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The aim of this article is the management optimisation (inspection, maintenance and rehabilitation (IM&R)) of a
group of structures. It is supposed that the optimisation is constrained by limited available budget at the beginning
of each time period during the entire time horizon thus creating an economical dependence between the decisions
related to each of the structures. A Lagrangian relaxation technique is used for the extension of existing dynamic
programming methods from single structure to multi-structures level. The methodology is illustrated by using a
Generalised Partially Observable Markov Decision Process having a decision tree composed of a sequence of two
decisions at the beginning of each time period, namely an inspection decision followed by a maintenance action
decision. A numerical example concerning the optimisation of IM&R of 16 different bridges is presented.

Keywords: optimisation; maintenance; decision-making; infrastructure management; imperfect information; life-
cycle cost

Introduction

The inspection, maintenance and rehabilitation
(IM&R) management of large civil engineering infra-
structure was the subject of intensive research in the
past decades. Although significant progress was made,
the existing methodologies still need to be improved.
Such an improvement can have a substantial impact
on the rational use of increasingly scarce resources for
the lifetime management of civil engineering infra-
structure around the world. This is because of the
exponentially growing size of these structures during
the last half century.

Maintenance models based on Markov Decision
Processes (MDPs) are widely accepted and used within
the management community for IM&R or M&R
optimisation of civil engineering infrastructures. These
models are especially suitable for sequential decision
optimisation problems, i.e. problems in which the
present decision may affect the circumstances under
which future decisions will be made. Since dynamic
programming was proposed by Bellman (1952) as a
solution for sequential optimisation problems, it has
been readily adapted to deal with maintenance
optimisation problems and was extensively used in
machinery maintenance optimisation. However, it had
a major limitation; namely, a perfect inspection was
implicitly assumed to be done at the beginning of each

stage. Partially Observable Markov Decision Processes
(POMDPs) (Drake 1962, Eckles 1968, Monahan 1982)
are a generalisation of MDPs in which it is not
assumed that the state of the system at each decision
stage is precisely known. Previous research (Madanat
and Ben-Akiva 1994, Corotis et al. 2005) introduced
the dynamic programming models with partially
observable states of the system for IM&R optimisa-
tion of single structures. In their approach, an
optimal sequence of two decisions is prescribed
during each time period. It consists of (i) choosing
among a set of feasible imperfect inspection techni-
ques, a single inspection technique to apply to the
structure and (ii) choosing among a set of feasible
imperfect maintenance actions, a single maintenance
action to be implemented. The maintenance actions
are assumed to be imperfect in the sense that their
effect on the state of the structure is uncertain; the
inspections are also assumed imperfect in the sense
that given a specific state of the structure, their results
are uncertain. In such models, the deterioration
model is assumed to be uncertain, i.e. stochastic.
This approach has been extended (Faddoul et al.
2009) to a so-called Generalised Partially Observable
Markov Decision Process (GPOMDP) where any
sequence of decisions of any length can be optimised
during each time period.
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Regardless of the type of the model used for
IM&R optimisation of single structures, its extension
to the multi-structure case is far from being straight-
forward. This is mainly due to the interdependencies
that may exist among the structures within the group.
These interdependencies can be either structural/
functional, stochastic or economic (Durango-Cohen
and Sarutipand 2007). Economical interdependence
may be due to the fact that the cost of maintaining a
subset of assets may be different from the sum of the
costs of maintaining each of the assets independently
(Dekker et al. 1997). The effect of supply and demand
on the costs of resources needed for the management
of bridge structures is an example of such economical
interdependence (Adey et al. 2003). Karabakal et al.
(1994) proposed a zero-one integer program based on
a branch and bound algorithm using Lagrangian
relaxation for a parallel replacement problem with
economical interdependencies due to the presence of
budget constraints during each of the time periods of
the planning horizon. Such economical interdepen-
dence is of particular interest to infrastructures
managers. This issue received particular attention in
the specialised literature related to the management of
civil engineering infrastructures (Gharaibeh et al.
2006) and is dealt with in this article. Many of the
existing models used in the case of budget constraints
for the different time periods were formulated as
constrained MDPs using linear programming optimi-
sation for IM&R and/or M&R of a group of
structures (Golabi et al. 1982, Murakami and Turn-
quist 1985, Madanat et al. 2006). The optimisation
variables were chosen as being the probabilities of
implementing the different maintenance activities
prescribed by randomised policies. These probabilities
can be intuitively interpreted as being the fraction of
facilities receiving a specific action, in the context of
multiple structures. This methodology was adopted to
avoid computational intractability hindering multi-
dimensional MDPs where the number of possible
states of the system increases exponentially with the
number of facilities in the system. However, such an
approach which is based on randomised policies, is
limited to homogenous systems (with respect to costs,
activities types and deterioration). In reality, an
agency should solve a number of M&R optimisations,
one for each homogenous group of facilities and each
with its own budget constraints (Madanat et al.
2006). Thus, the allocation of funds across the
different groups and for each of the time periods of
the planning horizon is highly combinatorial and
computationally intractable even for a very small
number of groups.

The methodology presented herein is for optimal
strategy planning of IM&R decision-making

concerning a group of structures and/or infrastructure
assets over a prescribed time horizon. The proposed
methodology uses existing single structure MDP or
POMDP methodologies using discrete-space dynamic
programming for IM&R or M&R optimisation. The
structures within the group do not have to be similar.
Thus, different sets of feasible maintenance actions,
different sets of feasible inspection techniques, different
models for deterioration over time and different direct
and indirect costs can be assigned to each single
structure of the group. The IM&R optimisation of the
group of structures is supposed to be constrained by
limited available budget at the beginning of each time
period during the entire time horizon. Thus, the only
interdependencies that we consider are economical
interdependencies due the limited available budgets.
The proposed methodology is based on the use of the
Lagrangian relaxation technique (Everett 1963, Fisher
1981) in order to eliminate the computational intract-
ability created by the budget constraints.

This article focuses on the extension of GPOMDPs
(Faddoul et al. 2009) from single structure to multiple-
structure level. However, the proposed methodology
can also be used to extend any single structure
methodology using MDP, POMDP, Corotis et al.
model (2005) or Madanat and Ben-Akiva model
(1994). In the next section, a brief overview of
GPOMDP is presented. In a later section, this model
is extended to the multiple-structure level. The article
ends with the presentation of a numerical example that
considers IM&R optimisation management of 16
different bridges for various maximum available
budgets for each time period.

GPOMDP

In a Markov Decision Process using probabilistic
dynamic programming for sequential maintenance
optimisation, uncertainty due to the two following
factors is accounted for (Hillier and Lieberman 2005):
imperfect nature of maintenance actions and stochastic
deterioration of the structure during time (Raphael
et al 2008).

It should be emphasised here that classical prob-
abilistic dynamic programming used for maintenance
models implicitly presumes perfect inspection at the
beginning of each time period. Such assumption
implies two main drawbacks: (i) the inspections are
assumed to be perfect and this is rarely the case and (ii)
the optimisation of inspection planning is not possible.
POMDPs where the state of the structure is uncertain
(belief state), are a generalisation of MDPs, i.e. the
inspection at the beginning of each time period is
imperfect. A POMDP is in fact a MDP over the belief
states (Eckles 1968, Monahan 1982). Contrary to a
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classical POMDP where at each stage the structure
manager must decide for a single action decision; in a
GPOMDP, the manager has at the beginning of each
time period the opportunity to ‘optimally’ decide for a
sequence of decisions to apply to the structure during
that stage. This sequence of decisions consists usually
of one or several inspections and/or actions applied
sequentially. The choice of an action following an
inspection depends on a Bayesian update of the belief
state given the inspection result. For example, a
‘sequence of decisions’ consisting of two inspection
decisions followed by one action decision is suitable for
maintenance problems where a more precise and costly
inspection is implemented on the basis of the results of
a relatively cheap type of inspection. It is also suitable
when specialised inspections technologies in detecting
some of the states of the structure are implemented on
the basis of the results given by an inspection
technology which is efficient over all the state space
of the structure. In a GPOMDP, a decision tree is used
for the recursive relation of the dynamic programming.
The decision tree applied to each belief state at the
beginning of each time period n can be considered as a
function of two variables: The belief state vn and the
optimal costs for all the belief states at the beginning of
time period n þ 1, i.e. {*c(vn þ 1) ( vn þ 1}. Given these
variables, the decision tree will give an optimal
expected cost and an optimal sequence of decisions
concerning inspection types and action types to be
applied to the structure. An exhaustive enumeration of
the relevant assumptions of GPOMDP can be found in
Faddoul et al. (2009).

In a GPOMDP the ‘belief state’ of the system at
the beginning of stage n is defined by the vector
nn ¼ ½nn1; nn2; :::; nnK� where the nni are the probabilities
associated with the different states yi, i.e. n

n ¼ [Pr(y1
n),

Pr(y2
n), . . . , Pr(yK

n)]. The effect of maintenance action
or degradation process can be modelled by transition
matrices A and M, respectively where an element aij of
A represents the probability that the system evolves
from the state yni to the state aynj if we implement the
maintenance action A at the beginning of stage n and
where an element mij of M represents the probability
that the system evolves from the state ayni to the state
ynþ1j as a result of the degradation process.

The belief state ann of the system during stage n,
after the implementation of a maintenance action, will
be equal to the matrix product of the vector nn by the
maintenance transition matrix Aan, i.e.

ann ¼ nn 6 Aan.
Similarly, the belief state nn þ 1 of the system at the
beginning of stage n þ 1, that is, after the evolution of
the system, due to the Markovian degradation process,
will be equal to the matrix product of the vector ann by
the Markovian degradation process transition matrix
M, i.e. nn þ 1 ¼ ann 6 M.

A general case is considered herein where the
inspections are imperfect, i.e. given the true state of the
structure yn, and the used inspection technology in, the
inspection results rl will be characterised by a condi-
tional probability distribution (Pr(r1jyn, in), Pr(r2jyn,
in), . . . , Pr(rKjyn, in)) which is specific to each type of
inspection. These probability distributions which
characterise the inspections uncertainty are among
the input variables of the problem.

Given the belief state vector nn, i.e. Pr[y1
n],

Pr[y2
n], . . . , Pr[yK

n] and, the inspection technique in,
the probability of obtaining the different results rl,
where l ¼ 1 . . . K, can be readily obtained by:

Pr½rl� ¼ Pr½rljyn1; in� � Pr½yn1� þ Pr½rljyn2; in� � Pr½yn2�
þ � � � þ Pr½rljynK; in� � Pr½ynK�: ð1Þ

On the other hand, given a belief state vector nn, an
inspection technique in and an inspection result rl, the
Bayesian posterior belief state vector 0nn can be
obtained by calculating each of its components using
Bayes formula as follows:

Pr½ynkjrl;i
n�

¼ Pr½rljynk;in�Pr½y
n
k�

Pr½rljyn1;in�Pr½y
n
1�þPr½rljy

n
2;i

n�Pr½yn2�þ���þPr½rljy
n
K;i

n�Pr½ynK�
ð2Þ

Hence, after the implementation of the maintenance
action during time period j, the probability distribution
of the state ayj, i.e. anj depends on the initial belief state
n1, on the degradation process, on all the maintenance
actions applied to the structure during each period
since the beginning of the planning horizon, and also
on all the implemented inspections during each period
and their obtained results since the beginning of the
planning horizon.

The total expected long-term cost Cq, for structure q
(where q ¼ 1, . . . , Q), is the sum of the discounted costs
cs(ann) generated by the state of the system during each
stageof theplanninghorizon in addition to thediscounted
costs ca(an) of themaintenance actions and thediscounted
costs

PL
l¼1 ciðinl Þ of the inspections (Lbeing the number of

inspections performed at each stage), i.e.

Cq ¼
XN
j¼1

1

1þ að Þj
cs anj
� �

þ caðajÞ þ
XL
l¼1

ciðijlÞ
" #

: ð3Þ

If we disregard any effects due to potential interdepen-
dencies between structure q and any other structure,
then solving Equation (3) for the optimal strategy *xq,
and hence for the minimum expected cost, is assumed to
be done in this article using dynamic programming for
the finite horizon case. A strategy xq is a set of decision
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rules which associates to each possible belief state nn an
action or an inspection to be done. If an inspection is
prescribed then the strategy xq prescribes to each of its
possible results an action or another optimal inspection.
One can note that the objective function (3) includes two
conflicting objectives: (i) minimise the direct costs
Crnq ¼ caðanÞ þ

PL
l¼1 ciðinl Þ to be paid by the inventory

manager for the IM&R of structure q and (ii) minimise
the costs cs(ann) generated by the state of the system
during each stage of the planning horizon. These
objectives are conflicting since minimising cs(ann)
requires a better system state and thus more main-
tenance actions and inspections. If we do not take into
account the costs cs(anj) due to the state of the structure
then the trivial solution to Equation (3) will be to do
nothing and to let the structure deteriorate freely. Since
the expected costs Cq and Crnq depend on the chosen
strategy xq we will refer to these costs in the remainder
of this article respectively by Cq(xq) and CrnqðxqÞ.

Extension to the multiple-structure case

If the budgets allocated to the manager of a group of
structures at the beginning of each time period were
unlimited, then an obvious solution to the problem
consists in applying to each structure the actions and/
or inspections prescribed by the single structure
methodology for that particular structure. Such a
solution would obviously be the best considering that
it will lead to the lowest possible total expected cost
required for IM&R of all the structures in the long-
term. Introducing additional constraints would lead
to a new optimal solution which will have in the long-
term a higher expected minimal cost than the solution
of the original unconstrained problem. Such addi-
tional constraints could be the limited budgets
allocated to IM&R of the network at the beginning
of each time period. The decision concerning the
budgets allocated to IM&R for each time period is
usually dictated either (i) by wider considerations
pertaining to the general strategy of the company if
the considered group of structures was managed by
the private sector or (ii) by budgetary, economical
and political considerations in case the manager was
the public sector.

Problem definition

The problem of searching of optimal decisions for
several simultaneous but independent sequences of
decisions over a finite time horizon and which is
subjected to the constraint that the resources available
for the different time periods are limited can be
theoretically modelled as a multidimensional MDP.
Thus, the state space of the system is essentially a

Cartesian product of the state spaces of each facility.
This is due to the fact that one must take into
account the effect of the interaction of choices in
each chain on the whole problem through the limited
available resources for all the chains. Such an
approach is computationally intractable even for a
very small number of resource-competing structures.
For example, considering the case where each chain
has seven different possible states at the beginning of
each time period (in POMDPs the number of
possible states can be in the order of hundred of
thousands), the number of possible combinations for
an inventory containing 15 structures will be
715 ¼ 4.7 6 1011 combinations. We should mention
as examples the Texas State bridge inventory which
contains around 50,000 bridges and the more than
40,000 sections considered by Golabi and Pereira
(2003) when developing a pavement management
system for a road network. Clearly, the intractable
complexity of MDPs having resource constraints
originates from these constraints. Therefore, a
natural approach to solve the problem will be to
try to find a new formulation of the same problem
without the constraints being explicit.

Lagrangian relaxation technique

Let x be a global strategy belonging to the set D of
possible strategies. In other words, x represents a
specific planning of inspection and maintenance
actions conditioned by the (belief) states and the
inspection results for all the structures during the entire
time horizon of the IM&R planning. Thus, x can be
considered as a Q-tuple x ¼ (x1,.., xq,.., xQ) where
component xq represents the strategy for structure q.

The total expected cost is the sum of the
expected cost of the different structures, i.e.
CðxÞ ¼

PQ
q¼1 CqðxqÞ. The expected direct cost to be

paid by the inventory manager for the IM&R of all the
structures during time period n is the sum of the
expected direct costs of the different structures, i.e.
CrnðxÞ ¼

PQ
q¼1 Cr

n
qðxqÞ.

The problem of minimising the total expected cost
under limited budget constraints can be formalised by
the following expressions:

min
x2D

CðxÞ

CrnðxÞ � bl n n ¼ 1; 2; :::;N ð4Þ

where bln is the available budget for the inventory
manager during time period n and N is the time
horizon of the planning.

The Everett theorem (Everett 1963, Fisher 1981)
modified to the minimise case, states that if we are
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given ln(n ¼ 1, . . . , N) nonnegative real numbers,
then the solutions *x of the problem:

min
x2D

CðxÞ þ
XN
n¼1

lnCrnðxÞ
" #

ð5Þ

are also solutions of the following problem:

min
x2D

CðxÞ ð6Þ

CrnðxÞ � Crnð�xÞ for n ¼ 1; 2; :::;N

Evidently, one obtains different optimal solutions *x
depending on the used values of ln in Equation (5).
Also, the right-hand term Crn(*x) of the limiting
constraint in Equation (6) will also be different
depending on the used values of ln. Thus, a possible
approach to solve problem (4) is to solve repeatedly
problem (5) for various values of ln until one
obtains Crn(*x) � bln for n ¼ 1, . . . , N. In the
next section, it is shown that minimising problem (5)
is equivalent to minimising Q sub-problems as
follows:

Proposition:

Minimising problem (5) is equivalent to minimising Q
sub-problems (one sub-problem for each structure),
namely:

min
x2D

CðxÞ þ
XN
n¼1

lnCrnðxÞ
" #

,

min
xq2Dq

CqðxqÞ þ
XN
n¼1

lnCrnqðxqÞ
" #

for q ¼ 1; 2; ::;Q

ð7Þ

under the restriction that the same ln are used for all
the Q sub-problems in Equation (7).

Proof:

We have,

min
x2D

CðxÞ þ
XN
n¼1

lnCrnðxÞ
" #

¼ min
x2D

XQ
q¼1

CqðxqÞ þ
XN
n¼1

ln
XQ
q¼1

CrnqðxqÞ
" #

:

ð8Þ

According to Fubini theorem, one may write:

min
x2D

CðxÞ þ
XN
n¼1

lnCrnðxÞ
" #

¼ min
x2D

XQ
q¼1

CqðxqÞ þ
XQ
q¼1

XN
n¼1

lnCrnqðxqÞ
" # ð9Þ

¼ min
x2D

XQ
q¼1

CqðxqÞ þ
XN
n¼1

lnCrnqðxqÞ
" #

: ð10Þ

Since the term ½CqðxqÞ þ
PN

n¼1 l
nCrnqðxqÞ� is always

positive, and since choosing xq is, besides the
economical interdependence due to the limited bud-
gets, independent from choosing xl for q 6¼ l, one can
write:

min
x2D

XQ
q¼1

CqðxqÞ þ
XN
n¼1

lnCrnqðxqÞ
" #

¼
XQ
q¼1

min
xq2Dq

CqðxqÞ þ
XN
n¼1

lnCrnqðxqÞ
" # ð11Þ

where Dq is the set of possible strategies for
structure q.

The economical interdependence due to the im-
posed budgets at the beginning of each time period is
translated into the mathematical formulation by means
of the constraint that the same values of ln must be
used for all the Q sub-problems.

Since it was assumed that the evolution of the
states of each structure has the Markovian property,
i.e. min

xq2Dq

CqðxqÞcan be solved by dynamic

programming; then problem (7) can be also solved by
dynamic programming. For that purpose, one must
simply add the term lnCrnqðxqÞ to the direct costs in the
dynamic programming recursive relation if the calcu-
lated expected long-term minimal cost is not dis-
counted, or one must add the term ð1þ aÞnlnCrnqðxqÞ if
the calculated expected long-term minimal cost is
discounted at a discount rate a. Hence, for a given set
of values of ln, MDP or GPOMDP algorithms should
be executed for each structure. Then, one compares the
Crn(*x) with the bln and modifies the ln accordingly
until a set of ln values is found so that Crn(*x) becomes
equal to bln for all the time periods. The existence of a
set of values for ln that respect the imposed constraints
and the procedures used for the determination of the
values of ln and Crn(*x) are presented in the next
section.
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Existence and computation of Lagrange multipliers ln

As mentioned in the preceding section, problem (4) can
be answered by solving repeatedly problem (7) for
various values of ln until one obtains Crn(*x) ¼ bln for
n ¼ 1, . . . , N. The practical computation of Crn(*x)
will be discussed in a later section. Nevertheless, a
legitimate question arises about the existence of an
optimality gap i.e. an optimal solution satisfying
exactly the constraints does exist but the proposed
methodology may not be able to find it. An optimality
gap in Lagrange relaxation optimisation is due to the
non-convexity of the problem (Everett 1963, Fisher
1981). For our particular problem, two basic causes
can lead to such a possibility: First, when the use of
one resource requires the use of other resources, or
equivalently in cases where some constraints may
involve various combinations of other constraints
(Everett 1963). As for the particular case of our
problem, such a limitation can be avoided if one
assumes that the costs of the possible inspection and
maintenance actions that can be undertaken during
each time period are allocated to the budget of that
time period only. Second, if the set of strategies x
over which the objective function is defined, is
discrete (which is the case in our study); then in
general, there will be an optimality gap since integer
programs are non-convex. In that case, the proposed
methodology ushers to solutions which form an upper
and lower bounds to the real optimal solution.
However, these solutions will be optimal for their
associated levels of resource consumption (Everett
1963). In particular, if the imposed budgets are equal
to the expected expenditures required by these
solutions, then these solutions will be the optimal
ones. Such a feature is a reassuring property since it
guarantees us that if an exact solution is found, then
it is the optimal one. In a later section, the practical
considerations associated with this issue will be
discussed in more detail.

Concerning the computation of the ln values, it
should be emphasised here that the termPN

n¼1 l
nCrnqðxÞ in problem (7) can be thought as a

sum of penalty functions (Bazaraa et al. 2006). Hence,
if all but one ln is held constant, the resource that
changes is a monotonically decreasing function of its
associated multiplier. Based on this remark, a simple
procedure is proposed for finding the appropriate set
of ln’s for which Crn(*x) � bln where n ¼ 1, . . . , N.
This procedure is presented in Appendix.

GPOMDP decision tree for the multi-structure case

The aim of this section is to illustrate how to modify a
discounted GPOMDP decision tree to include the term

ð1þ aÞnlnCrnqðxÞ for the particular case of a
GPOMDP having a decision tree of the type
illustrated in Figure 1, i.e. the sequence of actions
to be optimised during each time period consists of
one inspection followed by one maintenance action.
Similar modifications are straightforward for any
other GPOMDP having a different decision tree
structure.

In this article, each structure of the group may have
a specific decision tree which is compatible with the
maintenance actions and inspection techniques that are
suitable to that particular structure.

For the particular case of a decision tree having a
sequence of two decisions (one inspection followed
by one action) only, the total expected cost
cðnnÞji;r;an;yn depends on the inspection technique i,
the vector of the inspection results r, the action an

and, the state of the structure yn. Notice that yn

concentrates the probability mass in one component
of the vector nn. The conditional yn will be
eliminated in subsequent calculations by integration
(expected value). Thus:

c nnð Þji;r;an;yn¼
¼ ci ið Þ þ ca anð Þ½ � � 1þ að Þnln þ 1½ �

þ 1

1þ a
� �c vnþ1ji; r; an; nn

� �
þ Eayn jyn; an cs aynð Þ½ �

¼ ci ið Þ þ ca anð Þ½ � � 1þ að Þnln þ 1½ �

þ 1

1þ a
� �c vnþ1ji; r; an; nn

� �
þ
X
k

cs aynk
� �

� aanjk :

¼ ci ið Þ þ ca anð Þ½ � � 1þ að Þnln þ 1½ �

þ 1

1þ a
� �c 0vn � Aan �Mð Þ þ

X
k

cs aynk
� �

� aanjk

ð12Þ

In this equation, a penalising term [ci(i) þ ca(an) 6
(1 þ a)nln] on the costs of maintenance actions and
inspections is introduced. The term ci(i) þ ca(an)
represents the costs of IM&R decisions. The term
1

1þa�
�c vnþ1ji; r; an; nn
� �

represents the discounted cost
associated with the belief state at the beginning of stage
n þ 1 given that the belief state at the beginning of
period n was nn, that we applied inspection i, got the
result r and applied action an. By applying inspection
and getting its result, nn can be updated by using the
Bayes formula to get 0nn. nn þ 1 will be nn þ 1 ¼ 0nn 6
Aan 6 M. The term Eayn jyn; an cs aynð Þ½ � represents the
expected cost to be paid by the users due to deck
condition. Knowing the state yn ¼ ynj and the action
an,aynwill have the probability distributionPrðaynkÞ ¼ aanjk .
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Figure 1. Example of a decision tree for inspections followed by maintenance actions.
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Hence, Eayn jyn; an cs aynð Þ½ � ¼
P

k cs
aynk
� �

� aanjk . The
decision analysis calculations will be:

c nnð Þji;r;an ¼ Eync nnð Þnji;r;a;yn

¼ Eyn

�
ci ið Þ þ ca anð Þ½ � � 1þ að Þnln þ 1½ �

þ 1

1þ a
�� c 0vn � Aan �Mð Þ

þ
X
k

cs aynk
� �

� aanjk

�

¼ ci ið Þ þ ca anð Þ½ � � 1þ að Þnln þ 1½ �

þ 1

1þ a
�� c 0vn � Aan �Mð Þ

þ
X
j

X
k

csðaynkÞ � aanjk � � Pr½ynj jr; i�
"

ð13Þ

The optimal expected cost corresponding to belief state
nn is given by:

�cðnnÞji;r ¼ min
an2A

cðnnÞji;r;an : ð14Þ

Given the vector of results r of the inspection type i,
the optimal action will be:

�anjr; i ¼ argmin
an2A

c nnð Þji;r;an ð15Þ

�c nnð Þji¼ Er
�c nnð Þji;r
h i

¼
X
l

�c nnð Þji;r�Pr rlð Þ ð16Þ

It should be noted that *c(nn)ji,r depends on the vector
of inspection results r via the posterior belief state 0nn

which is calculated based on r.

�c nnð Þ ¼ min
i2I

�c nnð Þji: ð17Þ

The optimal inspection type is:

�i ¼ argmin
i2I

�c nnð Þji: ð18Þ

It should be noted that one can specify an inspection
type i0 having a zero cost consisting in doing nothing.
This will stand in our model for the option ‘no
inspection to be done’.

Computation of Crn(x)

For every belief state vector nn at the beginning of each
time period, the decision tree of the GPOMDP will
prescribe a sequence of optimal decisions. The

selection of some of the actions in the sequence will
depend on the result of the inspection decisions made
earlier in the sequence. In the planning phase, prior
probability distributions can be assigned to the
different possible results of the planned inspections.
Hence, for each belief state vector nn during time
period n, the decision tree will provide us with the
expected direct cost CrnqðxÞ to be paid by the manager
for IM&R decisions during that period. Besides, based
on the mentioned prior probability distributions of the
inspection results, and since specific IM&R actions are
uniquely determined by nn and by the inspection
results, one is able to calculate for each nn a probability
distribution of the belief states nn þ 1. Therefore, if for
each belief state nn þ 1 one has already calculated the
corresponding CrkqðxÞ for k ¼ n þ 1, . . . ,N, one will
be able to calculate for each nn, based on the
probability distribution of the states nn þ 1, an expected
value of the CrkqðxÞ for k ¼ n, . . . ,N. Doing so
recursively, one will be able to calculate for n1 the
expected values CrkqðxÞ for k ¼ 1, . . . ,N. Conse-
quently, since each of the structures in the inventory
has a unique known belief state at the beginning of the
planning time, one will be able to determine for each
structure q the expected values CrkqðxÞ for k ¼ 1, . . . ,
N. Finally notice that the resources expended by the
whole inventory during time period n will be:

CrnðxÞ ¼
X
q

CrnqðxÞ: ð19Þ

Solution methods

For each structure in the inventory, it is assumed that a
belief state is known by the manager. This belief state
results from previous inspections and/or it is the
outcome of a collection of deterioration models
applied to some of the structures. In the following,
three alternatives solution methods based on the
iteration procedure discussed previously (cf. Appendix)
are presented.

Solution method 1

Bearing in mind previous discussion, the problem of
optimising IM&R decisions for an inventory of
structures over a finite time horizon and assuming
that the evolution of the states of each structure is
Markovian can be solved using the following steps:

(0) Apply procedure lambda for each structure. It
should be mentioned that solving problem 7 using
procedure lambda is equivalent to solving a
modified GPOMDP (or any other modified
dynamic programming algorithm);

8



(1) Apply the sequences of decisions that are
prescribed by the modified GPOMDP to each
structure of the group.

Solution method 2

Since some of the sequences of actions that are
prescribed by the modified GPOMDP to each struc-
ture of the group begin in general by an inspection
other than i0 (i.e. no inspection); then, one can use the
fact that the whole inventory has a new information
state after the inspection of some of its structures. In
order to be able to take advantage of this updated
information state of the inventory, one is compelled to
perform all the requested inspections and then to solve
the whole problem again (with the remaining budget
for the current time period) based on the newly
available information before applying an M&R action.
As such, solution method 2 will be identical to solution
method 1, apart from step 1 which must be replaced by
the following two steps:

(1) If no inspection is prescribed for any of the
structures, goto step 2 given below, else execute
the inspections prescribed by the results of the
modified GPOMDP to each structure of the
group (when applicable). The condition
states of the inspected structures will
have new posterior probability distributions,
i.e. new belief states. The remaining budget
for the current time period will be
bl1 ¼ bl1 �

PM
k¼1 ciðikÞ; goto step 0.

(2) Execute the M&R actions prescribed for the
current time period.

It should be noted that the above listed procedure
does not mean that an inspection other than i0 (no
inspection) has to be necessarily done for all the
structures.

Solution method 3

The optimality of solution method 2 can be enhanced
by splitting the set of prescribed inspections in step 1
into smaller subsets. Thus, instead of executing all the
prescribed inspections, one executes the inspections
contained in only one of the subsets. On the basis of
the new information state of the whole inventory, one
solves the whole problem again (with the remaining
budget for the current time period) before applying
any M&R action. The rationale of doing so lies in the
fact that based on the information resulting from a
small subset of the original set of prescribed inspec-
tions, some of the previously prescribed inspections
may not be prescribed by the new solution and hence,

their costs will be saved. As such, solution method 3
will have the same steps as solution method 2 apart
from step 1 which must be replaced by the following:

(1) If no inspections are prescribed goto step 2,
else: execute some selected inspections pre-
scribed by the results of the modified
GPOMDP of each structure. The condition
states of the inspected structures will have
new posterior probability distributions, i.e.
new belief states. The remaining budget
for the current time period will be
bl1 ¼ bl1 �

PM
k¼1 ciðikÞ; goto step 0.

However two questions remain to be answered:

(1) How small should the selected subset of
prescribed inspections be?

(2) Which subset should be chosen among all
possible subsets?

Clearly, the smaller the selected subset is, the lower
the expected total cost is. This means that to be
optimal, the inventory manager should select only one
inspection at a time. However, time scheduling
considerations and logistical constraints (among
others) will not allow the manager to opt for such an
extreme case. An approximate solution to the second
question will be to select a subset of prescribed
inspections having the maximum value of information
over inspection cost ratio.

Finally, it should be noted that solution method 1
can be used with any type of MDP or POMDP;
however, solution methods 2 and 3 can only be used
with POMDPs allowing one to obtain optimal inspec-
tions. Models of this type are Madanat and Ben-Akiva
model (1994), Corotis et al. (2005) model and
GPOMDP by Faddoul et al. (2009).

Practical considerations and computational complexity

Our optimisation problem can be considered as an
integer programming problem due to the fact that the
maintenance actions and inspection techniques are
selected from finite countable sets of alternatives.
Therefore, our problem is not convex. Hence, as
mentioned earlier, there will be an optimality gap
where no possible set of ln, which correspond to the
real optimal solution, exists. However, in a cell
problem, as the number of cells increases (number of
structures for our particular case), the result of over-all
optimisation is a total problem in which concavities are
vastly reduced in significance (Everett 1963). This can
be intuitively explained by the fact that as the number
of structures increases the cost of available inspections
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and/or maintenance actions for each structure will be
relatively small compared to the available
budget allocated to the whole inventory; hence the

problem, which is discrete, begins to emulate the
behaviour of a continuous problem. Hence, the larger
is the inventory, the smaller the relative discrepancy
will be. By the same logic, if the number of available
inspections and maintenance actions for each structure
is large the effects of non-convexity will be diminished.
Moreover, when we are dealing with POMDPs, where
the state of the structure is a probability distribution
and the actions are probabilistic and chosen on the
basis of the belief state which is possibly updated by
the uncertain results of imperfect inspections, then the
prescribed expenditures during each time period are
expected expenditures. In other terms, they are a kind
of weighted average of the costs of the different
available inspections and maintenance actions. In
that case, if we disregard the first decision at the
beginning of the first time period which evidently
affects the following decisions in the following time
periods, the problem is not really integer since the
weighted average can be adjusted on an almost
continuous scale especially for the future time periods.
Hence, in the case of POMDPs with decisions having

Table 1. Costs due to deck condition.

State ayn Condition of the deck

The costs
(in arbitrary units)
incurred during
each stage due
to the deck

condition, csðaynÞ

1 The deck is in very
good condition

200 units

2 The deck is in
good condition

600 units

3 The deck condition
is in fairly
good condition

1250 units

4 The deck is in
poor condition

2000 units

5 The deck is in very
poor condition

3500 units

Table 2. Elements of the deterioration matrices for each
bridge.

b1 to b6 b7 b8 b9 b10 b11 to b16

m11 0.5 0.6 0.5 0.5 0.5 0.5
m12 0.25 0.2 0.25 0.25 0.25 0.25
m13 0.2 0.2 0.2 0.2 0.2 0.2
m14 0.05 0 0.05 0.05 0.05 0.05
m15 0 0 0 0 0 0
m21 0 0 0 0 0 0
m22 0.5 0.5 0.6 0.5 0.5 0.5
m23 0.25 0.25 0.2 0.25 0.25 0.25
m24 0.2 0.2 0.2 0.2 0.2 0.2
m25 0.05 0.05 0 0.05 0.05 0.05
m31 0 0 0 0 0 0
m32 0 0 0 0 0 0
m33 0.5 0.5 0.5 0.6 0.5 0.5
m34 0.3 0.3 0.3 0.2 0.3 0.3
m35 0.2 0.2 0.2 0.2 0.2 0.2
m41 0 0 0 0 0 0
m42 0 0 0 0 0 0
m43 0 0 0 0 0 0
m44 0.7 0.7 0.7 0.7 0.8 0.7
m45 0.3 0.3 0.3 0.3 0.2 0.3
m51 0 0 0 0 0 0
m52 0 0 0 0 0 0
m53 0 0 0 0 0 0
m54 0 0 0 0 0 0
m55 1 1 1 1 1 1

Table 3. Inspection costs for each bridge.

b1 to b11 b12 b13 b14 b15 b16

i0 0 0 0 0 0 0
i1 20 15 10 20 10 10
i2 40 20 15 40 40 15
i3 40 40 15 40 40 15

Table 4. Conditional probability distribution of the results
of inspection i1.

P(rmj yn) r1 r2 r3 r4 r5

yn 1 0.4 0.3 0.15 0.1 0.05
2 0.25 0.4 0.2 0.1 0.05
3 0.1 0.2 0.4 0.2 0.1
4 0.05 0.1 0.2 0.4 0.25
5 0.05 0.1 0.15 0.3 0.4

Table 5. Conditional probability distribution of the results
of inspection i2.

P(rmj yn) r1 r2 r3 r4 r5

yn 1 0.8 0.15 0.05 0 0
2 0.1 0.8 0.1 0 0
3 0.05 0.1 0.7 0.1 0.05
4 0.05 0.1 0.15 0.5 0.2
5 0.05 0.1 0.15 0.2 0.5

Table 6. Conditional probability distribution of the results
of inspection i3.

P(rmj yn) r1 r2 r3 r4 r5

yn 1 0.5 0.2 0.15 0.1 0.05
2 0.2 0.5 0.15 0.1 0.05
3 0.05 0.1 0.7 0.1 0.05
4 0 0 0.1 0.8 0.1
5 0 0 0.05 0.15 0.8
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uncertain results, the methodology will always find a
solution which is very near to the optimal one. Finally,
for problems having a significant optimality gap, a
number of handling methods are available such as
those suggested by Everett in his paper. We will not
detail these methods in this article.

In our implementation, the terminating condition
Crn(*x) � bln of procedure lambda is considered as
satisfied when one of the two following criterions
occurs: The first criterion is

Crnð�xÞ�bln
bln

��� ��� < m where m is
a chosen arbitrary threshold under which the terms
Crn(*x) and bln are considered to be approximately
equal. The second one is considered as satisfied when
Crn(*x) alternates between two unchanging values of
x1 and x2 such that x1 5 bln 5 x2 for an increas-
ingly finer adjustment of the values of ln. In that
case, the gap between x1 and x2 is due to the integer
nature of the problem. If the budgetary constraints
are hard in the sense that they have to be strictly
satisfied (as for example for budgets from private
societies or others); one should adopt the ln value
that corresponds to the resource consumption value

x1. Empirical, experimental and numerical com-
putations performed using the present model have
shown (not presented in this article) that in an
inventory containing more than a dozen of struc-
tures, the relative discrepancy (due to the integer
nature of the problem) between budget limits and the
obtained Crn(x*) is, in the vast majority of time, less
than 2%.

Finally, notice that the complexity of the proposed
algorithm is proportional to the number M of facilities
in the system, i.e. O(M). As for the impact of the
number of budget constraints on the computation
time, one should note that the search for the
appropriate set of ln is not a brute force search since
at the end of each iteration, the value of each ln will be
changed according to the sign and magnitude in
procedure of the relative discrepancy of its associated
level of resource consumption. As such, the number of
iterations needed for finding a set of ln satisfying the
terminating condition Crn(*x) � bln is usually very
small. For example, if m is equal to 2% the number of
iterations needed for a seven-time period problem, viz.

Table 7. Cost of the maintenance actions for each bridge.

Costs ca(ai) (units)

Action type Bridges 1–10 Bridge 11 Bridge 12 Bridge 13 Bridge 14 Bridge 15 Bridge 16

a0 Nothing to do 0 0 0 0 0 0 0
a1 Preventive maintenance 800 600 700 500 500 650 700
a2 Corrective maintenance 800 750 800 750 500 400 500
a3 Replacement 3000 2500 2000 3000 2000 2700 1000

Table 8. Markov transition matrices for actions a0, a1, a2 and a3.

A0 ¼

ayn1
ayn2

ayn3
ayn4

ayn5

yn1 1 0 0 0 0
yn2 0 1 0 0 0
yn3 0 0 1 0 0
yn4 0 0 0 1 0
yn5 0 0 0 0 1

A1 ¼

ayn1
ayn2

ayn3
ayn4

ayn5

yn1 1 0 0 0 0
yn2 0:7 0:3 0 0 0
yn3 0:4 0:4 0:2 0 0
yn4 0 0:2 0:3 0:4 0:1
yn5 0 0 0:3 0:3 0:4

Transition matrix for action a0 Transition matrix for action a1

A2 ¼

ayn1
ayn2

ayn3
ayn4

ayn5

yn1 0:9 0:1 0 0 0
yn2 0:15 0:7 0:15 0 0
yn3 0:1 0:3 0:5 0:1 0
yn4 0:4 0:3 0:2 0:1 0
yn5 0:2 0:4 0:2 0:1 0:1

A3 ¼

ayn1
ayn2

ayn3
ayn4

ayn5

yn1 1 0 0 0 0
yn2 1 0 0 0 0
yn3 1 0 0 0 0
yn4 1 0 0 0 0
yn5 1 0 0 0 0

Transition matrix for action a2 Transition matrix for action a3
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having seven budgetary constraints, is in the order of
8–10 iterations; whereas the number needed for a 25
budgetary constraints problem is in the order of 10–12
iterations. Moreover, the proposed methodology is
very suitable to parallel processing. If for example a
processing unit is assigned to each of the parallel
MDPs, i.e. to each structure, then the amount of
information to be communicated between these units
after each iteration is 2 6 N real numbers.

Numerical application

Consider a set of 16 highway concrete bridges. It is
assumed that the performance of the concrete deck of
each bridge is described by five states as indicated in
Table 1. The cost cs(ayn) of a bridge caused by the deck
conditions (cf. Table 1) is generally the sum of the costs
incurred by the users of this bridge due to

malfunctioning of the deck, in addition to the risk
which is expressed in monetary units and calculated as
the product of the failure probability of the bridge by
the costs generated by such a failure. The stochastic
deterioration of each bridge is modelled by a Markov
chain. The Markovian deterioration transition ma-
trices for the different bridges (i.e. b1 to b16) are
detailed in Table 2. It is assumed that four imperfect
inspection techniques are available, where i0 means
that no inspection is performed (i.e. one entirely relies
on the prediction of the deterioration model) and its
cost is 0 unit. The costs of the inspection techniques for
each bridge are detailed in Table 3. The possible results
of an inspection are denoted by ri (i ¼ 1, 2, 3, 4, 5)
where ri means that the deck is in state yi. The
uncertainties associated with the results of the inspec-
tion techniques i1, i2 and i3 are expressed by the
probability distributions shown in Tables 4–6. As it

Table 9. Initial belief states.

P ðy1Þ

y1 Bridges 1, 7, 11 Bridges 2 8, 12 Bridges 3, 9, 13 Bridges 4, 10, 14 Bridges 5, 15 Bridges 6, 16

1 0.2 1 0 0 0 0
2 0.3 0 1 0 0 0
3 0.3 0 0 1 0 0
4 0.2 0 0 0 1 0
5 0 0 0 0 0 1

Figure 2. Impact of the maximum allocated budgets on the total expected cost (14 years time horizon).
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can be noted from the numerical values in Tables 5 and
6, inspection i2 is specialised in detecting the states y1
and y2 while inspection i3 is specialised in detecting the
states y4 and y5 of the structure. It is assumed that only
three maintenance actions can be performed (Table 7).
The uncertainties associated with the consequences of
maintenance actions are expressed by the matrices
shown in Table 8. The element aij in each of these
matrices corresponds to the probability that the deck,
which is initially in state yn ¼ i (before the main-
tenance action), will be after the application of a
maintenance action in state ayn ¼ j (the superscript a
means that the state into consideration occurs im-
mediately after the maintenance action before any
deterioration can take place). The initial belief states
for the different bridges are detailed in Table 9. The
length of each stage was taken to be 2 years long and
the discount rate was taken a ¼ 0.049. The planning
horizon is set to 14 years.

The results were obtained using specialised GUI
software for GPOMDPs that we have developed.
Although our software is designed to deal with
different allocated budgets bln for the different time
periods; for simplicity, the budgets are assumed to be
equal in the present example. The threshold m was set
to 2%. The optimal expected total costs for the whole
inventory C(x) corresponding to different values of the
allocated budgets ranging from 4000 to 8000 units (for
each time period) are presented in Figure 2. In Tables
10 and 11 are also presented (i) the direct costs Crn(*x)
associated with each budget limit as well as the
corresponding values of ln, for the different time
periods and (ii) the corresponding discounted sums of
the direct costs, i.e.

PN
n¼1 1= 1þ að ÞnCrnð�xÞ. It can be

noted that the total cost for the whole inventory C(x)
increases when one limits further the available budget
for each time period. However, it can be noted that this
increase in the total cost is very slow at the beginning;

Table 10. Expected costs for budgets varying from 8000 to 6400 units.

bln:Available budget 8000 7200 6800 6400

:Available budget ln Crnðx�Þ ln Crnðx�Þ ln Crnðx�Þ ln Crnðx�Þ

Period 1 0 7184.65 2.77E-02 7184.65 0.2161 6866.75 0.4993 6425.35
Period 2 0 7650.54 6.46E-02 7119.88 0.1451 6828.52 0.2858 6461.31
Period 3 0 7514.14 7.58E-02 7248.21 0.2099 6798.51 0.2761 6418.77
Period 4 0 7720.08 8.15E-02 7254.23 0.1927 6788.47 0.2442 6402.28
Period 5 0 7351.04 5.70E-02 7208.4 0.144 6820.42 0.1881 6393.69
Period 6 0 7058.48 6.55E-03 7229.42 6.41E-02 6749.1 9.22E-02 6394.35
Period 7 0 3651.65 0.00E þ 00 3709.51 0 4009.45 0 4256.6
Sum of the
discounted
expected
direct costs

34152.65 33234.6 31692.46 30101.9

C(x) 87824.77 87882.28 88181.32 88756

Note: Available budgets are assumed to be similar for the different time periods.

Table 11. Expected costs for budgets varying from 6000 to 4000 units.

bln 6000 5600 5000 4000

:Available budget ln Crnðx�Þ ln Crnðx�Þ ln Crnðx�Þ ln Crnðx�Þ

Period 1 0.5412 5925.35 0.6989 5822.75 0.7968 4834.75 1.2148 3976.31
Period 2 0.3535 6040.35 0.4396 5496.15 0.592 5241.62 1.1849 4096.39
Period 3 0.343 6051.04 0.4332 5608.74 0.6014 4996.16 1.3069 4069.25
Period 4 0.3026 6068.21 0.3969 5592.84 0.5577 5052.55 1.3169 4043.45
Period 5 0.2359 6021.93 0.3139 5604.87 0.4685 5070.77 1.1449 4017.4
Period 6 1.26E-01 6027.38 1.84E-01 5580.11 3.15E-01 5047.99 7.98E-01 4001.69
Period 7 0 4501.82 0 4831.47 3.66E-02 5022.77 0.2792 3998.56
Sum of the
discounted
expected
direct costs

28484.47 26943.97 24474.86 19598.67

C(x) 89547.47 90423.26 92367.69 98232.82

Note: Available budgets are assumed to be similar for the different time periods.
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then, it increases exponentially as the imposed limiting
budget decreases further. Moreover, one can note that
when one decreases the limiting budget from 8000 to
6000 units for example, the total discounted expected
direct cost to be paid by the manager is decreased from
34152.7 to 28484.5 that is by 5668.2 units, while the
discounted total cost increased by only 89547.47 –
87824.77 ¼ 1722.7 units. The discrepancy between the
two numbers, namely 5668.2 – 1722.7 ¼ 3945.5 units,
is due to the fact that this portion of the total cost for
all the structures was transferred from the manager to
the users (remember here that the total cost includes
the term cs(ayn) which is the cost incurred by the
structure due to a degraded performance for being in
state ayn during stage n, after the application of the
action). This means that, as the manager limits the
available funds to maintain the structures, a larger part
of the total cost is transferred to the users of the
structures. Concerning the flat portion of the curve (i.e.
as long as the allocated budget is larger than 6500
units), such a transfer is not a real inconvenience since
the total expected cost does not significantly increase.
One can even argue that such ability to transfer costs
can be used suitably by managers or governments who
have a shortage of funds. Besides, one can note that for
budgets of 8000, 7200, 6800, 6400, 6000 and 5600 units,
l7 ¼ 0 since the required sum is lower than the
available budget. However, it can be noted that as

Figure 3. Impact of the maximum allocated budgets on the total expected cost (50 years time horizon).

Table 12. Expected costs for budgets of 6000 units.

ln Crnðx�Þ

Period 1 0.7122626959 5995.47
Period 2 0.5063214576 5987.72
Period 3 0.5233051267 6005.43
Period 4 0.5118336299 6003.72
Period 5 0.4831212022 6003.08
Period 6 0.4516625846 6024.37
Period 7 0.4184826364 6009.28
Period 8 0.3859702313 5999.46
Period 9 0.3541740982 6002.06
Period 10 0.3235476236 6008.50
Period 11 0.2957264436 5977.22
Period 12 0.2697490319 5944.28
Period 13 0.2440967348 6052.88
Period 14 0.2236951594 5936.40
Period 15 0.202850768 5977.74
Period 16 0.1847729555 5928.02
Period 17 0.1651636624 6047.10
Period 18 0.1497547219 5935.11
Period 19 0.1333040538 6008.87
Period 20 0.11748382 6019.40
Period 21 0.1012087941 6034.57
Period 22 8.48905959e-002 5950.23
Period 23 6.23027078e-002 6032.43
Period 24 3.249999928e-002 5945.39
Period 25 0 4355.94
Sum of the discounted expected direct
costs

54111.77

C(x) 166086.23

Note: Available budgets are assumed to be similar for the different
time periods.
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the allocated budget decreases from 8000 to 5600
units, the required sum for IM&R in period 7
increases from 3651.65 to 4831.47 units. This is due
to the poor condition state of the inventory at period
7 which was caused by insufficient budgets in
previous time periods. The calculations were also
made for a planning time horizon of 50 years
(Figure 3 and Table 12).

Conclusion

A methodology for extending MDPs or POMDPs
(using dynamic programming methods) from single
structure to multiple-structure levels is presented in
this article for the optimisation of IM&R of civil
engineering infrastructures. The whole optimisation
problem was transformed into a sum of smaller
problems, one for each structure. The methodology
was illustrated by using a GPOMDP. A Lagrange
relaxation technique was employed to overcome the
complexity resulting from the economic interdepen-
dence between IM&R decisions for all structures. The
existence of an appropriate set of Lagrange multipliers
was discussed and a procedure for finding these
multipliers was presented. The proposed methodology
differs from those based on linear programming
usually used to solve parallel MDPs in the sense that
it allows the different structures of each process to be
dissimilar. Also, three alternative solution methods
were used for optimising IM&R decisions for the
whole inventory. They differ from each other accord-
ing to the way they use the information produced by
the prescribed inspections. A numerical application
illustrating the model is given where sensitivity analysis
for varying maximum allocated budgets for each time
period is carried out.

Notation

y State of the structure;
yn State of the structure at the beginning of time

period n;
ayn State of the structure during time period n after

a maintenance action a has been applied;
nn Belief state vector of the structure at the

beginning of time period n;
ann Belief state of the structure during time period n

after a maintenance action a has been applied;
0nn Bayesian posterior belief state vector;
an Action to be applied at the beginning of time

period n;
in Inspection to be applied at the beginning of time

period n;
*an Optimal action to be applied at the beginning of

time period n;

*in Optimal inspection to be applied at the
beginning of time period n;

M Markov chain transition matrix;
Aan Transition matrix from yn to ayn related to

action an;
aanjk Element of row j and column k ofmatrixAan;
ci(i) Cost associated with the application of the

inspection method i;
ca(a) Cost of action a;
cs(ayn) Cost incurred by the structure for being in

state ayn during time period n after
application of action a;

cs(ann) Expected cost incurred by the structure for
being in belief state ann during time period
n after application of action a;

cðnnÞji;r;an Expected cost at the beginning of time
period n corresponding to belief state nn

given that we applied inspection technique
i, got result r and implemented mainte-
nance action an;

*c(nn) Optimal expected cost at the beginning of
time period n corresponding to belief state nn;

xq Strategy belonging to the set Dq of possible
strategies for structure q (i.e. xq is a set of
decision rules which associates appropriate
decisions for each state of the structure q
during each of the time periods);

x Global strategy belonging to the set D of
possible global strategies (i.e. x is a Q-tuple
x ¼ (x1, . . . , xQ) where component xq
represents the strategy for structure q);

Crn(x) Expected direct cost paid by the inventory
manager for all the structures during time
period n for IM&R decisions;

CrnqðxqÞ Expected direct cost paid by the inventory
manager for structure q during time period
n for IM&R decisions;

C(x) Overall expected long-term cost for all the
structures which includes the discounted
expected direct costs Crn(x), in addition to
the costs incurred by the user due to the
states of the structures;

Cq(x) Overall expected long-term cost for struc-
ture q which includes the discounted
expected direct costs CrnqðxÞ, in addition
to the costs incurred by the user due to the
state of structure q;

bln Available budget for the inventory man-
ager during time period n;

Q Number of structures in the inventory;
a Discount rate;
l Lagrange multiplier;
N Time horizon of the planning.
L Number of inspections performed at each

stage
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Appendix

This appendix presents a procedure that we will refer to as
‘procedure lambda’ for the computation of the l n values.

(0) Set ln ¼ 0 for n ¼ 1, . . . , N;
(1) Solve problem (7), calculate Crn(x) for n ¼ 1, . . . ,N;
(2) If Crn(*x) � bln for n ¼ 1, . . . , N stop, else goto step
3;
(3) Add to every ln the value e ¼ Crnð�xÞ�bln

bln � r (ln s are
limited downward by 0);
(4) goto step 1;

r is a multiplying factor smaller than one.
More sophisticated procedures can be devised. However,

for our particular problem the efficiency of the above listed
procedure was found sufficient.
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