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Abstract

The aim of this paper is the computation of the failure loads of a rough rigid strip
footing subjected to a vertical, inclined or eccentric loading using the finite difference
code FLAC3D. For the case of vertical load, controlled downward vertical velocities
are applied to the footing nodes until a steady state of plastic flow is obtained in the
soil. For the construction of the ( )VH , failure envelope of an inclined load, a uniform
normal stress distribution is first applied to the base of the footing and the system is
solved until it reaches an equilibrium state. Then, controlled horizontal velocities are
applied to the nodes of the footing bottom until a steady state of plastic flow is
obtained in the soil. For the ( )VM , failure envelope of an eccentric load, a vertical
downward velocity is applied at various eccentricities. For each eccentricity, damping
of the system is performed until a steady state of plastic flow is developed in the soil.
Results of failure loads are presented and compared with those of other authors.

Introduction

The ultimate bearing capacity of a strip footing subjected to a central vertical load
has long been a topic for research. However, when the footing is subjected to an
inclined or an eccentric load, the scientific research concerning this problem has
essentially occurred during the last few decades. Traditionally, geotechnical engineers
make use of empirical reduction coefficients provided by the different codes. The
numerical simulations concerning this issue are less extensive than for the case of a
vertically loaded footing. In this paper, numerical simulations of the failure loads of a
rough rigid strip footing subjected to a vertical, inclined or eccentric loading are
performed using the Lagrangian explicit finite difference code FLAC3D.
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Numerical Simulations

This section focuses on the numerical modeling of the failure loads of a rough rigid
strip footing, of breadth B=2 m, resting on a ϕ−c soil. 

FLAC3D (Fast Lagrangian Analysis of Continua) is a commercially available three-
dimensional finite difference code in which an explicit Lagrangian calculation
scheme and a mixed discretization zoning technique are used. This kind of
discretization enables one to obtain a constant limit load and not a steadily rising
load-displacement curve as it the case in traditional finite elements and finite
difference methods. This is because the mixed discretization scheme reduces the
number of constraints on plastic flow. It should be mentioned that FLAC3D includes
an internal programming option (FISH) which enables the user to add his own
subroutines. The soil domain is divided by the user into a 3D finite difference mesh of
polyhedral zones. Constant strain-rate elements of tetrahedral shape whose vertices
are the nodes of the mesh are used. This enables the velocity field to be linear inside
the tetrahedrons. Each element behaves according to a prescribed linear or nonlinear
stress/strain law in response to applied forces or boundary restraints. Several
constitutive models are available. It should be noted that FLAC3D code is particularly
suited for problems involving limit loads and steady plastic flow. In this code,
although a static (i.e. non-dynamic) mechanical analysis is required, the equations of
motion are used. The solution to a static problem is obtained through the damping of
a dynamic process by including damping terms that gradually remove the kinetic
energy from the system. Local nonviscous damping is used. The damping force is
equal to 80 % of the out-of-balance force defined below. For further details, one can
refer to FLAC3D manual.

The theoretical background of the FLAC3D code can be summarized as follows: The
equations of motion of an equivalent static problem involving inertial terms were
written in a discrete form at the different nodes of the discretized medium. This
enables one to transform the equations of motion of the continuum into a set of
Newton’s law at the nodes of the mesh. The later equations constitute a system of
differential equations which are solved using the Lagrangian explicit finite difference
scheme in time. The new idealized medium can be viewed as an assembly of point
masses located at the nodes of the mesh and connected by linear springs since the
system of ordinary differential equations obtained is similar to that describing the
motion of a mass-spring system. The analogy with the idealized medium is immediate
if one interprets the statically equivalent nodal force of all contributing tetrahedra and
nodal applied loads (called hereafter out-of-balance force) as the resultant of spring
reactions and external applied forces in the mass-spring system. The out-of-balance
forces of all nodes are equal to zero when the medium has reached equilibrium. In the
present numerical model, the inertial terms are used as means to reach, in a
numerically stable manner, the steady state of static equilibrium or plastic flow. This
is performed by replacing the mass involved in the inertial term by a fictitious nodal
mass whose value ensures numerical stability of the system on its route to steady
state. The calculation scheme invokes equations of motion in their discretized forms
(i.e. Newton’s law at the different nodes) to derive new velocities and displacements
from stresses and forces. Then, strain rates are derived from velocities, and new
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stresses from strain rates. The stresses and deformations are calculated at several
small timesteps (called hereafter cycles) until a steady state of static equilibrium or
plastic flow is achieved. The convergence to this state may be controlled by a
maximal prescribed value of the unbalanced force for all elements of the model. In
FLAC3D, the application of velocities or stresses on a boundary creates unbalanced
forces in the system. Damping is introduced in order to remove these forces or to
reduce them to small values compared to the initial ones.

Vertical load

Because of symmetry, only half of the entire soil domain of width 20B and depth 5B
is considered. The horizontal and right vertical boundaries are far enough from the
footing and they do not disturb the soil mass in motion (i.e. velocity field) for all the
soil configurations studied in this paper. A non uniform mesh composed of 904 zones
is used. For the half mesh on the right hand side, the region under the footing was
divided horizontally into 15 zones, which size gradually decreases from the center to
the edge of the footing where very high stress gradients are developed. Beyond the
edge of the footing, the domain was divided into 30 zones which size increases
gradually from the foundation edge to the right vertical boundary. Vertically, the
domain was divided into 20 zones which size decreases gradually from the bottom of
the domain to the ground surface. Since this is a 2D case, all displacements in the
direction parallel to the footing are fixed. For the displacement boundary conditions,
the bottom boundary was assumed to be fixed and the vertical boundaries were
constrained in motion in the horizontal direction. A conventional elastic-perfectly
plastic model based on the Mohr-Coulomb failure criterion is used to represent the
soil. The soil elastic properties used are the shear modulus MPaG 100= and the bulk
modulus MPaK 133= . The values of the soil shear strength parameters used in the
analysis will be given in the next sections. A strip footing of width equal to m2 and
depth m5.0 is simulated by a weightless elastic material. It is divided horizontally
into eight zones. The footing elastic properties used are the Young’s modulus

GPaE 25= and the Poisson’s ratio 4.0=ν . Compared to the soil elastic properties,
these values are well in excess of those of the soil and ensure a rigid behavior of the
footing. Notice that the soil and footing elastic properties have a negligible effect on
the failure load. The footing is connected to the soil via interface elements that follow
Coulomb law. The interface is assumed to have a friction angle equal to the soil angle
of internal friction, dilation equal to that of the soil and cohesion equal to the soil
cohesion in order to simulate a perfectly rough soil-footing interface. Normal stiffness

mPaK n /109= and shear stiffness mPaK s /109= are assigned to this interface.

These parameters do not have a major influence on the failure load.
For the computation of the bearing capacity of a rigid rough strip footing subjected

to a central vertical load using FLAC3D, two methods are used. They are presented in
the next sections. In all the simulation methods described below, the following
procedure is adopted (when applicable) before any simulation of the foundation load:
Geostatic stresses are first applied to the soil, then several cycles are run in order to
arrive to a steady state of static equilibrium and finally, the obtained displacements
are set to zero in order to obtain the footing displacement due to only the footing load.
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Method 1: In this method, a controlled downward vertical velocity (i.e. displacement
per timestep) is applied to the nodes of the footing. Damping of the system is
performed by running several cycles until a steady state of plastic flow is developed
in the soil underneath the footing. This state is achieved when both conditions (i) a
constant footing load and (ii) small values of unbalanced forces, were satisfied as the
number of cycles increases. The number of cycles required to reach this state depends
on the value of the applied velocity. At each cycle, the vertical footing load is
obtained by using a FISH function that calculates the integral of the normal stress
components for all elements in contact with the footing. The value of the vertical
footing load at the plastic steady state is the ultimate footing load. The ultimate
bearing capacity is then obtained by dividing this load by the footing area. Several
control parameters, such as the intensity of the vertical velocity and the mesh size,
may greatly affect the value of the ultimate footing load. An optimal vertical velocity
must be chosen in order to reach a value of the bearing capacity close to the smallest
most critical one (corresponding to very small velocity) with a reasonable
computation time. A velocity of 6105.2 −× m/timestep downward was suggested by
Yin et al. (2001) as a result of a number of verification runs. This value was checked
and was found to be an optimal one if cohesion is present in the soil. However, when
dealing with sand, a smaller velocity of 710− m/timestep was found necessary to
reach the optimal results. An ultimate load of 2393.1 kN/m was obtained at the plastic
steady state (for which a continuous increase in the displacement is obtained for a
constant footing load) when °== 30ψϕ and kPac 20= where ψ is the soil
dilation angle (cf. Figure 1). The effect of the mesh size on the solution was also
checked. It was found that a more refined mesh under the footing does not improve
the value of the footing load and may cause numerical instability. A more refined
mesh beyond the edge of the footing improves the result (i.e. reduces the ultimate
load) by only 0.27 % with an increase in the calculation time by 36%. Thus, the mesh
presented above will be used in all subsequent calculations.

Method 2: In this method, the same soil shear strength parameters, the same soil and
footing elastic properties and the same interface characteristics used in Method 1 are
considered in the present section and in the next two sections. Incremental (i.e.
gradually increasing) vertical nodal stresses are applied to the nodes situated at the
base of the footing. For each stress increment, damping is performed until a steady
state is obtained. For the different stress levels, the vertical displacement at the center
of the footing bottom is computed and the footing load is obtained using the same
FISH function of Method 1. The value of the footing load corresponding to a
continuous increase of the displacement represents the ultimate footing load. Its value
was found equal to 2394.44 kN/m which is close to the value calculated by the
previous method (cf. Figure 1). However, in the present method, the number of cycles
required to achieve a steady state of plastic flow depends on the stress increment
value. Also, an increase in the number of cycles is necessary in the neighborhood of
the failure load thus requiring very high computation time. Consequently, this method
is found to be less efficient than the first one. Thus, Method 1 which is a
displacement-controlled procedure will be used for the simulation of the bearing
capacity of a vertically loaded footing. Two other displacement-controlled procedures
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are used for the simulation of an ultimate inclined or eccentric load. They are
presented in the next two sections.

Inclined load

Because of the absence of loading symmetry, the entire soil domain of dimensions
( )BxB 520 will be considered in this section and in the next section. The numerical

simulation procedure used for the computation of the ( )VH , failure envelope (where
H and V are the horizontal and vertical ultimate footing loads respectively) can be
summarized as follows: Firstly, a central vertical load (smaller than the ultimate
vertical one) is applied to the footing via uniform nodal stresses acting at the nodes
situated at the base of the footing. Damping of the system is introduced by running
several cycles until a steady state of static equilibrium is developed in the soil.
Secondly, a controlled horizontal velocity is applied to the nodes situated at the
footing bottom. Again, damping of the system is performed by running several cycles
until a steady state of plastic flow is developed in the soil underneath the footing. At
each cycle, the horizontal footing load is obtained by using a FISH function that
calculates the integral of the shear stress components for all elements in contact with
the footing. The value of the horizontal load at the plastic steady state is the ultimate
horizontal load that led to soil failure. The corresponding horizontal footing stress is
obtained by dividing this load by the footing area. The ultimate bearing capacity is
obtained by dividing the vertical applied load by the footing area.

Eccentric load

For an eccentric load, one applies a given downward vertical velocity at various
eccentricities at the base of the footing. For each eccentricity (e), damping of the
system is performed by running several cycles until a steady state of plastic flow is
developed in the soil underneath the footing. At each cycle, the (M, V) failure point
(where M and V are respectively the moment and vertical load at the centre of the
footing) is determined by integration of the normal stresses along the interface
elements in contact with the footing using a FISH function. The ultimate bearing
capacity is computed by dividing the obtained vertical load by the area of the footing.

Numerical results

For each type of soil, several runs are done in the aim to get the optimal velocity. As
most of the methods used in bearing capacity assume (often implicitly) the associative
flow rule, the computations are performed here for a dilation angle equal to the angle
of internal friction in order to enable a fair comparison with other authors' results.

Vertical load

The results of the numerical simulations for the case of a vertically loaded footing
are presented in the form of bearing capacity factors γN and cN . Tables (1) and (2) 

present a comparison of the factors obtained from FLAC3D and those given by other
authors. The γN values obtained from FLAC3D are close to the ones given by Yin et
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al. (2001), Soubra (1999), Vesic (1973) and Eurocode 7. However, Frydman and
Burd (1997) solutions were found to be very high compared to all others. Also, one
may notice that the present numerical γN values are higher than the ones given by

Hjiaj et al. (2004) and Meyerhof (1951). For the cN values, it was found that the

present FLAC3D solutions are nearly identical to those of Yin et al. (2001). However,
these solutions are greater than the closed-form solutions given by Prandtl (1920).
This finding is similar to that of Zhu and Michalowski (2005) and Manoharan and
Dasgupta (1995) who used elasto-plastic schemes for the computation of the bearing
capacity factors. This may be explained as follows: The soil mass in motion (cf.
velocity field) predicted by an elasto-plastic solution is more extended than that
confined within Prandtl mechanism for the cN factor (cf. Figure 2a). However, for

the γN factor, the soil mass in motion is nearly similar in both elasto-plastic (Finite

element and finite difference) and rigid-plastic (limit analysis) approaches (cf. Figure
2b). For the γN case, the velocity field is not very clear because of the high soil

velocities at the footing edges compared to other points in the soil mass.

Table 1: Comparison of γN values

Table 2: Comparison of cN values

Inclined load

The results are presented here in the form of failure envelopes called also interaction
diagrams. Two cases are considered: (i) a purely cohesive undrained clay with

kPacu 50= and, (ii) a cohesionless ponderable soil with °= 30ϕ . As mentioned

before, only in the case of sand, a very small velocity of 710− m/timestep was
necessary. In all other cases where the cohesion was present, a velocity of

6105.2 −x m/timestep was found sufficient to give optimal results. Figures (3a, b) show
the failure envelopes obtained from the numerical FLAC3D simulations and those of
other authors. FLAC3D overestimates the Prandtl solution for an undrained clay due to
the fact that the elasto-plastic analysis led to a more extended soil mass in motion
than the classical Prandtl mechanism (figure not presented in this paper). For the
sand, one can notice that FLAC3D numerical simulations are situated in between
authors' solutions. Very close results to the Eurocode 7 were found. FLAC3D results
were found to be smaller than Vesic's solutions. In contrast, the present solutions

Mey-
erhof

Hjiaj
et al.

Frydman
et al.

Euro-
code 7

VesicSoubraYin
et al.

FLAC
3D

ϕ

15.714.921.720.122.4021.52019.2330 
37.134.854.245.248.03494646.135 
93.685.8147 106.0109.3119.8120119.740 

PrandtlZhu et al. (Abaqus)Manoharan et al.Yin et al.FLAC3Dϕ
30.1331.53334.53430 
46.1250495353.635 
75.2579-8688.040 
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overestimate the results given by Meyerhof. Compared to the limit analysis solution
given by Soubra et al. (2003a), FLAC3D underestimates the solution for high values of
the vertical applied load V and gives slightly higher results for smaller V values.
Normal ( )σ and shear ( )τ stress distributions corresponding to different points of the
failure envelope are presented in figures (5a, b) for the clay and the sand. For the
clay, except at the footing edges which are singular points, a quasi-uniform normal
stress distribution was observed. For the shear stress distribution, both positive and
negative shear stresses are observed for large vertical loads (cf. Figure 5a). However,
for small vertical loads corresponding to large horizontal loads, the shear stresses
become all negative in order to counter weight the horizontal external load. At the
limit, when the vertical load becomes smaller than or equal to 300 kN/m (cf. Figure
3a), the shear stresses tend to a constant value equal to kPacu 50= . This case

corresponds to a sliding along the soil-footing interface. For the sand, a quasi-uniform
normal stress distribution was observed near the footing center. It tends to zero at the
edges of the footing. Concerning the shear stress distribution, as before both positive
and negative shear stresses are observed for large vertical loads (cf. Figure 5a, b).
However, for small vertical loads, the shear stresses become essentially negative. As
for the normal stress distribution, the shear stress tends to zero at the footing edges.

Eccentric load

As for the vertical and inclined loading, only in the case of sand, a 710− m/timestep
velocity was necessary. In all other cases where cohesion was present, a velocity of

610− m/timestep was found sufficient to give optimal results. It is to be mentioned that
no tension at the soil-footing interface was considered. Figures (4a, b) show the
failure envelopes obtained from FLAC3D simulations and those of other authors for
both the clay and the sand. The same conclusions stated for the inclined load remain
valid here except for the limit analysis solutions by Soubra et al. (2003b) in the case
of sand. For all eccentricities, it was found that FLAC3D solutions are smaller than
Soubra's ones. The distributions of normal stresses at the soil-footing interface have
shown a gradually increasing separation distance at the left edge of the footing with
the eccentricity increase for both the clay and the sand. The separation occurs once

1.0≥Be where normal and shear stresses become equal to zero (cf. Figure 6a, b).
The difference between the two normal stress distributions is that the normal stress
decreases to zero at the right edge of the footing in the case of sand. However, a
constant non-zero value was obtained for the clay. For the shear stress, a non-
symmetrical distribution was observed with a gradually increasing separation distance
with the eccentricity increase but the total horizontal footing load was found close to
zero which is in conformity with the assumption of a vertical (non-inclined) load.

Conclusion

Numerical simulations of the failure loads of a strip footing subjected to a vertical,
inclined or eccentric load were performed. It was shown that displacement-controlled
and load-controlled approaches give close results. The displacement-controlled
approach was used in all the computations since it requires less computation time. It
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was shown that FLAC3D results are close to those given by the limit analysis for the
ponderable soil and are greater than those of the limit analysis for a weightless soil.
This was explained by the same volume of the soil mass in motion for only the
ponderable soil. The weightless soil exhibits a difference in the soil mass in motion
predicted by both approaches. It should be noted that FLAC3D results are in good
agreement with Eurocode 7 solutions. The distribution of the normal stress at the soil-
footing interface has shown that in the case of an inclined load, the normal stress is
quasi-uniform for clay and decreases to zero at the edges for the sand. However, for
the eccentric load, the distribution shows a gradually increasing separation distance at
the left edge of the footing with the eccentricity increase for both the clay and the
sand. The difference between the two is that the normal stress decreases to zero at the
right edge of the footing in the case of sand. Concerning the shear stress distribution,
both positive and negative shear stresses are observed in the case of an inclined load
for large vertical loads. However, for small vertical loads, the shear stresses become
essentially negative in order to counter weight the horizontal external load. For the
eccentric load, a non-symmetrical distribution with a gradually increasing separation
distance with the eccentricity increase was observed but the total horizontal load was
found close to zero, which is in agreement with the assumption of a vertical load.

References

Frydman, S. and Burd, J. H. (1997). "Numerical studies of bearing capacity factors
Nγ." J. of Geotech. & Geoenv. Engrg., ASCE, 123(1), 20-29.

Hjiaj, M., Lyamin, A.V. and Sloan, S.W. (2004). "Numerical limit analysis solutions
for the bearing capacity factors Nγ." Int. J. of solids and structures, 42, 1681-
1704.

Manoharan, N. and Dasgupta, S. P. (1995). "Bearing capacity of surface footings by
finite elements." Computers & Structures, 54(4), 563-586.

Meyerhof, G.G. (1951). "The ultimate bearing capacity of foundations."
Géotechnique, The Institution of Civil Engineers, London, 2, 301–332.

Soubra, A.-H. (1999). "Upper-bound solutions for bearing capacity of foundations."
J. of Geotech. & Geoenv. Engrg., ASCE, 125(1), 59-68.

Soubra, A.H., El-hachem, E., Oueidat, H. and Chehade, R. (2003a). "Bearing
Capacity of Obliquely Loaded Footings." CIMNA1, Beirut, Lebanon, 18p.

Soubra, A.H., El-hachem, E., Oueidat, H. and Chehade, R. (2003b). "Bearing
Capacity of Eccentricaly Loaded Footings." CIMNA1, Beirut, Lebanon, 18p.

Vesic, A. S. (1973). "Analysis of ultimate loads of shallow foundations." Proc.,
ASCE, 99(1), 45–73.

Yin, J.-H., Wang, Y.-J. and Selvadurai, P.S. (2001). "Influence of nonassociativity on
the bearing capacity of a strip footing." J. of Geotech. & Geoenv. Engrg.,
ASCE, 127(11), 985-989.

Zhu, M. and Michalowski, R. L. (2005). "Shape factors for limit loads on square
rectangular footing." J. of Geotech. & Geoenv. Engrg., ASCE, 131(2), 223-
231.

GSP 171 Advances in Shallow Foundations



9

Figure 1: Foundation load – Displacement curves for the two methods

a) cN b) γN

Figure 2: Failure mechanisms and FLAC3D velocity field
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Figure 3: Comparison of ( )VH − failure envelopes for a) clay and b) sand
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Figure 5: Normal ( )σ and shear ( )τ stress distributions at the base of the footing
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