
HAL Id: hal-01006963
https://hal.archives-ouvertes.fr/hal-01006963

Submitted on 5 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Incorporating Bayesian networks in Markov Decision
Processes

Rafic Faddoul, Wassim Raphael, Abdul-Hamid Soubra, Alaa Chateauneuf

To cite this version:
Rafic Faddoul, Wassim Raphael, Abdul-Hamid Soubra, Alaa Chateauneuf. Incorporating Bayesian
networks in Markov Decision Processes. Journal of Infrastructure Systems, American Society of Civil
Engineers, 2013, 19 (4), pp.415-424. <10.1061/(ASCE)IS.1943-555X.0000134>. <hal-01006963>

https://hal.archives-ouvertes.fr/hal-01006963
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Incorporating Bayesian Networks in Markov
Decision Processes

R. Faddoul, Ph.D.1; W. Raphael2; A.-H. Soubra3; and A. Chateauneuf4

This paper presents an extension to a partially observable Markov decision process so that its solution can take into account, at the 
beginning of the planning, the possible availability of free information in future time periods. It is assumed that such information has a 
Bayesian network structure. The proposed approach requires a smaller computational effort than the classical approaches used to solve 
dynamic Bayesian networks. Furthermore, it allows the user to (1) take advantage of prior probability distributions of relevant random 
variables that do not necessarily have a direct causal relationship with the state of the system; and (2) rationally take into account the 
effects of accidental or rare events (such as seismic activities) that may occur during future time periods of the planning horizon. The 
methodology is illustrated through an example problem that concerns the optimization of inspection, maintenance, and rehabilitation 
strategies of road pavement over a 14-year planning horizon.

keywords Optimization; Markov process; Maintenance; Decision making; Bayesian analysis; Infrastructure.

Introduction

The life-cycle cost of civil engineering assets incorporates their
design and construction costs, their inspection maintenance and
rehabilitation (IMR) costs during their projected life cycle, and
eventually, the costs necessary for their decommissioning. How-
ever, for optimal decisions, one must include the users’ costs in the
IMR costs. The users’ costs usually involve those incurred by the
users as a result of an imperfect performance of the asset and those
related to the failure risk of the asset, which are expressed in mon-
etary units. Hence, an accurate evaluation of the optimal IMR costs
for civil engineering assets is essential for the correct estimation
of the entire life-cycle costs of these assets. As such, the accurate
evaluation of IMR costs is vital not only for the management opti-
mization of existing assets, but also for a rational choice of the type
and characteristics of new assets.

Designing a mathematical model for a real life problem usually
entails the need to pursue two conflicting objectives: (1) fidelity
to reality in the sense that the mathematical model must include,
as much as possible, all of the variables that are relevant to the
real problem and that the mathematical structure of the model
must relate these variables to each other in a way that emulate
the real life problem; (2) efficiency and tractability of the proposed

mathematical model in the sense that the data needed as input for
the model must be easily accessible and the solution method of the
transcribed mathematical problem must be known and its compu-
tation time must not be too expensive. This paper proposes an
extension of the partially observable Markov decision process
(POMDP) models used for the IMR optimization of civil engineer-
ing structures, so that they will be able to take into account the
possibility of free information that might be available during each
of the future time periods. It is supposed that such information has
a Bayesian network (BN) structure. The proposed model can be
viewed as a dynamic Bayesian network (DBN) model, in which
the decision variables can be optimized by dynamic programming
and decision trees. As such, the proposed approach is able to tackle
the problem of computational complexity that existing DBN meth-
odologies stumble upon.

Literature Review

After it was proposed by Bellman (1961), dynamic programming
(DP) was readily adopted as an efficient and intuitive algorithmic
framework to solve for optimal strategies in sequential decision
problems. In these problems, the state of the system can be chosen
so that it possesses the Markov property; i.e., knowing the present
state of the system is all that is needed to optimally decide for future
strategy, regardless of the history of the system. During the last
decades, several extensions and generalizations of the basic DP
algorithms (deterministic and probabilistic DPs, as defined by
Bellman) were proposed to model real life problems. In the early
1960s, POMDPs were introduced (Eckels 1968; Monahan 1982).
In a POMDP, the system has an uncertain state (belief state), which
can be, for example, a probability distribution of the state variable
θ. Methodologies have been suggested for including in a Markov
decision process (MDP) epistemic uncertainty (Faddoul et al.
2009a), non-Markovian effects of actions and/or deterioration proc-
esses (Robelin and Madanat 2007), and the effects of resource
constraints in the case of several simultaneous POMDPs (Robelin
and Madanat 2007; Faddoul et al. 2010, 2013). Moreover, several
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investigations that extend POMDPs to include inspection planning
were proposed in the literature during the last decade (Madanat and
Ben-Akiva 1994; Corotis et al. 2005; Faddoul et al. 2011, 2009b;
Frangopol et al. 2012). In these models, the inspection costs mo-
tivated the inclusion of inspection decisions in the optimization
pertaining to sequential decision making of the IMR of civil engi-
neering structures. If the state of a system is described by a variable
θ that cannot be observed freely and unerringly at the beginning of
each time period, the previously mentioned methodologies will
allow an optimum choice of one or several inspection techniques
during each time period of the planning horizon. The common pur-
pose to all of the previously mentioned extensions to the original
DP formulation was to include as much of the relevant information
to the problem as possible to decrease the bias and the variability of
the obtained optimal solutions with respect to the true unknown
solution. It is in this line of reasoning that this paper proposes a
methodology (which can be viewed as a DBN) that allows a more
accurate (although computationally tractable) stochastic degrada-
tion modeling in POMDPs.

DBNs are a special class of Bayesian networks that can be
used for modeling time series data and represent stochastic proc-
esses. They consist of a sequence of time slices (which are often
repetitive). Each of these slices consists of one or more BN nodes
connected by directed edges, and thus, can be considered to be a
primal BN. Several authors have investigated the use of BNs and
DBNs for maintenance planning and contrasted them to the use
of other deterioration models (Celeux et al. 2006; Francois et al.
2008; Jones et al. 2010; Straub 2009). Francois et al. (2008) pre-
sented a DBN modeling for the IMR of a railway in which the
BN structure was used to perform Monte Carlo simulations to
choose the optimal IMR parameters. Straub (2009) proposed a
DBN for modeling the stochastic deterioration process. This study
provided an efficient (polynomial in the number of nodes) algo-
rithm to update the model parameters based on available evidence
from inspections; however, the problem of efficiently searching
for optimal values for the decision nodes was not addressed. Also,
this model did not allow the user to optimally choose one (or
more) optimal inspection techniques between several available
techniques. Attoh-Okine and Bowers (2006) used a BN to model
bridge deterioration. Their model allowed for the conditional
computation of the deterioration of bridge members based on the
state of other elements. Manoj (2009) suggested the use of BNs to
predict the probability of terrorist attacks on critical transportation
infrastructure facilities. Langseth and Portinale (2007) discussed
the very important concerns related to the actual process of build-
ing the necessary BNs (such from expert elicitation and/or the use
of empirical data) in the context of reliability and deterioration
modeling. These issues were tackled, in more general settings,
in the studies by Cooper and Herskovits (1992) and Heckerman
et al. (1995). These subjects will not be addressed in this paper.

Cooper (1988) presented a general method for using BNs as
decision networks; the complexity of the algorithm is exponential
in the number of decision nodes.

On the other hand, Cooper (1990) showed that the probabilistic
inference by using general BN is NP-hard and concluded that re-
search should be directed toward the design of efficient special case
algorithms that build on the special characteristics of each particu-
lar BN. Numerous and more efficient special case algorithms were
proposed for particular settings (Zhang et al. 1992, 1994; Jensen
et al. 1994; Zhang 1998).

To summarize, except for a few efficient algorithms for BN/
DBN decision problems with special structures, the computational
complexity of the classical algorithms used to solve decision prob-
lems modeled by BN/DBN arises from: (1) the inference step (for a

specific set of values taken by the decision variables), which was
shown by Cooper (1990) to be NP-hard; and (2) the optimization
step, which is generally exponential in the number of decision
nodes (Cooper 1988).

This paper presents a DBN for the IMR of civil engineering
structures. In this model, the variables related to the decision nodes
can be optimized by DP and decision trees. The decision variables
concern the maintenance actions and types of inspections during
each time period. The proposed model extends the classical
POMDPs and the generalized partially observable Markov decision
process (GPOMDP) (Faddoul et al. 2011, 2009b) so that it can take
into account free available information during future time periods.
It improves the existing IMR models using DBN (Cooper 1988,
1990; Zhang et al. 1992, 1994; Jensen et al. 1994; Zhang 1998)
in that: (1) it builds on the efficiency of DP to tackle the problem
of exponential complexity connected with the number of decision
variables; and (2) it divides the original DBN into smaller BNs to
tackle the NP-hardness of the problem.

Although the methodology proposed in this paper is motivated
by the IMR optimization of civil engineering infrastructures and is
illustrated for a GPOMDP, its applicability is quite general and its
use in any classical POMDP is straightforward.

The next sections first formulate the problem at hand as a DBN
and present the DP and the BN methodologies. This is followed
by a combined approach that introduces the BNs in POMDPs.
Next, a numerical example that involves the IMR of a road pave-
ment is presented and discussed. Finally, the paper concludes with a
discussion on the computational aspect of the method.

Problem Formulation as a DBN

One may consider that the IMRmanager of a civil engineering asset
had run a POMDP algorithm at the beginning of the planning hori-
zon and that they are complying with the decisions prescribed by
that algorithm. At the beginning of each time period, the belief state
of the asset is known to the manager. This belief state is the out-
come of the deterioration model, which is possibly updated via
Bayesian techniques by using the results of planned inspections.
One may suppose further that at the beginning of a time period n,
free information relevant to the state of the asset is available to that
manager. This information will be generally uncertain. If one as-
sumes that this uncertainty can be expressed by a probabilistic dis-
tribution, an expected attitude of the structure manager will be to
enhance the optimality of their decisions by updating the belief
state of the structure during the time period n by using Bayesian
techniques. However, this paper will show that the optimality of the
manager’s decisions can be enhanced if the possibility of using
such free information was planned in advance at the beginning of
the planning horizon by using prior probability distributions of the
observable nodes of the BN.

Modeling the joint probability distribution of the freely observ-
able random variables as a BN is particularly useful because (1) it
allows one to easily infer the state of the structure by collecting
information concerning the realization of certain relevant random
variables, even if these variables do not have a causal relationship
with the state of the structure (technique of information back-
propagation); and (2) it allows one to rationally take into account,
at the beginning of the planning horizon, the effects of accidental
events such as seismic activities or terrorist attacks (Manoj 2009).
The present methodology does not merely use a BN to construct the
deterioration transition matrix. Instead, the actual BN is inserted
into a POMDP to form a DBN that can be solved by DP and de-
cision tree analysis.
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Dynamic Programming

In a POMDP (Eckels 1968; Monahan 1982), the state of the system
at the beginning of each time period cannot be fully observed. The
manager of the system must rely on the characterization of a par-
tially observed state; i.e., a belief state, which is usually described
by probability distributions. In a classical POMDP, the belief
state of the system at the beginning of stage n is defined by
the vector νn ¼ ½νn1; νn2; : : : ; νnk � where vni (i ¼ 1; : : : ; k) are the
probabilities associated with the different states θi, i.e., νn ¼
½Prðθn1Þ; Prðθn2Þ; : : : ;PrðθnkÞ�.

The effect of a maintenance action or a degradation process can
be modeled by the transition matrices Aan and M, respectively,
where the element aij (i ¼ 1; : : : ; k; j ¼ 1; : : : ; k) of matrix Aan
represents the probability that the system evolves from the state θni
to the state aθnj if the maintenance action a is implemented at the
beginning of stage n and where the element mij (i ¼ 1; : : : ; k;
j ¼ 1; : : : ; k) of matrix M represents the probability that the sys-
tem evolves from the state aθnj to the state θnþ1

j as a result of the
degradation process.

The belief state avn of the system during stage n, after the im-
plementation of a maintenance action a, is equal to the matrix prod-
uct of the vector vn by the maintenance transition matrix Aan;
i.e., avn ¼ vn × Aan. Similarly, the belief state vnþ1 of the system
at the beginning of stage nþ 1 (i.e., after the evolution of the sys-
tem as a result of the Markov degradation process) is equal to the
matrix product of the vector avn by the Markov degradation process
transition matrix M; i.e., vnþ1 ¼ avn ×M. Thus, a maintenance
action and/or a Markov degradation process, having probabilistic
consequences on the degree of degradation of the system, results in
a probability distribution, i.e., an exactly well-defined belief state.

As it is well known, the solution of a finite time horizon
POMDP by DP consists of recursively calculating the costs asso-
ciated with each of the belief states νn of stage n by choosing the
action that minimizes the total cost cðνnÞ (Bellman 1961). This cost
is composed of the cost of that action and the discounted optimal
cost α × �cðνnþ1ja; νnÞ associated with the forecasted belief state
of stage nþ 1, knowing that the action a was applied while in the
belief state νn at the beginning of stage n:

cðνnÞ ¼ cðanÞ þ α × �cðνnþ1ja; νnÞ ð1Þ

Hence, in classical POMDPs used for IMR optimization of civil
engineering structures, the recursive relation consists of minimizing
the expected cost by choosing the appropriate maintenance action.
Recently, a more general POMDP (called GPOMDP) was pre-
sented by Faddoul et al. (2011, 2009a, b). In a GPOMDP, the
structure manager has the opportunity, at the beginning of each
time period, to decide for an optimal sequence of decisions to
be implemented during that stage. This sequence of decisions usu-
ally consists of one or several inspections and/or actions, applied
sequentially. For example, a sequence of decisions consisting of
two inspection decisions followed by one action decision is suitable
for maintenance problems when a more precise and costly inspec-
tion is implemented on the basis of the results of a relatively cheap
inspection. It is also suitable when specialized inspection technol-
ogies in detecting some of the states of the structure are imple-
mented on the basis of the results given by an inspection technology,
which is efficient over the entire state space of the structure. In the
GPOMDP by Faddoul et al. (2011, 2009a), the optimal planning
of one or a sequence of imperfect inspections and/or maintenance
actions is possible. The inspections are imperfect in the sense that,
given the true state θn of the system and the inspection technology
i, their results will be characterized by conditional probability

distributions (Pr½r1jθn; i�; Pr½r2jθn; i�; : : : ; Pr½rmjθn; i�). Finally, in
the GPOMDP, a decision tree is used as the recursive relation re-
quired by the POMDP (Fig. S2). The decision tree applied to each
belief state at the beginning of each time period n can be considered
to be a function of two variables: (1) the belief state vn; (2) the op-
timal discounted costs for all belief states at the beginning of time
period nþ 1, i.e., f�cðvnþ1Þvnþ1g. Because the decision tree, given
vn and f�cðvnþ1Þvnþ1g, will give an optimal expected cost and an
optimal sequence of decisions concerning inspection and mainte-
nance types to be applied, it is used in GPOMDP as the recursive
relation required by DP. For a classical POMDP, a GPOMDPmakes
use of the deterioration transition matrix M to calculate the belief
state vnþ1 given the belief state avn. It is assumed that the effect of a
maintenance action is immediate and takes place at the beginning of
the time period in which the decision was made. Concerning the
effect of the deterioration process, it is assumed that its effects take
place at the end of each time period. However, the proposed meth-
odology can be applied straightforwardly with minor modifications
to other schemes; for example, in which the effects of maintenance
actions and deteriorations take place at the end of each time period.
In view of this, given that the maintenance action a was applied at
the beginning of time period n, the belief state vector avn can be
thought of as the available belief state at the end of a virtual stage
n 0 of time length 0 (i.e., at the beginning of stage n 0) (Fig. 1).

During the stage n, one can view the effect of the deterioration
process as that of an action for which there is no alternative and that
brings the structure from the belief state avn to the belief state vnþ1

at the beginning of time period nþ 1 [i.e., at the beginning of the
virtual stage ðnþ 1Þ 0]. Hence, a POMDP (or GPOMDP) having a
planning horizon with N time periods will be viewed as one with
a planning horizon of 2N time periods with a virtual stage at the
beginning of each time period. Although such a point of view can
be considered superfluous in describing a classical POMDP or a
GPOMDP, it will be shown in a later section that it is convenient
for integrating BNs in a POMDP framework. In the following sec-
tions, virtual stages (n 0) will be referred to as “stage n 0” and actual
stages (n) as “time period n”.

Bayesian Networks

A BN, also called a belief net, is a directed acyclic graph in which
with the nodes are random variables and the directed edges indicate
conditional probabilistic dependence between children nodes and
their parents. A conditional probability distribution giving the prob-
abilities of the random variable, in each particular state for each
possible combination of the parent nodes, is associated with each
of the child nodes of the graph. Unconditional probability distribu-
tions are associated with each of the root nodes (i.e., nodes without
parents). The conditional and the unconditional probability distri-
butions can be chosen to be deterministic; i.e., they assign all of
the probability mass to a single value. For the current purpose,
BNs that have decision nodes will not be considered; i.e., nodes
for which the associated variables can be fixed by a decision from

Fig. 1. Classical POMDP
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the manager of the structure. Fig. 2 illustrates a simple Bayesian
network with nine nodes describing the causal influence of various
relevant variables on the state θnþ1 of a road pavement at the be-
ginning of time period nþ 1.

The state variable aθn is the state of the pavement after the ap-
plication of the action a during the time period n. The structure of
a BN represents a kind of knowledge that one may have about the
joint probability distribution of the random variables represented
by the nodes. The lack of arcs represents conditional independence
assumptions among the random variables represented by the
nodes. Stated in other terms, a node is independent of its nondes-
cendants given its parents; more generally, two disjointed sets of
Nodes A and B are conditionally independent given C if C sepa-
rates A and B. That is, if along every undirected path between a
node in A and a node in B there is a Node d such that: (1) d has
converging arrows and neither d nor its descendants are in C; or
(2) d does not have a converging arrow and d is in C (Pearl
1986). For example, the joint probability distribution of discrete
random variables associated with the BN of Fig. 2 will be written
according to the chain rule of factorization (if the structure of the
BN is disregarded), as follows:

Pðθnþ1; aθn;X1;X2;X3;X4;X5;X6;X7Þ
¼ Pðθnþ1jaθn;X1;X2;X3;X4;X5;X6;X7Þ
× PðaθnjX1;X2;X3;X4;X5;X6;X7Þ
× PðX1jX2;X3;X4;X5;X6;X7Þ × PðX3jX2;X4;X5;X6;X7Þ
× PðX4jX2;X5;X6;X7Þ × PðX2jX5;X6;X7Þ
× PðX5jX6;X7Þ × PðX7jX6Þ × PðX6Þ ð2Þ

By taking into account the structure of the BN in Fig. 2, the joint
probability distribution can be simplified to the following form:

Pðθnþ1; aθn;X1;X2;X3;X4;X5;X6;X7Þ
¼ Pðθnþ1jaθn;X1;X2;X3;X6Þ × PðaθnÞ × PðX1Þ

× PðX3jX4;X5Þ × PðX4jX2;X5Þ × PðX2Þ × PðX5Þ
× PðX7jX6Þ × PðX6Þ ð3Þ

If one or more of the variables of the BN are observed; i.e., if the
probability distributions of those variables are set to be the deter-
ministic distributions assigning all of the probability to single ob-
served values, the probability distributions of the remaining
variables are updated accordingly. More specifically, for this par-
ticular example, if one is given the probability distribution of the
node aθn (i.e., the belief state avn), then for each combination of the
values x1, x2, x5, and x6 taken by the nodes X1, X2, X5, and X6,
respectively, there will be a different belief state νnþ1, which will be
calculated by using one of the various available inference tech-
niques used for BNs. Eq. (4) gives the standard inference technique
by simply using the Bayes formula and marginalization (Pearl
1986) for the case in which the variables X1; : : : ;Xi are observed
and the variables Xiþ1; : : : ;Xn are not observed:

Pðθnþ1jaθn;X1; : : : ;XiÞ ¼
Pðθnþ1; aθn;X1; : : : ;XiÞ

Pðaθn;X1; : : : ;XiÞ
ð4Þ

where

Pðθnþ1; aθn;X1; : : : ;XiÞ ¼
X
Xiþ1

· · ·
X
Xn

Pðθnþ1; aθn;X1; : : : ;XnÞ

and

Pðaθn;X1; : : : ;XiÞ ¼
X
θnþ1

X
Xiþ1

· · ·
X
Xn

Pðθnþ1; aθn;X1; : : : ;XnÞ

Fig. 2. Example of a BN for pavement deterioration
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Because the random variables X1, X2, X5, and X6 are indepen-
dent, the probability P of the events x1, x2, x5, and x6 occurring
simultaneously will be

Pðx1; x2; x5; x6Þ ¼ P1ðx1Þ × P2ðx2Þ × P5ðx5Þ × P6ðx6Þ ð5Þ

where P1ðxÞ, P2ðxÞ, and P5ðxÞ = unconditional probability
distributions associated with the root nodes; and P6ðxÞ = prior
probability distribution associated with the variable X6, which
quantifies the capacity of the type of structures to withstand the
effects of degradation. The variable X6, the durability related var-
iable is a variable that is not directly observable and has an impact
on the deterioration rate of the pavement. Such a variable can be,
for example, an uncertain constant in the physical deterioration
model from which the Bayesian network and/or the deterioration
transition matrix are derived. The usefulness of X6 and X7 stems
from the fact that they allow one to benefit from costly inspections
conducted for other pavement sections and result in an observation
of the deterioration rate, and consequently, in an updated probabil-
ity distribution of X6.

Therefore, if one is given the belief state avn, then for each belief
state νnþ1 produced by each particular combination of the values
x1, x2, x5, and x6 (used by the nodes X1, X2, X5, and X6, respec-
tively), there will be an associated probability P. The same reason-
ing is valid for the case in which some or all of the variables
included in the BN are continuous. In this case, one simply has
to replace probabilities with densities. Hence, if a probability dis-
tribution is available for each of the evidence nodes and for aθn,
then the variability of θnþ1 will be described by a set of probability
distributions (which is finite and discrete if all of the evidence var-
iables are finite and discrete). In other words, based on prior prob-
ability distributions for the evidence nodes, the BN will generate a
set of belief states νnþ1 according to a probability distribution,
which can be calculated by using Eq. (5).

The variable X4 measures the traffic congestion of the remaining
network linking the same locations as the road containing the pave-
ment under study. The future prior probability distributions of this
variable for each time period are assumed to be made available by
elicitation of the network expert. This elicitation is supposed to take
into consideration, among others, the expected IMR activity on the
network. Such an approach constitutes an approximation of the real
problem of interdependencies (economics, logistics, and traffic dis-
turbances) that arise in the IMR optimization of a network.

The BN that was analyzed in this section may be extended and
fine-tuned. For example, to account for the random variability of
the seismic demand on different components of the transportation
system (e.g., the remaining network) that is not in the same loca-
tion, one must (1) insert a node (representing the seismic demand
on the pavement subject to IMR) in the path linking X1 to θnþ1; and
(2) add a path to the graph that links X1 to X4. This path would have
a node between X1 and X4 that represents the seismic demand on
the parallel road for example (Fig. S1). The two added demand
nodes are considered to be evidence nodes in the sense that their
prior probability distribution is replaced by observed values when
time period n is reached.

There may exist causality dependences between the nodes that
may violate the assumptions of the BN. Many of the acyclicity vio-
lation cases may be addressed by adding hidden variables (nodes)
to the network. For example, a learning algorithm may find a causal
relationship, direct or indirect, from Node A to Node B and from
Node B to Node A. This is often because the learning algorithm has
overlooked one or more important variables that are influencing
both Nodes A and B. However, there may exist cases in which the
causal relationship is truly cyclic (Sprites et al. 1993; Sprites 1995;

Pearl and Dechter 1996). For example, urban growth can affect
traffic intensity; inversely, traffic intensity can affect urban growth,
hence violating the acyclicity assumption. Although less popular
and more complex than BNs, learning and inference algorithms for
probabilistic models represented as directed cyclic graphs (DCG)
are becoming more available.

Finally, the BN parameters can be usually determined (1) from
data by using available learning algorithms or (2) by using a direct
knowledge elicitation method from experts.

Inclusion of Bayesian Networks in POMDPs

A classical POMDP (or GPOMDP) that has a stochastic degrada-
tion process behaves during each time period n like a classical
deterministic MDP, although the first works over belief states
whereas the second works over exact true states. In such a model,
the result of degradation (which is probabilistic in the original state
space) is unique and well defined in the belief state space (i.e., space
of probability distributions). This is because the outcomes are belief
states that are exactly defined and expressed by probability vectors.
At the beginning of each time period n, a classical POMDP recur-
sive relationship (i.e., the decision tree procedures in a GPOMDP)
will call for optimal costs �cðvnþ1Þ calculated for the updated belief
states at the beginning of time period nþ 1.

The extension of the classical POMDP model to the case of a
probabilistic POMDP (so that it behaves like a probabilistic MDP
over the belief states during each time period n) leads to the fact that
the result of degradation will be a probabilistic distribution of belief
states (Fig. 3). This probability distribution will be provided by a
particular BN defined by the manager of the structure, as described
in the previous section. In other words, to find the optimal cost
�cðvnÞ, a probabilistic POMDP recursive relation (the decision
tree procedure in a GPOMDP) will call for the expected value
of �cðvnþ1Þ, knowing that the vector vnþ1 has a probability distri-
bution over the entire belief state space at the beginning of time
period nþ 1 (as defined by a BN), rather than evaluating the
cost of exactly updated belief states (as defined by a simple tran-
sition matrix).

Fig. 3 illustrates the proposed probabilistic POMDP in contrast
to a classical POMDP for the particular case in which the belief
state space is two-dimensional. In the probabilistic approach,
the expected cost associated with the probability distribution of
vnþ1 will be

E½�cðνnþ1Þ� ¼
Z
state space

�cðνnþ1Þ × fðνnþ1Þ ð6Þ

where fð:Þ = probability distribution of the belief state νnþ1 result-
ing from the BN; and E½:� = mathematical expectation operator;
fð:Þ will be calculated by using Eq. (5). Fig. 4 illustrates the
GPOMDP by using a BN instead of a transition matrix.

The current approach evaluates E½�cðνnþ1Þ� rather than
�c½Eðνnþ1Þ�. These two terms are not generally equal unless the
function �cð:Þ is a linear function of the state νnþ1, which is not
generally the case. Hence, the BN cannot simply be used to con-
struct a mean transition matrix, as would be the case if one has only
to evaluate �c½Eðνnþ1Þ�.

The model presented in this section can be considered to be a
DBN model, which makes use of the DP algorithm to solve the
optimization problem related to the actions and inspections to
be performed during each time period.

However, for the current approach to work, only one edge, link-
ing the nodes representing the states of the system, must connect
the consecutive time slices of the original DBN (Fig. 4). Hence, the
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nodes of the BN during each time period, except those representing
the state of the structure, must be: (1) independent from nodes in
other time slices; or (2) independent from the decisions made by the
manager of the system (i.e., their future prior probability distribu-
tions for each time period must be available and can be computed
separately from the IMR optimization problem). In this latter case,
the edges linking the nodes among the different time slices can be
removed during the backward calculation of DP without losing
information.

For example, the variable X5 (urban growth) in Fig. 2 depends
on a slow process; thus, the node X5 is not independent from no-
des in previous time periods. However, because it is independent
from the decisions of the manager, and because its prior proba-
bility distributions for each time period can be computed sepa-
rately, the edges linking the nodes X5 among the different time

slices can be removed during backward calculation without losing
information.

Example Application

This example considers a section of an interstate highway pave-
ment subject to deterioration. The goal is to establish an optimal
IMR planning for this pavement. The planning horizon is set to
14 years. The length of each time period is two years long and
the discount rate is: α ¼ 0.049. It is assumed that the performance
of the pavement may be described by five states (Table 1). Because
user cost csaθni models for infrastructure facilities are sometimes
not readily available, this study follows Madanat (1993) and re-
place them, in this example, by constraining the performance of
the pavement to be above a specified minimum allowable thresh-
old: θ < θ5. The proposed mathematical model can take into ac-
count such a constraint by heavily penalizing the state θ5;
i.e., associating quasi-infinite user cost to this state and zero user

Fig. 3. Probabilistic versus classical POMDPs in the case of a two-dimensional state space

Fig. 4. POMDP using BN instead of a deterioration matrix

Table 1. Relationship between International Roughness Index and
Pavement Serviceability Rating

Condition Interstate PSRa Interstate IRIb (m=km)

θ1 (very good) >¼ 4 <0.94
θ2 (good) 3.5–3.9 0.94–1.48
θ3 (fair) 3.1–3.4 1.49–1.87
θ4 (mediocre) 2.6–3.0 1.89–2.68
θ5 (poor) < ¼ 2.5 >2.68

Note: Data from Federal Highway Administration (2008).
aPavement serviceability rating.
bInternational roughness index.
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cost to the other states. The study also follows Madanat (1993) and
considers four hypothetical inspection techniques. The adapted
measurement errors related to these inspection technologies are as-
sumed to be normally distributed with zero mean and SDs of 0.08,
0.16, 0.24, and 0.32 m=km. These distributions were transformed
into discrete measurement probabilities by using basic theorems of
probability. Table 2 indicates, for each inspection technique, the SD
of the measurement error and the probabilities of obtaining the dif-
ferent results, r ¼ i (i ¼ 1; : : : ; 5), knowing that the true state of
the pavement is θn ¼ j. The average cost associated with these in-
spection techniques (Table 2) is based on studies conducted for the
Federal Highway Administration (FHWA) (Hudson et al. 1987). In
addition to the four inspection techniques, a fifth inspection tech-
nique is included that has an infinite SD, which stands in this model
for the case in which no inspection will be done (i.e., the study
entirely relies on the prediction of the degradation model), and
its cost is nil. Also, it is assumed that only two imperfect mainte-
nance actions can be employed. The transition matrices related to
these maintenance actions are adapted from the work of Madanat
(1993). The cost of action a0 (no maintenance) is nil, the cost of
action a1 (two-inch overlay) is US$6.56 per m3 and the cost of ac-
tion a2 (reconstruction) is US$21.71 per m3. The uncertainties as-
sociated with the different maintenance actions are expressed by the
matrices of Tables 3, 4, and 5.

The stochastic deterioration of the pavement is assumed to be de-
scribed by a Markov chain with state space Θ ¼ fθ1; θ2; θ3; θ4; θ5g.

It is supposed that the initial belief state of the pavement section
is v ¼ ½ 0.1 0.2 0.55 0.15 0 �. The deterioration during each
time period is modeled by a BN having the structure illustrated in
Fig. 2. For brevity and without any loss of generality, this example
neglected the effect of seismic activity. The effects of traffic intensity
[in thousands of equivalent standard axle loads (ESALs)], annual
amount of precipitation (millimeters of rain per year), and the
durability related variable [thickness of the hot mix asphalt concrete
(HMAC) in centimeters] were assessed by using data extracted from
the long-term pavement program (LTPP) (FHWA 1997).

It is assumed that the variables X2, X5, and X7 are the only
observable nodes in this example. The results were computed
for two cases; namely, the transition of the pavement state during
each time period as a result of deterioration is modeled by (1) a BN
having the structure illustrated in Fig. 2; and (2) a transition matrix
M (Table 6), which was calculated to be the mean transition of the
BN. In other words, M was calculated by using the same data used
to construct the BN, but by neglecting its structure.

Table 7 presents the different values that are given by the various
variables of the BN, their meanings, and the associated probabil-
ities. In Table S1, the transition probabilities are presented for dif-
ferent combinations of the values given by the parent nodes at the
beginning of time period nþ 1. Also, Tables S2 and S3 provide the
conditional probability distributions for the variable X4, represent-
ing the state of a parallel road, and for the variable X3, representing
the traffic intensity. The variable X4 has an indirect causal effect on
the state of the pavement under study. This is because the traffic
(X3) on the pavement whose maintenance is to be optimized de-
pends on the performance of parallel roads (linking the same

Table 3. Transition Matrix for Action a0

State of the structure aθn1
aθn2

aθn3
aθn4

aθn5

θn1 1 0 0 0 0
θn2 0 1 0 0 0
θn3 0 0 1 0 0
θn4 0 0 0 1 0
θn5 0 0 0 0 1

Table 4. Transition Matrix for Action a1

State of the structure aθn1
aθn2

aθn3
aθn4

aθn5

θn1 0.916 0.084 0 0 0
θn2 0.852 0.148 0 0 0
θn3 0.788 0.212 0 0 0
θn4 0.736 0.264 0 0 0
θn5 0.632 0.368 0 0 0

Table 5. Transition Matrix for Action a2

State of the structure aθn1
aθn2

aθn3
aθn4

aθn5

θn1 0.94 0.06 0 0 0
θn2 0.94 0.06 0 0 0
θn3 0.94 0.06 0 0 0
θn4 0.94 0.06 0 0 0
θn5 0.94 0.06 0 0 0

Table 6. Transition Probabilities of the Degradation Process

State of the structure θnþ1
1 θnþ1

2 θnþ1
3 θnþ1

4 θnþ1
5

aθn1 0.839 0.121 0.039 0 0
aθn2 0 0.787 0.142 0.070 0
aθn3 0 0 0.708 0.192 0.099
aθn4 0 0 0 0.578 0.421
aθn5 0 0 0 0 1

Table 2. Transition Probabilities and Costs of the Inspection Techniques

Inspection
technique SD (m=km) Pðr ¼ j − 2jθn ¼ jÞ Pðr ¼ j − 1jθn ¼ jÞ Pðr ¼ jjθn ¼ jÞ Pðr ¼ jþ 1jθn ¼ jÞ Pðr ¼ jþ 2jθn ¼ jÞ Cost (US$=m2)

i4 0.08 0 0.05 0.9 0.05 0 0.108
i3 0.16 0 0.1 0.8 0.1 0 0.054
i2 0.24 0 0.15 0.7 0.15 0 0.036
i1 0.32 0 0.2 0.6 0.2 0 0.027
i0 ∞ 0.2 0.2 0.2 0.2 0.2 0

Table 7. Mathematical Modeling of the Influence of the Parent Nodes on
the Belief State of the Structure

Variables
Possible
values Description Probability

X2 (annual
precipitations)

−1 <500 mm 0.3
0 500 ≪ 1,000 0.4
1 >1,000 0.3

X3 (traffic intensity) −1 <110 KESAL=year Pð−1jX5;X4)
0 110 ≪ 180 KESAL=year Pð0jX5;X4)
1 >180 KESAL=year Pð1jX5;X4)

X6 (durability related
variable: thickness of
the HMAC base)

0 >50 mm 0.6
1 <50 mm 0.4

Note: KESAL = kilo equivalent single axle load.
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locations as the road to which the pavement under study belongs).
If it is not possible to directly observe the value of X4, it can be
inferred by using conditional probability distributions on the ob-
served values of the variables X2 (weather conditions) and X5

(urban growth). The latter also has an effect on X3. Knowing the
state of a pavement with the same type (related to durability) as that
of the pavement under study allows inferences to be made about the
uncertain state of the latter. The results were computed by using
specialized graphical user interface (GUI) software for GPOMDP
that was developed by the authors. Table 8 presents the expected
costs obtained for the cases in which (1) a BN is used for modeling
the degradation; and (2) a transition matrix is used (which is calcu-
lated as the expected mean of the BN). The solution (i.e., optimal
expected costs and prescribed decisions) differs by 3.8%, depend-
ing on whether a BN or simply a transition matrix is used to model
the degradation process in the DP recursive relation.

The prescribed inspection type for the first time period, in the
case of using the BN, is i2, whereas it is i3 that has a smaller SD
(hence, it is costlier) for the case of using a transition matrix. This
result is because the BN will contribute to the decision process dur-
ing each time period by introducing relevant available information.
Thus, there less of a need for costly inspection techniques. The ex-
pected direct costs decrease sharply after the first period. This is
because the initial belief state of the pavement is very poor. Starting
from the second time period, a continuous gradual decrease is ob-
served, ending with a zero costs for the final period. This is because
the manager of the pavement is less concerned with potential future
costs. This result may change if a specified state at the end of
the planning horizon was imposed on the manager. A total of 100
simulations were performed to test the obtained prescribed IMR
strategy for the two cases: (1) using a simple transition matrix;
and (2) using a BN. The evolution of the state of the pavement
was generated randomly by using the two degradation models.
For the obtained belief state at the beginning of each time period,
the IMR strategy was implemented that was prescribed by the sol-
ution of the problem obtained by using the BN methodology and
the mean transition matrix methodology respectively. The results
obtained by using the IMR strategy of the BN had an average ex-
pected cost of US$11.78 per m3 and an SD of US$1.36 per m3.
The results obtained by using the mean transition matrix IMR strat-
egy had an average expected cost of US$12.32 per m3 and an SD of
US$2.12 per m3. These findings confirm the results obtained by
applying the proposed methodology. Also, the SD obtained by us-
ing the DBN methodology is smaller than that obtained by using
the classical transition matrix.

Discussion

The model presented in this paper can be considered to be a DBN
model that makes use of the efficient DP algorithm to solve the
optimization problem related to the actions and inspections to be
performed during each time period. As such, the solution procedure
has a computational complexity that is polynomial in the number
of decision nodes. However, it has been shown that POMDPs
are polynomial space (PSPACE) complete (Papadimitrious and
Tsitsiklis 1987). Hence, the computation time grows exponentially
in the current case with the number of possible states of the system.

Any available calculation methodology can be used for
POMDPs. However, in the numerical example of this paper, the
standard methodology was implemented of discretizing the con-
tinuous belief state space (for this particular numerical application,
there are 759,375 discrete states during each time period) recursive
DP was applied. The current approach implies calculating a belief
state for the next time period for each combination of the values
used by the nodes of the BN.

For the calculation of the BN, any of the available methodolo-
gies can be applied. In the numerical application, the standard mar-
ginalization methodology was applied (Pearl 1986). Thus, the extra
computational cost required by using a BN instead of a degradation
matrix is exponential for the number of nodes of the BN.

Nevertheless, the usual number of states adopted in practice for
civil engineering assets is below 10. For example, in the AASHTO
bridge inspection manual (AASHTO 2011), the number of states
of the bridge elements is limited to four. Additionally, the current
approach divides the original DBN into smaller BNs (one for each
time period). Therefore, the advantages in computation time obtain-
able by the proposed approach far outbalance the classical DBN
algorithms. The computation time for the numerical application
was approximately 50 s when using a degradation matrix and
2 min when using a BN.

The purpose of the method is to allow the manager to make use
of a more detailed deterioration model. The additional information
obtained by the manager is included via the parameters of the
model (i.e., the observable variables of the BN). In fact, for each
possible combination of the observed variables, there is a different
transition matrix. The proposed model allows the manager to know
which transition matrix is relevant during each time period; hence,
to benefit from the added value of information which contributes
in decreasing the expected cost.

Conclusion

This paper presented a methodology that takes advantage of the
structure of the input data used in modeling the stochastic degra-
dation process of a POMDP. It is assumed that this structure has a
BN form. This methodology allows one to account, at the begin-
ning of the planning, for the free information relevant to the state of
the system that might be available to the manager during future
time periods. The primary advantages of using this modeling are
described in the following. First, the variables related to the deci-
sion nodes (inspections and maintenance actions) of the DBN are
optimized by DP and decision trees. As such, the proposed ap-
proach has a smaller computational complexity (computation time)
than the classical approaches used to solve DBNs, because in these
approaches, the complexity is usually exponential in the number
of decision nodes. Second, it allows the user to rationally take
into account the effects of future possible accidental events such
as seismic activities or terrorist attacks. The usefulness is illustrated
of exploiting information regarding the realization of events that
do not have a causal relationship with the state of the system.

Table 8. Use of a BN versus the Use of a Transition Matrix for Modeling
the Degradation in the DP Recursive Relation

Year

Expected IMR costs
(US$): transition

matrix (one inspection
followed by a

maintenance action)

Expected IMR costs
(US$): BN (one

inspection
followed by a

maintenance action)

0 5.95 5.93
2 1.85 1.79
4 1.70 1.52
6 1.50 1.41
8 1.49 1.37
10 1.45 1.34
12 0 0
Recommended decision
for the first period

i3 i2

Total cost 12.11 11.66
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An example application showed that modeling the degradation
process as a BN results in an optimal solution that differs from
a solution obtained by using a mean transition matrix, which
was estimated by using the same data used for the BN.

Notation

The following symbols are used in this paper:
Aan = transition matrix from θn to aθn related to the action an;
an = action to be applied at the beginning of stage n;

�an = optimal action to be applied at the beginning of stage n;
cðνnÞ = expected cost at the beginning of stage n, associated with

the belief state νn;
�cðνnÞ = optimal expected cost at the beginning of stage n,

associated with the belief state νn;
M = Markov chain transition matrix;
α = discount factor;
θ = state of the system;
θn = state of the system at the beginning of stage n;

aθn = state of the system during stage n, after the application of
a maintenance action a;

νn = belief state of the system at the beginning of stage n; and
aνn = belief state of the system during stage n, after the

application of a maintenance action.

Supplemental Data

Tables S1–S4 and Figs. S1–S2 are available online in the ASCE
Library (www.ascelibrary.org)

References

AASHTO. (2011). Bridge element inspection manual, 1st Ed., Washington,
DC, 172.

Attoh-Okine, N. O., and Bowers, S. (2006). “A Bayesian belief net-
work model of bridge deterioration.” Proc. ICE—Bridge Eng.,
159(2), 69–76.

Bellman, R. (1961). Adaptive control processes: A guided tour, Princeton
University Press, Princeton, NJ.

Celeux, F., Corset, A., Lannoy, B., and Ricard, G. (2006). “Designing a
Bayesian network for preventive maintenance from expert opinions
in a rapid and reliable way.” Reliab. Eng. Syst. Saf., 91(7), 849–856.

Cooper, G. F. (1988). “A method for using belief networks as influence
diagrams.” 4th Workshop on Uncertainty in Artificial Intelligence,
Corvallis Press, Albany, OR, 55–63.

Cooper, G. F. (1990). “Probabilistic inference using Bayesian belief
networks.” Artif. Intell., 42(2–3), 393–405.

Cooper, G. F., and Herskovits, E. (1992). “A Bayesian method for the
induction of probabilistic networks from data.” Mach. Learn., 9(4),
309–347.

Corotis, R. B., Ellis, J. H., and Jiang, M. (2005). “Modeling of risk-based
inspection, maintenance and life-cycle cost with partially observable
Markov decision process.” Struct. Infrastruct. Eng., 1(1), 75–84.

Eckels, J. E. (1968). “Optimum maintenance with incomplete information.”
Oper. Res., 16(5), 1058–1067.

Faddoul, R., Raphael, W., and Chateauneuf, A. (2011). “A generalized
partially observable Markov decision process updated by decision
trees for maintenance optimization.” Struct. Infrastruct. Eng., 7(10),
783–798.

Faddoul, R., Raphael, W., Chateauneuf, A., and Soubra, A. (2009a).
“Optimal planning of inspection and maintenance by including episte-
mic uncertainties.” Proc., 1st Int. Conf. on Soft Computing Technology
in Civil, Structural and Environmental Engineering, Civil-Comp Press,
Stirlingshire, UK.

Faddoul, R., Raphael, W., Chateauneuf, A., and Soubra, A.-H. (2009b).
“Processus généralisé de décision markovien partiellement observable
utilisant les arbres de décisions.” Proc., 41st Journées de Statistique,
Société Française de statistiques (SFdS), Paris (in French).

Faddoul, R., Raphael, W., Chateauneuf, A., and Soubra, A. (2010).
“Processus de décisions markoviens parallèles soumis à des contraintes
budgétaires.” JFMS’10, Hermes Science Publishing Ltd, London, UK
(in French).

Faddoul, R., Soubra, A.-H., Raphael, W., and Chateauneuf, A. (2013).
“Extension of dynamic programming models for management optimi-
zation from single structure to multi-structures level.” Struct. Infra-
struct. Eng., 9(5), 432–447.

Federal Highway Administration. (1997). “Investigation of development
of pavement roughness.” Rep. No. FHWA-RD-97-147, Washington,
DC.

Federal Highway Administration. (2008). “2008 Status of the nation’s
highways, bridges, and transit: Conditions and performance.” Rep. to
Congress, Washington, DC.

Francois, O., Bouillaut, L., Aknin, P., Leray, P., and Dubois, S. (2008).
“Dynamic Bayesian network modeling maintenance strategies: Pre-
vention of broken rails.” World Congress on Railway Research
(WCRR’08), World Congress on Railway Research, Sydney.

Frangopol, D. M., Saydam, D., and Kim, S. (2012). “Maintenance,
management, life-cycle design and performance of structures and infra-
structures: A brief review.” Struct. Infrastruct. Eng., 8(1), 1–25.

Heckerman, D., Geiger, D., and Chickering, D. M. (1995). “Learning
Bayesian networks: The combination of knowledge and statistical
data.” Mach. Learn., 20(3), 197–243.

Hudson, W., Elkins, Cl., Uddin, W., and Reilly, K. (1987). “Improved
methods and equipment to conduct pavement distress surveys.” Final
Rep., FHWA-TS-87-213, FHWA, Washington, DC.

Jensen, F., Jensen, F. V., and Dittmer, S. L. (1994). “From influence dia-
grams to junction trees.” Proc., 10th Conf. on Uncertainty in Artificial
Intelligence, Morgan Kaufmann, San Francisco, CA, 367–373.

Jones, B., Jenkinson, I., Yang, Z., and Wang, J. (2010). “The use of
Bayesian network modeling for maintenance planning in a manufactur-
ing industry.” Reliab. Eng. Syst. Saf., 95(3), 267–277.

Langseth, H., and Portinale, L. (2007). “Bayesian networks in reliability.”
Reliab. Eng. Syst. Saf., 92(1), 92–108.

Madanat, S. (1993). “Optimal infrastructure management decisions under
uncertainty.” Transp. Res. Part C, 1(1), 71–80.

Madanat, S., and Ben-Akiva, M. (1994). “Optimal inspections and repair
policies for infrastructure facilities.” Transp. Sci., 28(1), 55–62.

Manoj, K. J. (2009). “Dynamic Bayesian network for predicting the like-
lihood of a terrorist attack at critical transportation infrastructure facili-
ties.” J. Infrastruct. Syst., 10.1061/(ASCE)1076-0342(2009)15:1(31),
31–39.

Monahan, G. E. (1982). “A survey of partially observable Markov deci-
sion processes; Theory, models, and algorithms.” Manage. Sci.,
28(1), 1–16.

Papadimitrious, C. H., and Tsitsiklis, J. N. (1987). “The complexity of
Markov decision processes.” Math. Oper. Res., 12(3), 441–450.

Pearl, J. (1986). “Fusion, propagation and structuring in belief networks.”
Artif. Intell., 29(3), 241–288.

Pearl, J., and Dechter, R. (1996). “Identifying independence in causal
graphs with feedback.” Proc., 12th Annual Conf. on Uncertainty in
Artificial Intelligence, Morgan and Kaufmann publishers, Burlington,
MA, 420–426.

Robelin, C. A., and Madanat, S. (2007). “History-dependent optimization
of bridge maintenance and replacement decisions using Markov deci-
sion processes.” J. Infrastruct. Syst., 10.1061/(ASCE)1076-0342(2007)
13:3(195), 195–201.

Sprites, P. (1995). “Directed cyclic graphical representations of feedback
models.” Proc., 11th Annual Conf. on Uncertainty in Artificial Intelli-
gence, Morgan and Kaufmann publishers, Burlington, MA, 491–498.

Sprites, P., Glymour, C., and Scheines, R. (1993). “Causation, prediction
and search.” Lecture Notes in Statistics, Vol. 81, Springer-Verlag,
Berlin.

9



Straub, D. (2009). “Stochastic modeling of deterioration processes through
DBN.” J. Eng. Mech., 10.1061/(ASCE)EM.1943-7889.0000024,
1089–1099.

Zhang, N. L. (1998). “Probabilistic inference in influence diagrams.”
Comput. Intell., 14(4), 475–497.

Zhang, N. L., Qi, R., and Poole, D. (1992). “Stepwise-decomposable in-
fluence diagrams.” Proc., 3rd Conf. on Knowledge Representation,
Cambridge, MA.

Zhang, N. L., Qi, R., and Poole, D. (1994). “A computational theory of
decision networks.” Int. J. Approximate Reasoning, 11(2), 83–158.

10




