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ABSTRACT: A reliability-based analysis of a shallow strip foundation is presented. Both the ultimate and the
serviceability limit states are considered. Two deterministic models based on numerical simulations are used.
The first one computes the ultimate bearing capacity of the foundation and the second one calculates the footing
displacement due to a footing applied load. The response surface methodology is utilized for the assessment of
the Hasofer-Lind reliability indexes. Only the soil shear strength parameters are considered as random variables
while studying the ultimate limit state. Also, the randomness of only the soil elastic properties is taken into
account in the serviceability limit state. The assumption of uncorrelated variables was found conservative in
comparison to the one of negatively correlated variables. The failure probability of the ultimate limit state was
highly influenced by the variability of the angle of internal friction. However, for the serviceability limit state,
the accurate determination of the uncertainties of the Young modulus was found very important in obtaining
reliable probabilistic results. Finally, the computation of the system failure probability involving both ultimate

and serviceability limit states was presented and discussed.

1 INTRODUCTION

The commonly used approaches in the analysis
and design of shallow foundations are deterministic.
Average values of the input parameters are usually con-
sidered and the uncertainties of the different param-
eters are taken into account via a global factor of
safety which is essentially a ‘factor of ignorance’. A
reliability-based approach for the analysis of founda-
tions is more rational since it enables to consider the
inherent uncertainty of each input parameter. Nowa-
days, this is possible because of the improvement of
our knowledge on the statistical properties of the soil
(Phoon and Kulhawy 1999).

In this paper, a reliability-based analysis of a strip
foundation resting on a c—¢p soil and subjected to a
central vertical load is presented. Previous investiga-
tions on the reliability analysis of foundations focused
on either the ultimate or the serviceability limit state
(Fenton & Griffiths 2003; Bauer & Pula 2000 and
Youssef Abdel Massih et al. 2007). This paper con-
siders both limit states in the reliability analysis of
foundations. Two deterministic models based on the
Lagrangian explicit finite difference code FLAC®P
are used. The first one computes the ultimate bearing

capacity of the foundation and the second one calcu-
lates the footing displacement due to an applied service
load. The response surface methodology is utilized
to find an approximation of the analytically-unknown
performance functions and the corresponding relia-
bility indexes. The random variables considered in the
analysis are the soil shear strength parameters ¢ and ¢
for the ultimate limit state and, the soil elastic prop-
erties E and v for the serviceability limit state. After
a brief description of the basic concepts of the the-
ory of reliability, the two deterministic models based
on numerical FLAC?P simulations are presented.
Then, the probabilistic analysis and the corresponding
numerical results are presented and discussed.

2 BASIC RELIABILITY CONCEPTS

Two different measures are commonly used in liter-
ature to describe the reliability of a structure: The
reliability index and the failure probability. The relia-
bility index of a geotechnical structure is a measure
of the safety that takes into account the inherent
uncertainties of the input parameters. The widely used



reliability index is the one defined by Hasofer and Lind
(1974). Its matrix formulation is given by:

B =11%¥‘\/(x—#yc“l (»"‘.U) h

in which x is the vector representing the # random
variables, u is the vector of their mean values, C is
their covariance matrix and F is the failure region.
The minimisation of equation (1) is performed sub-
ject to the constraint G(x) <0 where the limit state
surface G(x) = 0, separates the n-dimensional domain
of random variables into two regions: a failure region
F represented by G(x) <0 and a safe region given by
G(x) > 0. The classical approach for computing the
reliability index Bg; by equation (1) is based on the
transformation of the limit state surface into the space
of standard normal uncorrelated variates. The shortest
distance from the transformed failure surface to the
origin of the reduced variates is the reliability index
Brr- An intuitive interpretation of the reliability index
was suggested in Low and Tang (1997) where the con-
cept of an expanding ellipsoid led to a simple method
of computing the Hasofer-Lind reliability index in the
original space of the random variables. These authors
stated that the minimization of the reliability index is
equivalent to find the smallest dispersion ellipsoid that
is tangent to the limit state surface. When the random
variables are non-normal and correlated, the optimi-
sation approach uses the Rackwitz-Fiessler equivalent
normal transformation without the need to diagonal-
ize the correlation matrix as shown in Low (2005).
The computations of the equivalent normal mean p
and equivalent normal standard deviation o for each
trial design point are automatically found during the
constrained optimization search. The method of com-
putation of the reliability index using the concept of an
expanding ellipsoid suggested by Low and Tang (1997)
is used in this paper. From the First Order Reliability
Method FORM and the Hasofer-Lind reliability index
BrL, one can approximate the failure probability as:

P =0(-£,) (2)

where ®(-) is the cumulative distribution function of
a standard normal variable.

3 DETERMINISTIC NUMERICAL
MODELLING OF BEARING CAPACITY AND
DISPLACEMENT OF STRIP FOOTINGS

FLAC®P (Fast Lagrangian Analysis of Continua) is a
commercially available three-dimensional finite dif-
ference code in which a Lagrangian explicit cal-
culation scheme and a mixed discretization zoning
technique are used. It should be mentioned that

FLAC® includes an internal programming option
(FISH) which enables the user to add his own subrou-
tines. In this code, although a static (i.e. non-dynamic)
mechanical analysis is required, the equations of
motion are used. The solution to a static problem is
obtained through the damping of a dynamic process
by including damping terms that gradually remove the
kinetic energy from the system. It should be men-
tioned that in FLAC?P, the application of velocities
or stresses on a system creates unbalanced forces in
this system. Damping is introduced in order to remove
these forces or to reduce them to very small values
compared to the initial ones. The stresses and deforma-
tions are calculated at several small timesteps (called
hereafter cycles) until a steady state of static equilib-
rium or plastic flow is achieved. The convergence to
this state may be controlled by a maximal prescribed
value of the unbalanced force for all elements of the
model.

3.1 Numerical simulations

3.1.1 Ultimate limit state — Bearing capacity

This section focuses on the determination of the ulti-
mate bearing capacity of a rough rigid strip footing, of
breadth B =2 m, resting on a c-¢ soil and subjected to
a vertical load.

Because of symmetry, only half of the entire soil
domain of width 20B and depth 5B is considered. The
bottom and right vertical boundaries are far enough
from the footing and they do not disturb the soil mass
in motion (i.e. velocity field) for all the soil config-
urations studied in this paper. A non uniform mesh
composed of 904 zones is used. For the half mesh on
the right hand side (Figure 1), the region under the
footing was divided horizontally into 15 zones, which
size gradually decreases from the center to the edge of
the footing where very high stress gradients are devel-
oped. Beyond the edge of the footing, the domain was
divided into 30 zones which size gradually increases
from the foundation edge to the right vertical bound-
ary. Vertically, the domain was divided into 20 zones
which size decreases gradually from the bottom of the
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Figure 1. Soil domain and mesh used in FLAC?P.



domain to the ground surface. Since this is a 2D case,
all displacements in the direction parallel to the footing
are fixed. For the displacement boundary conditions,
the bottom boundary was assumed to be fixed and the
vertical boundaries were constrained in motion in the
horizontal direction.

A conventional elastic-perfectly plastic model
based on the Mohr-Coulomb failure criterion is used to
represent the soil. The soil elastic properties used are
the shear modulus G = 23 MPa and the bulk modulus
K = 50 MPa (for which the equivalent Young’s modu-
lus and Poisson s ratio are respectively E = 60 MPa and
v =0.3). The values of the soil shear strength param-
eters used in the analysis are: ¢ =30°, ¢ =20° and
¢ =20kPa where v is the soil dilation angle. The soil
unit weight was taken equal to 18 kN/m>. The strip
footing of half width equal to 1 m and depth 0.5m is
simulated by a weightless elastic material. It is divided
horizontally into four zones. The footing elastic prop-
erties used are the Young’s modulus E =25 GPa and
the Poisson’s ratio v =0.4. Compared to the soil elas-
tic properties, these values are well in excess of those
of the soil and ensure a rigid behavior of the footing.
It was found that the soil and footing elastic properties
have a negligible effect on the failure load. The footing
is connected to the soil via interface elements that fol-
low Coulomb law. The interface is assumed to have a
friction angle equal to the soil angle of internal friction,
dilation equal to that of the soil and cohesion equal to
the soil cohesion in order to simulate a perfectly rough
soil-footing interface. Normal stiffness K, = 10° Pa/m
and shear stiffness Ks = 10° Pa/m are assigned to this
interface. It was found that these parameters do not
have a major influence on the failure load.

For the computation of the ultimate bearing capac-
ity of a rigid rough strip footing using FLAC??, the
following procedure is adopted: Geostatic stresses are
first applied to the soil, and then several cycles are run
in order to arrive to a steady state of static equilibrium.
Finally, the obtained displacements are set to zero in
order to obtain the footing displacement due to only
the footing load. In a second stage, a controlled down-
ward vertical velocity (i.e. displacement per timestep)
is applied to the nodes of the footing. Damping of
the system is introduced by running several cycles
until a steady state of plastic flow is developed in
the soil underneath the footing. This state is achieved
when both conditions (i) a constant footing load and
(ii) small values of unbalanced forces, were satisfied as
the number of cycles increases. The number of cycles
required to reach this state depends on the value of
the applied velocity. At each cycle, the vertical foot-
ing load is obtained by using a FISH function that
calculates the integral of the normal stress compo-
nents for all elements in contact with the footing. The
value of the vertical footing load at the plastic steady
state is the ultimate footing load. The ultimate bearing

capacity is then obtained by dividing this load by the
footing area.

Several control parameters, such as the intensity of
the vertical velocity and the mesh size, may greatly
affect the value of the ultimate footing load.

An optimal vertical velocity must be chosen in
order to reach a value of the ultimate bearing capacity
close to the smallest most critical one (correspond-
ing to very small velocity) with a reasonable com-
putation time. A velocity of 2.5 x 10~® m/timestep
downward was suggested by Yin et al. (2001) as a
result of a number of verification runs. This value
was tested in the present paper, and an ultimate load
of 2393.1kN/m was obtained at the plastic steady
state (for which a continuous increase in the foot-
ing vertical displacement is obtained for a constant
footing load). A smaller velocity of 1076 m/timestep
and a higher velocity of 5 x 10~ m/timestep were
also tested. The value of the ultimate load corre-
sponding to the smaller velocity was found equal to
2392.7kN/m which is slightly smaller than the one
obtained by applying the 2.5 x 10~ m/timestep veloc-
ity. However, an increase in the calculation time by
76% was necessary to reach this value. For the higher
velocity of 5 x 107 m/timestep, a slightly greater
value of 2394.48 kKN/ m was obtained. The difference
is smaller than 0.1% from the value obtained using the
10~% m/timestep velocity with a decrease in the cal-
culation time by 72%. Thus, the 5 x 1075 m/timestep
velocity is adopted in this paper.

The effect of the mesh size on the solution was also
checked. It was found that a more refined mesh under
the footing does not improve the value of the foot-
ing load and may cause numerical instability. A more
refined mesh beyond the edge of the footing improves
the result (i.e. reduces the ultimate load) by only 0.27%
with an increase in the calculation time by 36%. Thus,
the mesh presented above will be used in all subsequent
calculations.

3.1.2  Serviceability limit state — vertical
displacement

For the computation of the vertical displacement of the
footing under an applied load, it would not be interest-
ing to apply uniform stresses directly to the surface
nodes of the soil since this approach corresponds to
the simulation of a flexible footing. Thus, the model-
ing of the foundation by a weightless elastic material
is also adopted here. An elastic-perfectly plastic model
is used for the soil since it enables the development of
plastic zones that may occur in the soil near the foot-
ing edges even at small service loads and it leads to
more accurate solutions than a purely elastic model.
For the computation of the footing displacement, the
same procedure described before concerning the geo-
static stresses is first used. Then, a uniform service
stress is applied at the base of the footing. Finally,



damping of the system is introduced until a steady
state of static equilibrium is reached in the soil.

4 RELIABILITY ANALYSIS OF STRIP
FOOTINGS

The aim of this paper is to perform a reliability analysis
of a strip footing resting on a c—¢ soil and subjected
to a vertical load. Two failure or unsatisfactory perfor-
mance modes are considered in the analysis: The first
one involves the ultimate limit state and emphasis on
the ultimate bearing capacity of the footing and the
second one considers the serviceability limit state and
focuses on the maximal footing displacement. The two
deterministic models presented in the previous section
are used. The response surface methodology is used
to find an approximation of the analytically-unknown
performance functions. The cohesion c, the angle of
internal frition ¢, the Young modulus E and the Poisson
ratio v of the soil are considered as random variables.
Due to the relatively low effect of the soil elastic prop-
erties on the ultimate bearing capacity, only ¢ and ¢
will be considered as random variables while studying
the ultimate limit state. Similarly, only the random-
ness of £ and v will be taken into consideration in
the analysis of the serviceability limit state. After a
brief description of the performance functions used in
the present analysis, the response surface methodol-
ogy and its numerical implementation are presented.
Then, the probabilistic numerical results based on this
method are presented and discussed.

4.1 Performance functions

Two performance functions corresponding to the two
unsatisfactory performance modes are used in this reli-
ability analysis. The first one is defined with respect
to the ultimate bearing capacity of the soil. It is given
as follows:

G, =P, [P, -1 3

where P, is the ultimate foundation load calculated
using FLAC?P and P; is the footing applied load. The
performance function defined with respect to a pre-
scribed admissible footing displacement is given as
follows:

G,=u_, ~u (4

where u is the vertical displacement of the footing cal-
culated using FLAC?P under a service load P, and
Umay 18 the maximal admissible prescribed vertical
displacement.

4.2 Response surface method

If the performance function is an explicit function
of the random variables, the reliability index can
be calculated easily. In FLAC?P model, the closed
form solutions of the two performance functions are
not available and the determination of the reliability
indexes of the two limit states is then not straightfor-
ward. Therefore, an algorithm based on the response
surface methodology proposed by Tandjiria et al.
(2000) is used in this paper in the aim to calculate
the reliability indexes and the corresponding design
points. The basic idea of this method is to approxi-
mate the performance function by an explicit function
of the random variables, and to improve the approx-
imation via iterations. The approximate performance
function used in this study has a quadratic form. It uses
a second order polynomial with squared terms but no
cross terms. The expression of this approximation is
given by:

(il L
Glx)=a,+ Y a.x +Zb,..:cf (5)
=l i=l

where x; are the random variables, n is the number of
the random variables and, a;, b; are the coefficients
to be determined. In this paper, two random variables
are considered for each limit state (i.e. n=2). They
are characterized by their mean values p; and their
coefficients of variation o;. A brief explanation of the
used algorithm is as follows:

1. Evaluate the performance function G(x) at the mean
value point y and the 2»n points each at u *ko
where k£ = 1 in this paper;

2. The above 2n+ 1 values of G(x) can be used to
solve equation (5) for the coefficients (a;, b;). This
obtains a tentative response surface function which
is based on the values of the 2n + 1 sampled points
near the mean value point;

3. Solve equation (1) to obtain a tentative design point
and a tentative Bz subject to the constraint that
the tentative response surface function of step 2 be
equal to zero;

4. Repeat steps 1 to 3 until convergence. Each time
step 1 is repeated, the 2n+ 1 sampled points are
centred at the new tentative design point of step 3.

4.3  Numerical implementation of the response
surface method

As described in the previous section, the determination
of the Hasofer-Lind reliability index requires (i) the
determination of the coefficients (a;, ;) of the ten-
tative response surface via the resolution of equation
(5) for the 2n + 1 sampled points and (ii) the minimi-
sation of the Hasofer-Lind reliability index subject to



the constraint that the tentative response surface func-
tion of step 2 be equal to zero. These two operations
which constitute a single iteration were done using the
optimization toolbox available in Matlab 7.0 software.
Several iterations are performed until convergence of
the reliability index.

Notice that the determination of the performance
function at the 2n+ 1 sampled points is performed
using deterministic FLAC3P calculations. The results
of these computations constitute the input data for
the determination of the coefficients of the tentative
response surface (a;, b;) using Matlab 7.0. Also, the
value of the design point determined using the mini-
mization procedure in Matlab 7.0 is an input data for
the determination of the performance function at the
new 2n + 1 sampled points in FLAC3P. Therefore, an
exchange of data between FLACP and Matlab 7.0 in
both directions was necessary to enable an automatic
resolution of the iterative algorithm for the determi-
nation of the Hasofer-Lind reliability index. The link
between FLAC?P and Matlab 7.0 was performed using
text files and FISH commands.

5 NUMERICAL RESULTS

For the random variables used in the ultimate limit
state, different values of the coefficients of variation
of the angle of internal friction and cohesion are pre-
sented in literature. The coefficient of variation of the
effective angle of internal friction proposed by Phoon
& Kulhawy (1999) is between 5% and 15%. For the
effective cohesion, the coefficient of variation varies
between 10% and 70% (Cherubini 2000). For the coef-
ficient of correlation, Harr (1987) has shown that a
correlation exists between the effective cohesion ¢ and
the effective angle of internal friction ¢. The results
of Wolff (1985) [pc,4 = —0.47] and Cherubini (2000)
[pc,» = —0.61] are among the ones cited in literature.
In this paper, the illustrative values used for the sta-
tistical moments of the shear strength parameters and
their coefficient of correlation are given as follows:
e =20kPa, py =30°, COV,=20%, COV, =10%,
and pc 4 = —0.5. For the probability distribution of the
random variables, ¢ is assumed to be lognormally dis-
tributed while ¢ is considered to be bounded and a
Beta distribution is used (Fenton & Griffiths 2003).
For the serviceability limit state, soils with small
values of Young modulus are used in this paper. In such
soils, the variability of the compressibility character-
istics is very large (Bauer & Pula 2000). A lognormal
distribution is used for E with a mean value of 60 MPa
(Nour et al. 2002). For the coefficient of variation,
some values proposed and used by several authors are
listed in table 1. A value of 15% is used in this paper.
Regarding the Poisson ratio, there is no available infor-
mation about its random variation. Some authors have

Table 1. Values of the coefficient of variation of the Young
modulus proposed by several authors.

Coefficient of variation of

Authors the Young modulus (%)
Phoon and Kulhawy 1999 30

Bauer and Pula 2000 15

Nour et al. 2002 40-50

Baecher and Christian 2003 2-42

suggested that the randomness can be neglected in
an analysis of settlement taking place in the case of
elastic soil. Others have stated that v changes with a
relatively narrow interval. In this paper, v is consid-
ered as a lognormally distributed variable with a low
coefficient of variation of 5%. Its mean value is taken
equal to 0.3. For the correlation coefficient of these
two parameters, there is no information available. The
results reported by some researchers (Bauer & Pula
2000) lead to the conclusion that this correlation is
negative. In this paper, the cases of uncorrelated and
correlated soil elastic properties with pg, = —0.5 are
considered. The threshold value of the settlement is
Upax = 0.1 m.

It was found that for the ultimate limit state, the soil
elastic properties (i.e. K and G or E and v) have no
effect on the value of the ultimate bearing capacity.
Higher values of these properties, G = 100 MPa and
K =133 MPa (for which E =240 MPa and v=0.2),
were checked. No change was observed in the value
of the ultimate bearing capacity. Furthermore, a reduc-
tion by 50% in the number of cycles necessary to reach
failure was noticed (i.e. a reduction of the computa-
tion time by half). Consequently, these values will be
used in all subsequent calculations when studying the
ultimate limit state.

5.1 Ultimate limit state

5.1.1 Graphical representation of the successive
tentative response surfaces
Figure 2 shows the evolution of the tentative response
surfaces in the standard space (i, u,) for a footing
applied load equal to 775 kN/m.

Notice that for correlated non-normal variables, u,

and u, are given by:

. . ¥
u, = [M—J (6
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where u and oV are respectively the equivalent
normal mean and standard deviation of the random
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Figure 2. Evolution of the tentative response surfaces.

variables ¢ and ¢. A convergence criterion on the
reliability index was adopted. It considers that conver-
gence is reached when a difference smaller than 10~2
between two successive reliability indexes is achieved.
One cannotice that this criterion is reached after only 4
iterations. Thus, only 20 numerical simulations using
FLAC?P were necessary. A value of 4.35 was found
for the reliability index. It should be mentioned that
one can confirm the accuracy of the obtained response
surface only at the design point.

5.1.2  Reliability index and design point

Tables 2 and 3 present the Hasofer-Lind reliability
index and the corresponding design point (c*, ¢*) for
different values of the vertical applied load P vary-
ing from small values up to the deterministic ultimate
load. Both correlated and uncorrelated shear strength
parameters are considered.

The reliability index decreases with the increase of
the applied load P (i.e. the decrease of the safety fac-
tor F'=P,/P;) until it vanishes for an applied load
equal to the deterministic ultimate load. This case
corresponds to a deterministic state of failure for
which F=1 using the mean values of the random
variables and the failure probability is equal to 50%.
The comparison of the results of correlated variables
with those of uncorrelated variables shows that the
reliability index corresponding to uncorrelated vari-
ables is smaller than the one of negatively correlated
variables. One can conclude that the hypothesis of
uncorrelated shear strength parameters is conserva-
tive and non-economic in comparison to the one of
negatively correlated parameters. For instance, when
the safety factor is equal to 3.2 (i.e. P, =750kN/m),

Table2. Reliability index and design point for uncorrelated
shear strength parameters p., = 0.

Py c* @~

(kN/m) (kPa) ) B Fe Fy
750 14.12 20.86 3.49 1.42 1.52
1150 16.3 24.27 2.12 1.23 1.28
1550 17.9 26.61 1.21 1.12 1.15
1950 18.89 28.45 0.55 1.06 1.07
2394.48 20.00 30.00 0.00 1.00 1.00

Table 3. Reliability index and design point for correlated
shear strength parameters p., = —0.5.

P, ot ¢*
(kN/ 1'1'1) (kPa) (o) .BHL F. F, @
750 - 17.08 19.34 4.62 1.17 1.64
1150 18.26 23.08 2.71 1.10 1.35
1550 18.64 26.43 1.53 1.07 1.16
1950 19.92 28.14 0.67 1.004 1.08
2394.48 20.00 30.00 0.00 1.00 1.00

the reliability index increases by 32% if the variables
¢ and ¢ are considered as negatively correlated.

The values of the design points corresponding to
different values of the vertical applied load can give
an idea about the partial safety factors of each of the
strength parameters ¢ and tang as follows:

F=5 ®
[

, = onlie) )
tang

Tables 2 and 3 show that the values of ¢* and ¢* at the
design point are smaller than their respective mean val-
ues and increase with the increase of the applied load.
They tend to their mean values when the determinis-
tic ultimate load is reached. Consequently, the partial
safety factors F. and F, decrease with the increase
of the applied load. They become equal to 1 when
P;=P,.

Contrary to the conventional codes of practice (e.g.
Eurocode 7) which prescribe constant values of the
partial safety factors, the present reliability approach
has the advantage of providing different values of these
factors depending on the soil variability and the value
of the applied load.

5.1.3 Sensitivity of failure probability to the
variability of the soil shear strength
parameters

The failure probability of the footing under the ulti-

mate limit state is influenced by the variability of




Table 5. Reliability index and design point for correlated
soil elastic properties pg,, = —0.5

P; E*

(kN/m) (MPa) v* BeL Fg F,
750 16.57 0.337 8.80 3.62 0.89
1150 31.06 0.319 4.46 1.93 0.94
1550 48.37 0.306 1.41 1.24 0.98
1780 60.00 0.300 0.00 1.00 1.00

¢ 10 20 30 40 50
Coefficient of variation (%)

Figure 3. Effect of the variability of the soil shear strength
parameters on the failure probability.

Table4. Reliability index and design point for uncorrelated
soil elastic properties pg, = 0.

Py E*

(N/m)  (MPa) " Pm  Fr F,
750 19.42 0280 760 310  1.07
1150 33.71 0288 387 178  1.04
1550 49.75 0296 121 121 101
1780 60.00 0300 0.00  1.00  1.00

the soil shear strength parameters used in the prob-
abilistic analysis. Since correlated variables are used
in this paper, the sensitivity factors defined with
respect to the transformed standard uncorrelated vari-
ables (o; = /1) have no physical meaning (Melchers
1999, p.101).

To study the effect of the variability of the soil shear
strength on the failure probability, Figure 3 shows the
failure probability versus the coefficient of variation
of ¢ and ¢. For each curve, the coefficient of varia-
tion of a parameter is hold to the same constant value
given in the introduction of section 5 and the coef-
ficient of variation of the second parameter is varied
over the range 10-40%. The results show that the fail-
ure probability is highly influenced by the coefficient
of variation of the angle of internal friction, the greater
the scatter in ¢ the higher the failure probability of the
foundation. This means that the accurate determination
of the distribution of this parameter is very important
in obtaining reliable probabilistic results. In contrast,
the coefficient of variation of ¢ does not significantly
affect the failure probability.

5.2 Serviceability limit state

5.2.1 Reliability index and design point

Tables 4 and 5 present the Hasofer-Lind reliability
index and the corresponding design point (E*, v*) for
different values of the vertical applied load P;. Both
correlated and uncorrelated soil elastic properties are
considered.

The reliability index decreases with the increase of
the applied load P;. The comparison of the results of
correlated soil elastic properties with those of uncor-
related ones shows that the same conclusion drawn in
the ultimate limit state remains valid here: The hypoth-
esis of uncorrelated soil properties is conservative in
comparison to the one of negatively correlated vari-
ables and leads to non-economic design. By comparing
tables 4 and 5 with tables 2 and 3 respectively, one can
notice that for small values of the applied load, the
reliability index of the ultimate limit state is signifi-
cantly smaller than that of the serviceability limit state.
Thus, for small values of the applied load, the ultimate
limit state is predominant and will have the highest
contribution in the determination of the system fail-
ure probability. The difference between the reliability
indexes of the two limit states becomes smaller for
higher values of the applied load. Consequently, when
the applied load increases, the two limit states (i.e. the
ultimate and the serviceability ones) will have approx-
imately similar contribution in the computation of the
system failure probability (see more interpretation in
section 5.3). The values of the design points corre-
sponding to different values of the vertical applied load
can give an idea about the partial safety factors of each
of E and v as follows:

- _He 10

Fp=tt (10)

Py =ty (11)
v

Tables 4 and 5 show that the values of E* and v* at the
design point are smaller than their respective mean val-
ues and increase with the increase of the applied load.
Consequently, Fr and F,, decrease with the increase
of P;. They become equal to 1 when P is equal to the
load that leads to the maximal prescribed foundation
settlement uy,, for the mean values of the soil elastic
properties.

5.2.2  Sensitivity of failure probability to the
variability of the soil elastic properties

As for the ultimate limit state, to study the effect of the

variability of the soil elastic properties on the failure
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Figure 4. Effect of the variability of the soil elastic proper-
ties on the failure probability.

Table 6. System reliability index and failure probability.

Pep=00 peo==05 p,p=—05 p,p,=-00

pEy=0.0 pg,=-05 pg,=—-00 pg,=-0.5
Py Priys Piys Prys Priys
KN/m Bogs (%) Bos (%) Bys (%) Bys (%)
750 349 0.02 4.62 2e-4 4.62 2e-4 349 0.02
1150 2.12 1.70 2.71 034 2.70 034 2.12 1.70
1550 0.79 213 1.09 13.7 0.96 169 0.90 183

probability, Figure 4 shows the FORM failure proba-
bility versus the coefficient of variation of E and v. For
each curve, the coefficient of variation of a parameter
is hold to the same constant value given in the intro-
duction of section 5 and the coefficient of variation
of the second parameter is varied over the range 5—
35%. The results show that the failure probability of
the serviceability limit state is highly influenced by
the coefficient of variation of the Young modulus, the
greater the scatter in E the higher the failure probability
of the foundation. This means that the accurate deter-
mination of the distribution of this parameter is very
important in obtaining reliable probabilistic results.

5.3 System failure probability

The system failure probability under the two limit
states involving the ultimate and the serviceability
limit states of the footing is given by:

P = P({US)=P,U)+P(S)-P,(UNS) (12)

where Pr(UNS) is the failure probability under the
ultimate and the serviceability limit states and, Pr(U)
is the failure probability under only the ultimate limit
state and Pr(S) is the failure probability under only the
serviceability limit state.

Table 6 presents the system reliability index and the
corresponding failure probability for different values

ofthe applied load. Four cases are considered: They are
the combinations of correlated and uncorrelated shear
strength parameters with correlated and uncorrelated
soil elastic properties. It can be shown that, even for
the system reliability, the assumption of uncorrelated
parameters is conservative in comparison to the one of
negatively correlated variables. For small values of the
applied load, where the ultimate limit state is predom-
inant, one can notice that the system reliability index
is equal to that of the ultimate limit state. When the
applied load increases, the system reliability depends
on both limit states and a smaller reliability index than
the one corresponding to a single limit state was found.
As a conclusion, both limit states have to be consid-
ered in the reliability analysis of foundations for high
values of the applied load.

6 CONCLUSIONS

A reliability-based analysis of a strip footing resting
on a c—p soil is presented. Both ultimate and service-
ability limit states are considered. The deterministic
models used are based on numerical simulations using
the Lagrangian explicit finite difference code FLAC3P.
The Hasofer-Lind reliability index is adopted here
for the assessment of the foundation reliability. The
response surface methodology is used to find an
approximation of the analytically-unknown limit state
surfaces and the corresponding reliability indexes. The
main conclusions of this paper can be summarized as
follows:

— The hypothesis of uncorrelated parameters was
found conservative in comparison to the one of
negatively correlated variables and leads to non-
economic design;

— The failure probability was found highly influenced
by the uncertainties of the angle of internal friction
for the ultimate limit state and by the uncertainties
of the Young modulus for the serviceability limit
state;

— For small values of the applied load, the ultimate
limit state was predominant. Consequently, the sys-
tem reliability index was found equal to that of the
ultimate limit state. For higher values of the applied
load, the system reliability depends on both limit
states and a smaller reliability index than the one
corresponding to a single limit state, was found.
Thus, both limit states have to be considered in the
reliability analysis of foundations for high values
of the applied load.
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