximate Krig-
ing meta-model is constructed in the standard space of random variables using the DACE toolbox
(Lophaven et al., 2002).



A.-K. El Haj, A.-H. Soubra and T. Al-Bittar

4. For each Monte Carlo point x(i), the random response predicted by the approximate Kriging sur-
rogate model is a Gaussian variate as follows:

Gp(x(i))∼ N(ĝ(x(i)),σ2
Gp
(x(i)))

where ĝ(x(i)) and σ2
Gp
(x(i)) are the mean prediction and the corresponding Kriging variance, re-

spectively.

The Kriging mean predictions values ĝ(x(i)) and their corresponding Kriging variance σ2
Gp
(x(i))

values are determined for the whole MCS points using the DACE toolbox. Then, the failure
probability P̂f is estimated using the following equation (after replacing the meta-model random
responses Gp(x(i)) by the mean prediction values ĝ(x(i))):

P̂f =
NMCS

∑
i=1

I
(

Gp(x(i))
)
/NMCS (3)

In this equation, I
(
Gp(x(i))

)
= 1 if Gp(x(i))≤ 0, otherwise, I

(
Gp(x(i))

)
= 0. Thus, P̂f is estimated

by counting the number of negative mean predictors and dividing it by the total number of MCS
points. The corresponding coefficient of variation COV(P̂f ) is given by the following equation:

COV (P̂f ) =

√
1− P̂f

P̂f ·NMCS
(4)

5. It should be emphasized here that the value of the failure probability computed at this stage is far
from being accurate because of the small DoE used so far. An enrichment process is thus needed.
Within AK-MCS approach, the best next candidate point adopted during the enrichment process is
selected as the one that is the most close to the limit state surface. This point could be considered
as the one that mostly reduces the uncertainty in P̂f if the sample responses Gp(x(i)) predicted from
the surrogate model were completely independent. Notice however that these sample responses are
correlated normal variables according to the property of the Kriging model. The GSAS approach
allows one to overcome this shortcoming. The basic idea of this approach is to treat the proba-
bility of failure estimate P̂f as a random variate representing the output of the system presented
in Figure 1 where the system inputs are the random responses Gp(x(i)) predicted by the Kriging
meta-model. In other words, the uncertainty in the input random variates Gp(x(i)) is propagated
through the system given by Eq. (3) and thus, the uncertainty in the failure probability estimate
can be quantified.

Figure 1: Probability of failure estimate as a system response

For an efficient enrichment of the Kriging meta-model within GSAS, the new training point is
selected based on its contribution to the uncertainty of the quantity of interest (i.e. p̂ f ). It should
reduce the uncertainty in p̂ f in the most significant way. This is done via a global sensitivity anal-
ysis method extended to the case of models with dependent inputs. The extended FAST method
developed by Xu and Gertner (2007) was used in this paper. The enrichment process within GSAS-
MCS approach can be briefly described as follows: The MCS points are firstly classified into two



Probabilistic analysis of a strip footing using Kriging and enhanced active learning

groups according to their U values where U is a learning function usually employed in the Kriging-
based approaches. It is given by the following equation:

U(x(i)) =
|ĝ(x(i))|
σGp(x(i))

(5)

Notice that a large value of U indicates a low probability of making an error on the sign of ĝ(x).
For U(x(i))> 2, the probability of making a mistake on the sign of the performance function value
is less than 0.023 (Echard et al., 2011). Based on that, the MCS points x(i) (i=1,2,...,NMCS) are
divided into two groups, namely the group xMCS

g1 with U values larger than 2 and the group xMCS
g2

with the remaining points in xMCS. The global sensitivity analysis is then performed on the xMCS
g2

group points to determine their contributions to the uncertainty of p̂ f since we assume that the
uncertainty of p̂ f comes from this group of points. It should be noted that in order to reduce the
dimensionality of the problem, only a reduced number ncan of candidate points (taken equal to
20 in this work) of the xMCS

g2 group with the lowest U values are selected to perform the global
sensitivity analysis since they have high probability of having wrong performance function signs
(i.e. high probability of being the new selected training point).

6. A powerful stopping criterion based on the quantification of the uncertainty in the failure probabil-
ity was suggested within GSAS approach. Although a prescribed maximal value of the uncertainty
on the failure probability would be a quite relevant stopping condition (because it makes sure that
the uncertainty in P̂f is sufficiently small), Hu and Mahadevan (2016) suggest stopping the addi-
tion of new points based on the uncertainty of the error on the failure probability εr. The error on
the failure probability is a measure of the error between the theoretical and the computed values of
the failure probability. It is defined by the following equation:

εr =
P̂f − P̂

′
f

p̂ f
(6)

where P̂f is the theoretical failure probability given by Eq. (3) and P̂
′
f is the estimate value of the

failure probability that can be directly computed based on the Kriging meta-model mean predic-
tion values ĝ(x(i)). It should be noted here that P̂f given by Eq. (3) is not a unique scalar value
that can be computed (because Gp(x(i)) in this equation is a Gaussian variate), but a random vari-
ate for which one can quantify the corresponding uncertainty. The uncertainty in εr as given by
Eq. (6) was thus quantified herein based on the uncertainty quantification of P̂f . The sampling
based method was used: This method consists in generating nr points (nr=600 in this work) of N2
correlated normal variables Gp(xMCS

g2 (i)), i = 1,2, ...,N2 for each point where N2 is the number of
points in the xMCS

g2 group. From these points, one can compute nr samples of the failure probability
P̂f and other nr corresponding samples of the error εr. From the εr(i), i = 1,2, ...,nr samples, the
Kernel Smoothing function is employed to fit the distribution of the error εr. Based on the fitted
distribution, Hu and Mahadevan (2016) have suggested stopping the addition of new points when
the quantity εmax

r becomes smaller than a prescribed threshold a (where a is taken equal to 1% in
this paper) where εmax

r defined as follows:

ε
max
r = max{|F−1

εr
(0.99)|, |F−1

εr
(0.01)|} (7)

In this equation, F−1
εr

is the inverse CDF of εr. The proposed stopping condition corresponds to a
probability of 2% that the actual estimation error on P̂f is larger than 1%. For more information
on this criterion, the reader may refer to Hu and Mahadevan (2016). Notice finally that the value
of εmax

r was checked every time the surrogate model was updated except for the case where the
number N2 was too large (>8,000 samples). This is related to the fact that the error computation
cost is large in this case. Furthermore, this cost would be of no interest since the uncertainty on
the failure probability estimate is obviously significant.
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3.2 GSAS-IS procedure

When dealing with the small failure probabilities encountered in practice, the computation time of GSAS-
MCS remains important (although in this method, one makes use of the predictions computed using the
Kriging meta-model) since a large population with a very large number of points is required by MCS
(e.g. 500,000 points) to lead to a small value of the coefficient of variation on the failure probability. As
a result, Hu and Mahadevan (2016) suggested a combination between GSAS and importance sampling
(IS). This procedure is called herein GSAS-IS. Notice that GSAS-IS can be regarded as an extension of
the AK-IS approach proposed by Echard et al. (2013). GSAS-IS approach can reduce the computation
time of the probabilistic analysis as compared to GSAS-MCS by reducing the size of the sampling
population.

The GSAS-IS procedure consists of two main stages. In the first stage, the most probable failure point
(design point) is determined via an iterative procedure using an approximate Kriging meta-model based
on a small number of points. In the second stage, the obtained approximate Kriging meta-model is
successively improved via an enrichment process (as in GSAS-MCS). Notice however that in GSAS-IS,
the enrichment is performed based on points selected from a probability density function that is centered
at the design point.

The main procedure of the GSAS-IS method (as adapted to the case of random fields) is nearly the same
as that of GSAS-MCS described in paragraph 3.1, except step (4) which is now modified as follows
(the other steps being similar to those of GSAS-MCS and thus they are not re-written herein to avoid
repetition).

a. Find the Hasofer-Lind reliability index and the corresponding value of the design point by making
use of the approximate already-obtained Kriging meta-model. This procedure gives an approximate
value of the reliability index and its corresponding design point.

b. Generate a small number of points (5 points are used in this paper) so that they are centered at the
design point obtained in the previous step and compute the corresponding values of the performance
function using FLAC3D.

c. Construct a new Kriging meta-model in the standard space using all points generated so far. This
Kriging meta-model is used to obtain an updated design point and its corresponding Hasofer-Lind
reliability index.

d. Steps (b) and (c) are repeated several times until the absolute difference between two successive values
of the Hasofer-Lind reliability index becomes smaller than a given tolerance (taken equal to 0.01).

Once the final design point is obtained, an IS population (with a reduced number of points of say 10,000
points) that is centered at the design point is generated. The failure probability P̂f and the corresponding
coefficient of variation COV(P̂f ) are then calculated after each added point using the corresponding
formulas of importance sampling approach. Finally, it should be emphasized herein that the enrichment
process is the same as that of GSAS-MCS, except that the selection of enrichment points is done among
the reduced IS population (10,000 points). Moreover, the number N2 is considered herein as being too
large if it is bigger than 1,000.

4 NUMERICAL RESULTS

In order to check the efficiency of GSAS-MCS and GSAS-IS with respect to the classical AK-MCS and
AK-IS approaches respectively, a probabilistic computation has been performed on the same problem
but using AK-MCS and AK-IS.
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Table 2: Numerical results of the different methods

Method P̂f ×10−3 % COV(P̂f ) Size of the DoE Added points
AK-MCS 3.250 2.48 20 406
GSAS-MCS 3.154 2.51 20 71
AK-IS 3.172 2.06 20+5×8 354
GSAS-IS 3.245 2.08 20+5×8 102

Figure 2: Failure probability vs the number of added points

Table 2 provides the probabilistic results obtained from the four methods. Also, Figure 2 presents the
evolution of P̂f with the number of added points as given by the different methods making use of the
corresponding stopping conditions. As may be seen from this figure and from Table 2, GSAS-MCS and
GSAS-IS are powerful approaches since they provide quasi similar values of the failure probability as
the corresponding AK-MCS and AK-IS classical approaches making use of a much reduced number of
calls to the mechanical model. The methods based on IS are much more efficient than those based on
MCS in terms of the computation time because a smaller population is used in these methods (10,000
instead of 500,000) while computing the Kriging meta-model estimations. Finally note that when using
IS-based methods, the P̂f values calculated after the first added points were not very far from the final P̂f

value. This may be explained by the fact that the added samples in this case are chosen within the zone
of interest for the computation of the failure probability (i.e. around the design point).
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Figure 3: Evolution of the fitted distribution of εr with the added points

Figure 3 presents the evolution of the distribution of εr with the number of added points for the GSAS-
MCS calculation process (similar trend was obtained for GSAS-IS). This figure shows that (i) the mean
value of the error converges successively to zero and (ii) the variability of εr decreases with the number
of added points, the corresponding standard deviation value becomes very small (with a value of 3.78×
10−3) when reaching the optimal number of added points (i.e. 71 points). These two observations
provide a quite good indication on the convergence of the estimated failure probability to its theoretical
value. Table 3 shows the evolution of εmax

r and the corresponding value of the failure probability P̂f

with the added points. εmax
r decreases progressively until reaching the stopping condition (εmax

r < 1%)
which indicates that the mean error on P̂f is converging to zero and the level of uncertainty on this error
has reached the threshold value. The final value of the estimated failure probability P̂f is thus obtained
within the target uncertainty level.

Table 3: Evolution of εmax
r and P̂f with the added points

Added points εmax
r (%) P̂f

50 1.74 2.626
60 1.43 2.766
71 0.92 3.154

Figure 4: Critical realizations of the soil shear strength parameters

Figure 4 presents the critical realizations of the soil shear strength parameters corresponding to the ob-
tained design point. This figure exhibits a symmetrical distribution of the soil shear strength parameters
with respect to the central vertical axis of the foundation. The weaker soil zone is concentrated around
the foundation while the stronger soil is far from the foundation. The weak soil zone under the foun-
dation allows the failure mechanism to develop through this zone thus reflecting the most prone soil to
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punching.

5 CONCLUSION

A probabilistic analysis was performed at the Ultimate Limit State (ULS) of a strip footing resting on a
spatially varying soil and subjected to a vertical load. The soil cohesion c and angle of internal friction ϕ

were modeled as two anisotropic non-Gaussian random fields. EOLE method was used for the generation
of realizations of the random fields.

The Global Sensitivity Analysis enhanced Surrogate (GSAS) modeling proposed by Hu and Mahadevan
(2016) was extended in this work to the case of random fields and used to perform the reliability analysis.
The method was applied in combination with the classical MCS or IS approach. The resulting methods
have shown high efficiency as compared to the corresponding AK-MCS and AK-IS approaches since
they have led to quasi similar values of the failure probability and coefficient of variation making use of
a much reduced number of calls to the mechanical model.

The critical realizations at the design point have shown a symmetrical distribution of the soil shear
strength parameters with respect to the central vertical axis of the foundation with a weak soil zone near
the footing.
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