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ABSTRACT: In this paper, a probabilistic analysis of an offshore monopile foundation embedded in a 

spatially varying clayey soil was performed. The aim is to compute the failure probability 𝑃𝑓 against 

exceeding a threshold value on the monopile head rotation. A multipoint enrichment technique within a 

Kriging-based approach was used for the probabilistic analysis. An improved K-means clustering 

technique was employed. The number of training points used in the enrichment process was determined 

based on the closeness of the estimated failure probability to its upper and lower confidence values. Some 

probabilistic numerical results are presented and discussed. 

The probabilistic analysis of geotechnical 

structures involving spatially varying soil 

properties has been performed for several years 

using Monte Carlo Simulation (MCS) 

methodology [e.g. Griffiths and Fenton (2004)]. 

This method is known to be time-consuming 

especially when dealing with the small practical 

values of the failure probability.  

In order to reduce the computation time with 

respect to MCS, the Active learning method by 

Echard et al. (2011) combining Kriging and 

Monte Carlo simulation (called AK-MCS) was 

recently employed by Al-bittar et al. (2018) for 

the probabilistic analysis of strip footings resting 

on spatially varying soils. The AK-MCS approach 

consists in replacing the time-consuming 

mechanical model by a simple Kriging meta-

model calibrated by a limited number of 

mechanical model evaluations making use of an 

adaptive learning technique. The aim is to apply 

MCS methodology on the calibrated metamodel 

(called also surrogate model) with a quasi 

negligible computational time.  

Within AK-MCS approach, a preliminary 

surrogate model is constructed by Kriging 

metamodeling using a small design of 

experiments. The obtained approximate meta-

model is then successively improved through an 

enrichment process in which a powerful learning 

function is employed for the selection of the ‘best’ 

samples to be evaluated by the computationally 

expensive mechanical model. The best sample is 

the one with the highest probability of 

misclassification [see Echard et al. (2011)]. 

Notice that in AK-MCS method, a single sample 

is selected per iteration of the enrichment process. 

This is a drawback in the case where distributed 

(or parallel) computing facilities are to be used to 

reduce the computation time.  

In this paper, a multipoint enrichment 

technique proposed by Lelièvre et al. (2018) is 

used. The aim is to allow several evaluations of 

the performance function to be carried out 

simultaneously. This approach is based on a 

relevant clustering technique that makes use of the 

learning function U employed by Echard et al. 

(2011). It has the advantage of considering the 

information provided by the U function in order 

to obtain the optimal samples for the enrichment 

process. The resulting technique is named K-

weighted-means clustering algorithm (K-w-

means).  

Concerning the stopping condition on 

learning used in this paper, the present 

probabilistic method makes use of a criterion that 

was recently proposed by Schöbi et al. (2017). 
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This criterion is more relevant than the one used 

in AK-MCS approach because it is based on the 

convergence of the quantity of interest (i.e. the 

failure probability). 

This paper aims at applying the above 

mentioned probabilistic techniques to the case of 

a spatially varying soil. The objective is to 

compute the failure probability 𝑃𝑓 at the ultimate 

limit state of an offshore monopile foundation 

embedded in a spatially varying clayey soil. A 

prescribed threshold value on the monopile head 

rotation was considered in the analysis.  

1. MONOPILE MECHANICAL MODEL  
The mechanical model of the 3D soil-monopile 

system has been carried out using the commercial 

finite element software Abaqus/Standard. 

An open-ended steel monopile of diameter 

D=4m was considered in this study. The monopile 

of 0.05 m thickness and an embedment depth L of 

24 m was extended of 1.0 m above the seabed to 

prevent the soil from going over the monopile. 

The steel monopile material with a density of 

7840 kg/m3 was assumed to be linear elastic with 

Young’s modulus 𝐸𝑝  of 210 GPa and Poisson’s 

ratio 𝜈𝑝 of 0.3.  

The soil consists of an undrained normally 

consolidated clay. It was assumed to follow the 

elastic-perfectly plastic Tresca constitutive 

model. In this paper, the soil was assumed to have 

a submerged unit weight of 7 kN/m3  and a 

Poisson’s ratio of 0.495. The undrained cohesion 

was supposed to vary linearly with depth as given 

by the following equation:  

𝑐𝑢 = 𝑐𝑢,𝑚 + 𝑘𝑐𝑢. 𝜎𝑣0
′  (1) 

where 𝑐𝑢,𝑚 is the value of the undrained cohesion 

at mudline (taken here equal to 2 kPa), 𝑘𝑐𝑢 is a 

material constant for the clay (taken here equal to 

0.23) and 𝜎𝑣0
′  is the effective vertical overburden 

stress. Note here that the soil undrained Young 

modulus was assumed to be linearly related to the 

soil undrained cohesion such that 𝐸𝑢 = 𝐾𝑐 × 𝑐𝑢 

where 𝐾𝑐 is a correlation factor taken equal to 500 

in this paper. 

Figure 1 shows the soil domain and the mesh 

used in the analysis. The soil mesh was 

constructed using C3D8 and C3D6 linear brick 

elements. Incompatible mode linear brick 

elements (C3D8I) were used for the monopile. 

 

 
Figure 1: Soil-monopile numerical model 

 

Surface-to-surface master/slave contact 

formulation was used to model the interaction 

between the monopile and the soil. The monopile 

was selected as the master surface while the soil 

in contact with the monopile was taken as the 

slave surface. The frictional behavior was 

modelled using Coulomb friction law where the 

friction coefficient 𝜇 was taken equal to 0.24.  

The numerical simulation was executed step-

wised. A geostatic step was first performed for the 

generation of the initial stress state of the soil in 

the whole model consisting of soil elements only. 

In a second step, the monopile was simulated by 

(i) removing the soil elements located at the 

monopile position and generating the steel 

elements representing the monopile, (ii) 

activating the contact conditions between the 

monopile and the soil and (iii) applying the weight 

of the generated monopile. Finally, in a third step, 

the horizontal and vertical forces (H and V) and 

the corresponding moment M  are applied in 

increments at a reference point (taken here at the 

top of the monopile) where the applied moment 

was equal to M = H × (h − 1) , h  being the 

vertical distance between the applied horizontal 

force and the mudline.  

The monopile head rotation value 

corresponding to the ultimate limit state was 
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determined by applying the tangent intersection 

method on the moment-rotation curve (see Figure 

2) as obtained from the numerical simulation. 

From this figure, one may observe that the limit 

rotation corresponding to the ultimate moment is 

equal to 1.5°, the corresponding horizontal force 

being equal to about 2 MN. The obtained value of 

the monopile head rotation is used later in this 

paper as a threshold value for the probabilistic 

analysis. 

 
Figure 2: Moment-rotation curve of the monopile at 

mud-line level 

2. NUMERICAL MODELING OF THE 

SOIL SPATIAL VARIABILITY 

The soil undrained cohesion 𝑐𝑢 was considered as 

a random field. It was asuumed to follow a 

lognormal distribution with a constant coefficient 

of variation of 25%, which is in accordance with 

the investigations by Lacasse and Nadim (1996) 

on the variability of seabed soils. The mean values 

of the soil undrained cohesion are those of the 

deterministic analysis provided in the preceding 

section. Concerning the autocorrelation function, 

a square exponential function ( , ')LN

Z X X  was 

used in this paper. This function provides the 

values of the correlation between two arbitrary 

points 𝑋(𝑥, 𝑦, 𝑧) and 𝑋′(𝑥′, 𝑦′, 𝑧′) as follows:   

𝜌𝑍
𝐿𝑁(𝑋, 𝑋′) = exp [− (

|𝑥 − 𝑥′|

𝑎𝑥

)

2

− (
|𝑦 − 𝑦′|

𝑎𝑦

)

2

− (
|𝑧 − 𝑧′|

𝑎𝑧

)

2

] 
(2) 

where 𝑎𝑥  and 𝑎𝑦  are the horizontal 

autocorrelation distances and 𝑎𝑧  is the vertical 

autocorrelation distance. 

Remember here that the soil undrained Young 

modulus was assumed in this paper to be linearly 

related to the soil undrained cohesion such that 

𝐸𝑢 = 500 × 𝑐𝑢. Thus, the soil undrained Young 

modulus was implicitly considered as a random 

field having the same distribution as the soil 

undrained cohesion.  

Notice that the discretization of the cohesion 

random field was performed using EOLE method 

proposed by Li and Der Kiureghian (1993). 

Notice also that the discretization of a random 

field by EOLE leads to an expression that 

provides the value of this random field at each 

point of the soil mass as a function of 𝑀 standard 

Gaussian random variables (this number 𝑀  is 

equal to the number of eigenmodes). For more 

details on the discretisation of a log-normal 

random field by EOLE, the reader may refer to Al-

bittar and Soubra (2014). Notice finally that the 

realizations of the Young modulus random field 

can be easily obtained from the realizations of the 

cohesion random field by multiplying the values 

of the soil cohesion by 500. 

3. PROBABILISTIC MODEL 

The probabilistic analysis aims at computing the 

failure probability against exceeding a threshold 

value on the monopile head rotation. The 

performance function is given by: 

𝐺 =
𝜃𝑈𝐿𝑆

𝜃
− 1 

(3) 

where 𝜃𝑈𝐿𝑆 = 1.5° is the monopile head rotation at 

the Ultimate Limit State (ULS) as was determined 

before and 𝜃  is the rotation corresponding to 

typical realizations of 𝑐𝑢 and 𝐸𝑢. 

The present probabilistic procedure consists 

of two main stages. First, a preliminary 

approximate kriging meta-model based on a small 

number of samples is generated. Second, the 

obtained approximate kriging meta-model is 

successively improved via an enrichment process 

(by adding each time new training samples) until 

reaching a sufficiently accurate meta-model for 

the computation of the failure probability. These 

two stages are described in more details in the 

next two subsections in the present case of a 

spatially varying soil. 
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3.1. Construction of a preliminary Kriging 

metamodel 

The procedure begins with a generation by 

MCS methodology of 5 × 105  samples 𝒙(𝑖)(𝑖 =

1,2, … ,5 × 105). Each sample 𝒙(𝑖) consists of M 

standard Gaussian random variables where M is 

the number of random variables required by 

EOLE methodology. Afterwards, a small design 

of experiment DoE (taken equal to 15 samples) is 

randomly selected from the generated population. 

Each sample of the DoE is then transformed 

(using EOLE) into a realization of 𝑐𝑢  and a 

corresponding realization of 𝐸𝑢 . These 

realizations are used as inputs for the mechanical 

model while computing the sample system 

response (i.e. monopile head rotation 𝜃) and the 

corresponding performance function value.  

By using the DACE toolbox [cf. Lophaven et 

al. (2002)], an approximate Kriging meta-model 

may be constructed in the standard space of 

random variables based on the DoE and the 

corresponding performance function values. This 

meta-model may be used to compute the MCS 

failure probability �̂�𝑓 given by:  

�̂�𝑓 = ∑ 𝐼(𝐺𝑝(𝑥(𝑖)))

𝑁𝑀𝐶𝑆

𝑖=1

/𝑁𝑀𝐶𝑆  (4) 

The meta-model random responses 𝐺𝑝(𝑥(𝑖))  in 

this equation are replaced by the mean prediction 

values �̂�(𝑥(𝑖)). Notice also that 𝑁𝑀𝐶𝑆 in equation 

(4) is the number of MCS samples (i.e. 5 × 105 

samples) and 𝐼(𝐺𝑝(𝑥(𝑖))) = 1  if 𝐺𝑝(𝑥(𝑖)) ≤ 0  ; 

otherwise, 𝐼(𝐺𝑝(𝑥(𝑖))) = 0 . The coefficient of 

variation of the failure probability 𝐶𝑂𝑉 (�̂�𝑓)  is 

given by the following equation:  

𝐶𝑂𝑉(�̂�𝑓) = √
1 − �̂�𝑓

�̂�𝑓 ∙ 𝑁𝑀𝐶𝑆

  (5) 

It should be noted that the value of the failure 

probability and the corresponding value of the 

coefficient of variation computed during this 

stage are not sufficiently accurate because of the 

very small number of samples (DoE) used so far. 

Thus, an enrichment process is needed.   

3.2. Enrichment process 

The enrichment process is done via an active 

learning technique. The learning phase stops once 

the metamodel is sufficiently improved, which is 

indicated by a stopping criterion. The aim of the 

next two subsections is to present the way of 

selection of the new training samples during the 

enrichment process and the adopted stopping 

criterion. 

3.2.1. Selection of new training points  

The enrichment process of the AK-MCS 

method is performed using the learning function 

U defined by the following equation:  

𝑈(𝑥(𝑖)) =
|�̂�(𝑥(𝑖))|

𝜎𝐺𝑝
(𝑥(𝑖))

  (6) 

where 𝜎𝐺𝑝
 is the square root of the Kriging 

prediction variance. The sample that has the 

minimum value of U is selected for the 

enrichment since it is considered to have the 

highest probability of being misclassified. It 

should be emphasized that AK-MCS method 

involves a single sample per iteration of the 

enrichment process. In order to overcome this 

shortcoming, a multipoint enrichment procedure 

is adopted in this paper making use of a clustering 

technique. 

The conventional k-means clustering 

technique aims at finding the geometric centroid 

of each cluster using its arithmetic mean. 

However, this technique does not consider the 

information provided by the learning function and 

thus, the obtained centroids are not the optimal 

ones for the enrichment. In order to account for 

the relative importance of the samples in a cluster, 

a weighted K-means clustering algorithm may be 

used (Zaki and Meira, 2014). In this algorithm, 

larger weights are dedicated to the samples with 

high information values according to the learning 

function.  

Lelièvre et al. (2018) proposed a clustering 

technique, named K-weighted-means clustering 

algorithm (K-w-means), that takes benefit of the 

information provided by the AK-MCS learning 

function. It consists in replacing the mean of each 
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cluster by a weighted one making use of the 

learning function U. In this way, each sample will 

be weighted by the corresponding uncertainty of 

being misclassified and thus, the centroid 

obtained for each cluster will be the optimal one 

for the enrichment. In other words, the selected 

samples will be situated in the uncertain zone all 

along the limit state surface leading to an efficient 

multipoint enrichment of the kriging metamodel. 

This approach is used in this paper for the 

probabilistic analysis. 

The main procedure of the K-w-means 

clustering algorithm can be described as follows: 

 

1. Assume that 𝐾 is the number of clusters used 

in the analysis. Select among the whole MCS 

population a number of 𝑛𝑐 × 𝐾 samples (𝑛𝑐 is 

taken equal to 5 in this paper) that have the 

minimal values of U. The selected samples are 

those that will be used in the clustering 

procedure.  

2. Among the selected samples in the previous 

step, randomly select K samples and consider 

these samples as initial centroids for the K 

clusters. These centroids are denoted 

[𝒄1
(1)

, 𝒄2
(1)

, … , 𝒄𝐾
(1)

].  

3. Split the samples into K sets according to 

Voronoi diagram (Aurenhammer, 1991) 

depending on the nearest centroid. 

4. Determine the centroid 𝒄𝑘  of each cluster 

𝑘 (𝑘 = 1,2, … , 𝐾)  by computing the 

corresponding weighted mean as follows:  

𝒄𝑘
(𝑖+1)

=
∑ (

1

𝑈𝑗
)

2
𝑛𝑘
𝑗=1

 𝒙𝑗

∑ (
1

𝑈𝑗
)

2
𝑛𝑘
𝑗=1

      (7) 

where the index i stands for the considered 

iteration, 𝒄𝑘  is a vector composed of 𝑀 

components (where 𝑀  is the number of 

random variables), 𝑛𝑘 is the number of points 

in the 𝑘𝑡ℎ  cluster and [𝒙1, 𝒙2, … , 𝒙𝑛𝑘
] is the 

set of samples corresponding to this cluster.   

5. Calculate the error expressing the sum of the 

squared distances between each couple of 

successive centroids, as follows:  

∑(𝒄𝑘
(𝑖)

− 𝒄𝑘
(𝑖+1)

)
2

𝐾

𝑘=1

  (8) 

If this error is below a prescribed threshold 𝜀 

(taken here as 5%), the algorithm stops. 

Otherwise, the algorithm goes to step 3 to split the 

samples according to the new centroids. 

It should be noted that the obtained centroids 

do not generally belong to the initially selected 

samples. Hence, the nearest sample to each 

centroid is chosen for the enrichment. 

3.2.2. Stopping condition 

In AK-MCS method, the enrichment process 

stops when the learning function U is sufficiently 

large for all the MCS samples. A minimum value 

of U=2 is adopted on these samples, which 

corresponds to a probability of a wrong sign that 

is lower than 0.0228.  One main issue about this 

criterion is that it is defined from the perspective 

of individual responses (not the quantity of 

interest 𝑃𝑓), which may lead to some unnecessary 

extra evaluations of the mechanical model. A 

more relevant stopping condition that is based on 

the convergence of the quantity of interest (i.e. 𝑃𝑓) 

was proposed by Schöbi et al. (2017). This 

criterion was used in this paper in the aim to 

reduce the computation time. Indeed, the adopted 

criterion relies on the convergence of the failure 

probability, which could be attained before 

reaching the stopping condition indicated by AK-

MCS. Schöbi et al. (2017) define a limit state 

margin characterized by upper and lower 

boundaries of the limit state surface that takes into 

account the prediction uncertainty in the kriging 

metamodel. They stated that when these 

boundaries become close to each other, a thin 

limit state margin is obtained and thus, the 

estimated failure probability can be considered as 

accurate. The proposed stopping criterion is given 

as follows:  
𝑃𝑓

+−𝑃𝑓
−

𝑃𝑓
0 ≤ 𝜀𝑃𝑓

   (9) 

where 𝑃𝑓
0 is the original failure probability based 

on the Kriging prediction values 𝑃(�̂�(𝑥) ≤ 0) 

and, 𝑃𝑓
+  and 𝑃𝑓

−  are respectively the upper and 



13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13 

Seoul, South Korea, May 26-30, 2019 

 6 

lower boundaries of the failure probability 

defined as follows:  

𝑃𝑓
+ = 𝑃(𝑔(𝑥) + 𝑡. 𝜎𝐺𝑝

(𝑥) ≤ 0)    (10) 

𝑃𝑓
− = 𝑃(𝑔(𝑥) − 𝑡. 𝜎𝐺𝑝

(𝑥) ≤ 0)    (11) 

where 𝑔(𝑥) + 𝑡. 𝜎𝐺𝑝
(𝑥) = 0 and 𝑔(𝑥) − 𝑡. 𝜎𝐺𝑝

(𝑥) =

0 are respectively the upper and lower boundaries 

of the limit state surface defined by �̂�(𝑥) = 0, 𝑡 

is a constant (𝑡 = 2 in this paper) that sets the 

confidence level equal to 2 = Φ−1(97.7%) and 

𝜀𝑃𝑓
 is a given tolerance taken as 𝜀𝑃𝑓

= 10%  in 

this paper. 

4. NUMERICAL RESULTS 

The monopile was considered to be subjected to a 

horizontal load H = 1,6 𝑀𝑁  acting at a height 
h (supposed equal to 38.6 m above the sea bed 

level) resulting in an additional moment at 

mudline of 𝑀 = 𝐻 × ℎ . A vertical load V of 

2 𝑀𝑁 representing the structure weight was also 

considered in the analysis. Notice that the applied 

loads (H, V, M)  adopted in this study induces a 

deterministic value of the rotation at mudline of 

nearly 0.55°.  

In this paper, only the vertical autocorrelation 

distance was considered in the analysis, the 

horizontal variability being generally less 

significant than the one in the vertical direction. 

The value of the vertical autocorrelation distance 

used in this paper is equal to 2m. The number of 

random variables required by EOLE to accurately 

discretize the random field with a small variance 

of error (<5%) was found equal to 20. This 

number of random variables was adopted in the 

present paper. 

Figures 3 and 4 present the evolution of the 

failure probability and the corresponding 

coefficient of variation with the number of the 

added samples as obtained from the proposed 

method (case of 2 clusters). A failure probability 

of 1.274 × 10−3 is obtained with a corresponding 

coefficient of variation of 3.95% indicating a 

rigorous estimation of the failure probability.  

 
Figure 3: Failure probability vs number of added 

samples 

 

 
Figure 4: Coefficient of variation of the failure 

probability vs number of added samples 

Figure (5) shows the evolution of the upper 

and lower boundaries of the failure probability 

( 𝑃𝑓
+  and 𝑃𝑓

− , respectively) with the number of 

added samples. From this figure, one may see that 

the enrichment process has stopped when 𝑃𝑓
+ and 

𝑃𝑓
−  converge towards the original failure 

probability 𝑃𝑓
0 within an error of 9.41% (<10%). 

Notice that the minimum value of the U function 

is equal to 1.20 (<2) at this stage thus showing the 

efficiency of the adopted stopping criterion as 

compared to the U criterion. Notice also that even 

when using the proposed stopping criterion, one 

can see that the probability of failure has already 

stabilized for a much smaller number of added 
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samples. This can be explained by the fact that 

severe conditions have been adopted in this paper 

for the parameters employed in the stopping 

criterion. Indeed, a smaller value of the constant 𝑡 

(i.e. a smaller confidence level) may lead to a 

faster convergence of the upper and lower 

boundaries of the failure probability and thus, to 

an earlier stopping of the enrichment process. 

 
Figure 5: Upper and lower boundaries of the failure 

probability vs number of added samples 

4.1. Comparison with AK-MCS method 

This section aims at comparing the efficiency of 

the proposed approach (as applied to the problem 

of a monopile foundation embedded in a spatially 

varying soil) with respect to AK-MCS approach. 

For this purpose, AK-MCS approach was applied 

on the same problem in order to allow the 

comparison.  

 
Table 1: Results of the different approaches 

Method 𝑃𝑓 × 10−3 
Nb. Added 

points 

Time 

(days) 

AK-MCS 1.274 447 27.89 

AK-MCSm 

+ 2 clusters 
1.274 472 24.49 

AK-MCSm 

+ 4 clusters 
1.274 520 7.28 

 

Table 1 presents the results of AK-MCS 

approach and those of the proposed approach 

denoted herein as AK-MCSm (where m stands for 

multipoint enrichment).  

As may be seen from this table, the different 

approaches result in the same value of the failure 

probability. Concerning the computation cost, the 

proposed method leads to a reduction in the 

computation time as compared to AK-MCS, the 

reduction being more significant when increasing 

the number of clusters. It should be noted that 

obtaining a larger number of added points when 

using the proposed method is not surprising. This 

may be explained by the fact that the present 

method is based on a multipoint enrichment 

process.  

5. CONCLUSIONS 

This paper presents a probabilistic analysis at the 

ultimate limit state of an offshore monopile 

foundation embedded in a spatially varying soil. 

The finite element model of the monopile 

foundation being time-consuming, a cost-

effective probabilistic approach was carried out.  

A Kriging-based approach combined with a 

multipoint enrichment technique was adopted in 

this paper. The proposed approach makes use of 

an improved clustering technique proposed by 

Lelièvre et al. (2018) for learning. Also, a relevant 

stopping condition proposed by Schöbi et al. 

(2017) was employed. The resulting method was 

applied to the case of random fields and used to 

perform the reliability analysis.  

The applied method was shown to be efficient 

with respect to the classical Kriging-based 

approach, namely AK-MCS approach.  
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