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ABSTRACT 

A probabilistic dynamic approach is used for the slope stability analysis. In 
this approach, the effect of both the soil spatial variability and the variability of the 
Ground-Motion (GM) time history on the dynamic responses (amplification, 
permanent displacement) are studied and discussed. The soil shear modulus G is 
considered as an isotropic non-Gaussian random field. The simulation of random 
acceleration time histories based on a real target accelerogram is done using a fully 
nonstationary stochastic model in both the time and the frequency domains. The 
deterministic model is based on numerical simulations. An efficient uncertainty 
propagation methodology which builds up a sparse polynomial chaos expansion for 
the dynamic responses is used. The probabilistic numerical results have shown that: 
(i) the decrease in the autocorrelation distance of the shear modulus leads to a small 
variability of the dynamic responses; (ii) the randomness of the earthquake GM has a 
significant influence on the variability of the dynamic responses; (iii) the probabilistic 
mean values of the dynamic responses are more critical than the deterministic ones. 

INTRODUCTION 

The seismic stability of slopes is widely investigated in literature using 
deterministic approaches. However, the material properties of soils are known to vary 
greatly from point to another. Things are more complicated when dealing with 
dynamic loading situations where the seismic excitation is uncertain. In this paper, the 
effects of both the soil spatial variability and the variability of the Ground-Motion 
(GM) on the dynamic responses of a simple slope are studied. Few authors have 
worked on the analysis of the dynamic soil behavior using probabilistic approaches 
[e.g. Koutsourelakis et al. (2002), Popescu et al. (2006)]. In these works, two main 
deficiencies can be detected: Firstly, the classical Monte Carlo Simulation (MCS) 
methodology was used by Koutsourelakis et al. (2002) by employing a very small 
number of realizations (e.g. 50 simulations). Second, the stochastic model used by 
Koutsourelakis et al. (2002) to model the variability of the GM was based on the 
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spectral representation in order to simulate accelerograms which are compatible with 
a prescribed response spectrum and not a real GM acceleration.  

In this study, the two mentioned deficiencies will be avoided by (i) using a 
more efficient probabilistic approach which is the Sparse Polynomial Chaos 
Expansion (SPCE) [Blatman and Sudret (2010), Al-Bittar and Soubra (2011)]; (ii) 
simulating a random acceleration time history based on a real target accelerogram 
using a fully nonstationary stochastic model in both the time and the frequency 
domains [cf. Rezaeian and Der Kiureghian (2008, 2010)].  

The deterministic model is based on numerical simulations using the dynamic 
option of the finite difference code FLAC3D. The Expansion Optimal Linear 
Estimation (EOLE) methodology proposed by Li and Der Kiureghian (1993) is used 
to generate the random field of the shear modulus G. Samples of the synthetic GM 
time-histories were generated and a dynamic stochastic calculation for each 
realization was performed to compute the dynamic responses (i.e. the permanent 
displacement at the toe of the slope and the maximum amplification of the 
acceleration at the top of the slope). The paper is organized as follows: The first three 
sections aim at presenting (i) the method used to generate the random field of the 
shear modulus G, (ii) the method used to generate the stochastic synthetic 
accelerograms based on a real target one and finally (iii) the SPCE methodology 
employed to determine the analytical expression of the dynamic system responses. 
These sections are followed by a presentation of the probabilistic numerical results in 
which only the soil spatial variability is first considered and then combined with the 
time variability of the GM in order to highlight its effect on the variability of the 
dynamic responses. 

GENERATION OF A NON-GAUSSIAN RANDOM FIELD 

The soil shear modulus (G) is modeled herein as a non-Gaussian 'NG' 
(lognormal) random field ( , )NG

GZ x y . It is described by: (i) constant mean μG and 
standard deviation σG, (ii) non-Gaussian marginal cumulative distribution function FG, 
and (iii) a square exponential autocorrelation function NG

Zρ [(x, y), (x', y')] which 
gives the values of the correlation function between two arbitrary points (x, y) and (x', 
y'). This autocorrelation function is given as follows: 

22
' '[( , ), ( ', ')] exp

Z

NG

x y

x x y yx y x y
a a

ρ
⎛ ⎞⎛ ⎞⎛ ⎞− −⎜ ⎟= − − ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

   (1) 

where ax and ay are the autocorrelation distances along x and y respectively. The 
EOLE method proposed by Li and Der Kiureghian (1993) is used herein to generate 
the random field of G. In this method, one should first define a stochastic grid 
composed of q grid points (or nodes) obtained from the different combinations of H 
points in the x (or horizontal) direction, and V points in the y (or vertical) direction. 
The grid points are assembled in a vector Q={ }( , )n h vQ x y=  where h=1, …, H, 
v=1, …, V, n=1, …, q and q=HxV. The values of the field at the different grid points 
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are assembled in a vector { }( , )n h vZ x yχ χ= = . The correlation ( ); ,

NG

i jχ χ
Σ between 

two arbitrary points Qi, Qj  is calculated using Equation (1) as follows: 

( ); ,
,

Z

NG NG
i ji j

Q Q
χ χ

ρ ⎡ ⎤Σ = ⎣ ⎦         (2) 

where i=1, …, q and j=1, …, q. Notice that the matrix 
;

NG
χ χ

Σ in equation (2) provides 
the correlation between each point in the vector χ and all the other points of the same 
vector.  The non-Gaussian autocorrelation matrix 

;

NG
χ χ

Σ  should be transformed into the 
Gaussian space using the Nataf transformation. As a result, one obtains a Gaussian 
autocorrelation matrix ;

G
χ χΣ  that can be used to discretize the random field of the 

shear modulus G as follows: 

( , );
1

( , ) . .
Z x y

N
j T

G G G j
j j

Z x y µ
χ

ξ
σ φ

λ=

= + Σ∑%       (3)  

where ( ,j jλ φ ) are the eigenvalues and eigenvectors of the Gaussian autocorrelation 

matrix ;
G
χ χΣ ,  ( , );Z x y χΣ  is the correlation vector between each point in the vector χ and 

the value of the field at an arbitrary point (x, y), jξ is a standard normal random 
variable, and N is the number of terms (expansion order) retained in EOLE method. 
In Equation (3), one obtains the solution of a Gaussian random field. The extension to 
the case of a lognormal field is performed as follows: 

( )( , ) ( , )NG
G GZ x y Exp Z x y=% %        (4) 

GENERATION OF STOCHASTIC GROUND MOTION ACCELEROGRAMS 

In this paper, the method proposed by Rezaeian and Der Kiureghian (2010) 
was used to generate stochastic acceleration time histories from a target accelerogram. 
This method consists in fitting a parameterized stochastic model that is based on a 
modulated, filtered white-noise process to a recorded ground motion. The 
parameterized stochastic model in its continuous form is defined as: 

[ ]1( ) ( , ) , ( ) ( )
( )

t

h

x t q t h t w d
t

α τ λ τ τ τ
σ −∞

⎧ ⎫⎡ ⎤⎪ ⎪= −⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

∫     (5) 

 In this expression, ( , )q t α  is a deterministic, positive, time-modulating 
function with parameters αi controlling its shape and intensity; ( )w τ  is a white-noise 
process; the integral inside the brackets is a filtered white-noise process with 
[ ], ( )h t τ λ τ− denoting the Impulse-Response Function (IRF) of the filter where 

( )λ τ is a time-varying vector of parameters; and [ ]2 2( ) , ( )
t

h t h t dσ τ λ τ τ
−∞

= −∫ is the 

variance of the integral process. Because of the normalization by ( )h tσ , the process 
inside the brackets has unit variance. As a result, ( , )q t α  equals the standard 
deviation of the resulting process x(t). It should be noticed that the modulating 
function ( , )q t α completely defines the temporal characteristics of the process, 
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whereas the form of the filter IRF and its time-varying parameters define the spectral 
characteristics of the process. In this study, a ‘Gamma’ modulating function is used as 
follows: 

2 1
1 3( , ) exp( )q t t tαα α α−= −         (6) 

In this equation, 1 2 3( , , )α α α α=  where ( )1 3, 0α α > , and 2 1α > . Of the three 
parameters, α1 controls the intensity of the process, α2 controls the shape of the 
modulating function and α3 controls the duration of the motion. These parameters are 
related to three physically based parameters 5 95( , , )a midI D t−  which describe the real 
recorded GM in the time domain; where aI  is the Arias Intensity (AI) and D5−95 
represents the effective duration of the motion. D5−95 is defined as the time interval 
between the instants at which the 5% and 95% of the expected AI are reached 
respectively. Finally, tmid is the time at the middle of the strong-shaking phase. It is 
selected as the time at which 45% of the expected AI is reached. The relations 
between 1 2 3( , , )α α α α= and 5 95( , , )a midI D t− are given in details in Rezaeian and 
Der Kiureghian (2010). 

For the filter IRF, we select a form that corresponds to the pseudo-acceleration 
response of a single-degree-of-freedom linear oscillator: 
 
[ ] [ ] 2

2

( ), ( ) exp ( ) ( )( ) sin ( ) 1 ( ) ( )
1 ( )

0 otherwise

f
f f f f

f

h t t t tω ττ λ τ ζ τ ω τ τ ω τ ζ τ τ τ
ζ τ

⎡ ⎤− = − − × − − ≤
⎣ ⎦−

=

 (7) 

where ( ) ( ( ), ( ))f fλ τ ω τ ζ τ=  is the set of time-varying parameters of the IRF with 
( )fω τ  denoting the frequency of the filter and ( )fζ τ  denoting its damping ratio. 

These two parameters are related to two physical parameters that describe the 
recorded GM in the frequency domain and which are respectively the predominant 
frequency and the bandwidth of the GM. For more details about the identification 
procedure between the recorded GM and the stochastic model described previously, 
the reader may refer to Rezaeian and Der Kiureghian (2008, 2010).  

SPARSE POLYNOMIAL CHAOS EXPANSION (SPCE) METHODOLOGY 

The polynomial chaos expansion (PCE) methodology aims at replacing a 
computationally-expensive deterministic model whose input parameters are modeled 
by random variables by a PCE (called meta-model) which is an approximate 
analytical formula. This allows one to calculate the system response using an 
analytical equation with no time cost [Blatman and Sudret (2010)]. The coefficients 
of the PCE are computed herein using a regression approach.  

For a deterministic numerical model with M input uncertain parameters, the 
uncertain parameters should first be represented by independent standard normal 
random variables { } 1,....,i i M

ξ
=

 gathered in a random vector ξ. The random response Γ 
of our mechanical model can then be expressed by a PCE of order p fixed by the user 
as follows: 
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1

0 0
( ) ( ) ( )

P

PCE a aβ β β β
β β

ξ ξ ξ
∞ −

= =

Γ = Ψ ≅ Ψ∑ ∑        (8) 

where P is the number of terms retained in the truncation scheme, aβ are the unknown 
PCE coefficients to be computed and βΨ  are multivariate (or multidimensional) 
Hermite polynomials which are orthogonal with respect to the joint probability 
distribution function of the standard normal random vector ξ. These multivariate 
polynomials are given by ( )

1
i

M

i

Hβ α ξ
=

Ψ =∏ , where (.)
i

H α  is the αi-th one-dimensional 

Hermite polynomial and αi are a sequence of M non-negative integers { }1,..., Mα α . In 
practice, one should truncate the PCE representation by retaining only the 
multivariate polynomials of degree less than or equal to the PCE order p. For this 
reason, a classical truncation scheme based on the first order norm is generally 

adopted in literature. This first order norm is defined as follows: 
1

1

M

i
i

α α
=

=∑ . The 

classical truncation scheme suggests that the first order norm should be less than or 
equal to the order p of the PCE. Using this method of truncation, the number P of the 
unknown PCE coefficients is given by ( )!

! !
M pP
M p

+= . Thus, the number P of the 

PCE coefficients dramatically increases with the number M of the random variables 
and the order p of the PCE. To overcome such a problem, a new truncation strategy 
called ‘hyperbolic truncation scheme’ based on a so-called q-norm was proposed by 

Blatman and Sudret (2010). The q-norm is given by 
1

1

qM
q
iq

i
α α

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑  where q is a 

coefficient (0<q<1). The hyperbolic truncation scheme suggests that the q-norm 
should be less than or equal to the order p of the PCE. This strategy is based on the 
fact that the multidimensional polynomials βΨ  corresponding to high-order 
interaction are associated with very small values for the coefficients aβ. The proposed 
methodology leads to a SPCE that contains a small number of unknown coefficients 
which can be calculated from a reduced number of calls of the deterministic model. 
This is of particular interest in the present case of a random field which involves a 
significant number of random variables. This strategy will be used in this paper to 
build up a SPCE of the system response using an iterative procedure [Blatman and 
Sudret (2010)]. Once the unknown coefficients of the SPCE are determined, the PDF 
of the dynamic responses can be computed using Monte Carlo simulation technique 
on the meta-model.  

NUMERICAL RESULTS 

The aim of this section is to present the probabilistic results. It should be 
remembered here that the dynamic system responses involve the permanent 
displacement at the toe (computed as the difference between the displacements at the 
toe and at the bottom of the soil mass) and the maximum amplification of the 
acceleration at the top of the slope (computed as the ratio between the maximal 
acceleration at the top of the slope and that at the bottom of the soil mass). In this 
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study, the effect of both the soil spatial variability and the variability of the Ground-
Motion (GM) on the dynamic responses is considered. The soil shear modulus G is 
considered as an isotropic (i.e. ax=ay) lognormal random field. The mean value and 
the coefficient of variation of G are respectively 112.5G MPaμ =  and 40%GCov = . 
In order to simulate the stochastic synthetic time histories, the Kocaeli (Turkey 1999) 
earthquake is used as the target accelerogram (see Fig.1). The deterministic model is 
based on numerical simulations using the dynamic option of the finite difference code 
FLAC3D. The slope geometry considered in the analysis is shown in Fig.2. It should 
be noted that the size of a given element in the mesh depends on both the 
autocorrelation distance of the soil property (shear modulus) and the wavelength λ 
associated with the highest frequency component fmax of the input signal. For the 
autocorrelation distance of the soil property, Der Kiureghian and Ke (1988) have 
suggested that the length of the smallest element in a given direction (horizontal or 
vertical) should not exceed 0.5 times the autocorrelation distance in that direction. As 
for the wavelength λ associated with the highest frequency component fmax of the 
input signal, FLAC manual has suggested that the largest element should not exceed 
1/10 to 1/8 this wavelength λ in order to avoid the distortion that may occur for the 
propagating waves. A maximal size element of 2m was used to respect the two above 
conditions. For the boundary conditions, the bottom horizontal boundary was 
subjected to an earthquake acceleration signal and free field boundaries were applied 
to the right and left vertical boundaries. The numerical simulations are performed 
using an elastic perfectly-plastic soil model based on Mohr-Coulomb failure criterion. 
The values of the bulk modulus K, the cohesion c, the friction angle φ, the dilation 
angle ψ, and the soil unit weight γ are as follows: K=133MPa, c=10kPa, φ=30o, ψ 
=20o, and γ =18kN/m3. 

 

In the following sections, one examines the effect of the soil spatial variability 
on both the amplification at the top of the slope and the permanent displacement at 
the toe of this slope in both cases of deterministic and stochastic GM accelerograms. 
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Figure 1.  Kocaeli (Turkey 
1999) accelerogram 

 
Figure 2. Slope geometry and mesh used in the 

analysis 
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Effect of the soil spatial variability on the amplification at the top of the slope  

The effect of the soil spatial variability on the amplification at the top of the 
slope in both cases of deterministic and stochastic GM accelerograms is studied and 
presented in Figs. 3, 4 and Table 1. In the present paper, the isotropic autocorrelation 
distance ax=ay was non-dimensionalized by dividing it by the height of the slope H 
(θ=ax/H=ay/H). Different values of the isotropic autocorrelation distance (θ=0.5, 1, 2, 
3, 5) were considered in the analyses. Figs. 3 and 4 show that the PDF is less spread 
out when the isotropic autocorrelation distance θ decreases, i.e., the variability of the 
amplification at the top of the slope decreases with the increase in the soil 
heterogeneity. This can be explained by the fact that for small values of the 
autocorrelation distance, the fluctuations of the shear modulus are averaged to a mean 
value. This mean is close to the probabilistic mean value of the random field G. This 
leads to close values of the amplification and thus to a smaller variability in this 
response. The comparison between Figs. 3 and 4 (see also Table 1) shows that the 
randomness of the earthquake GM has a significant effect on the variability of the 
amplification. Table 1 shows that for the range of the autocorrelation distances 
considered in this study, the coefficient of variation COV of the amplification is 
between 2.78% and 10.91% when deterministic GM accelerogram is used. This range 
of COV significantly increases when the randomness of the earthquake GM is 
introduced. In this case, the COV of the amplification varies between 4.24% and 
31.78%. One can notice that for the largest autocorrelation distance θ=5, the 
variability of the amplification in the case where a stochastic GM accelerogram was 
used is 2.9 time larger than the one obtained with the deterministic GM accelerogram.  

Table 1 also shows that the autocorrelation distance θ has practically no effect 
on the probabilistic mean value of the amplification. This mean value was found to be 
larger than the corresponding deterministic value. This means that the probabilistic 
results are much more critical than the deterministic value with a difference of 5% in 
the case where a deterministic GM accelerogram is used, and 29% in the case where a 
stochastic GM accelerogram is used. 

Figure 3.  Amplification at the top of 
the slope with deterministic GM 

 
Figure 4.  Amplification at the top of 

the slope with stochastic GM 
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Table 1. Effect of the autocorrelation distance θ on the statistical moments (μ, σ) 

of the amplification 

Effect of the soil spatial variability on the permanent displacement at the toe of the 
slope  

The effect of the soil spatial variability on the permanent displacement at the 
toe of the slope for both cases of deterministic and stochastic GM accelerograms is 
studied and presented in Figs. 5, 6 and Table 2. The same values of the isotropic 
autocorrelation distance θ used in the previous section are also used herein. Fig. 5 
shows that the PDFs are very close to each other and thus the shear modulus 
variability has a small influence on the permanent displacement. This is because the 
permanent displacement appears only when the plastic phase is reached which means 
that the effect of the shear modulus G on this response is relatively small. Table 2 
confirms this observation because very small values of the COV of the permanent 
displacement are obtained when only the spatial variability of G is considered. On the 
other hand, the comparison between the results of Figs. 5 and 6 (see the 
corresponding statistical moments in Table 2) shows that the randomness of the 
earthquake GM considerably affects the permanent displacement. High values of the 
COV are detected because of the important increase in the mean value of the 
permanent displacement due to the variability of the GM. Table 2 also shows that the 
mean value of the permanent displacement presents a maximum. This maximum was 
detected when θ=2, i.e. when the isotropic autocorrelation distance is equal to the 
height of the soil domain. When θ decreases from 5 to 2, one can notice that the mean 
of the permanent displacement increases. This can be explained by the fact that 
increasing the soil heterogeneity introduces weak zones with small values of the shear 
modulus G, thus leading to larger values of the permanent displacement. The decrease 
in the permanent displacement for values of θ smaller than 2 may be explained by the 
fact that as the autocorrelation distance decreases, the propagating wave can face 
some stiff zones which reduce the permanent displacement. 

 θ Mean  
μ 

Standard  
deviation σ  COV (%) Deterministic 

amplification 

Deterministic 
GM 

0.5 2.6 0.07 2.78 

2.48 
1 2.6 0.11 4.36 
2 2.6 0.13 5.18 
3 2.6 0.17 6.36 
5 2.6 0.28 10.91 

 θ Mean  
μ  

Standard  
deviation σ  COV (%) Deterministic 

amplification 

Stochastic 
GM 

0.5 3.2 0.14 4.24 

2.48 
1 3.2 0.30 9.30 
2 3.2 0.47 14.61 
3 3.2 0.57 17.56 
5 3.2 1.03 31.78 
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Finally, on can notice also that introducing the soil spatial variability and the 
randomness of GM lead to more critical results since all the mean values of the 
permanent displacement obtained in the probabilistic study are larger than the 
corresponding deterministic value. 

 
Table 2. Effect of the autocorrelation distance θ on the statistical moments (μ, σ) 

of the permanent displacement 

CONCLUSIONS 

The effect of both the soil spatial variability and the variability of the Ground-
Motion (GM) on the dynamic responses (amplification, permanent displacement) is 
studied. The soil shear modulus G is considered as an isotropic lognormal random 
field. The simulation of random acceleration time histories based on a real target 
accelerogram is done using a fully nonstationary stochastic model in both the time 
and the frequency domains. The deterministic model was based on numerical 

 
Figure 5.  Permanent displacement at the 

toe of the slope with deterministic GM 

 
Figure 6.  Permanent displacement at 
the toe of the slope with stochastic GM 

 θ Mean  
μ [m] 

Standard 
deviation σ [m] 

COV 
(%) 

Deterministic permanent 
displacement 

Deterministic 
GM 

0.5 82.0 x 10-3 0.5 x 10-3 0.61 

40.7 x 10-3 
1 86.2 x 10-3 1.4 x 10-3 1.62 
2 88.4 x 10-3 2.0 x 10-3 2.26 
3 87.5 x 10-3 2.1 x 10-3 2.40 
5 85.5 x 10-3 2.5 x 10-3 2.92 

 θ Mean  
μ [m] 

Standard  
deviation σ [m] 

COV 
(%) 

Deterministic permanent 
displacement 

Stochastic 
GM 

0.5 262.0 x 10-3 59.6 x 10-3 22.75 

40.7 x 10-3 
1 264.6 x 10-3 124.8 x 10-3 47.16 
2 274.0 x 10-3 126.7 x 10-3 46.24 
3 271.7 x 10-3 135.9 x 10-3 50.02 
5 255.7 x 10-3 279.3 x 10-3 109.23 
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simulations. The probabilistic methodology adopted in this paper makes use of a non-
intrusive approach to build up a sparse polynomial chaos expansion (SPCE) for the 
dynamic system responses. The main conclusions can be summarized as follows: (i) 
the decrease in the autocorrelation distance of the shear modulus leads to a decrease 
in the variability of the dynamic responses; this decrease being more significant for 
the amplification; (ii) the randomness of the earthquake GM has a significant effect 
on the variability of the dynamic responses; (iii) the isotropic autocorrelation distance 
affects the probabilistic mean values of plastic responses (i.e. the permanent 
displacement); its effect being negligible on the elastic responses (i.e. the 
amplification). 
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