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ABSTRACT 
 

The Collocation-based Stochastic Response Surface Methodology (CSRSM) 
is a powerful probabilistic method. It aims at replacing a complex deterministic 
model by a simple analytical expression (called meta-model) to reduce the time cost 
of the classical probabilistic methods. The meta-model is based on a Polynomial 
Chaos Expansion (PCE). The coefficients of the PCE are computed in this paper by 
regression from the response of the deterministic model at a limited number of 
collocation points. The conventional formalism of CSRSM requires performing a new 
set of deterministic computations each time the probabilistic parameters of the input 
random variables are slightly modified. An extension of CSRSM is therefore 
proposed in this paper. It allows the realization of a parametric study at a limited time 
cost without loss of accuracy. This is demonstrated by comparing the results obtained 
from the original CSRSM and its extension when performing a parametric study 
concerning the stability analysis of a pressurized tunnel face. 
 
INTRODUCTION 
 

As is well known, the most robust probabilistic approach is the Monte-Carlo 
simulation method. This method requires a large number of calls of the deterministic 
model especially for small values of the failure probability (e.g. about 1,000,000 
samples for a failure probability of 10-5).  

Although the deterministic numerical methods (such as those based on the 
Finite Element Method FEM or the Finite Difference Method FDM) are appealing, 
these methods are difficult to use in a probabilistic framework particularly when 
employing MC simulation method. This is because these methods need a very long 
computation time. In order to overcome the above shortcoming, the Collocation-
based Stochastic Response Surface Methodology (CSRSM) is applied herein. 
CSRSM makes possible the probabilistic study of a complex deterministic model by 
replacing it by an analytical expression (called meta-model) with a reduced time cost. 
This meta-model is expressed by a Polynomial Chaos Expansion (PCE). The 
coefficients of the PCE are determined in this paper by a regression approach using a 
limited number of calls of the deterministic model. The meta-model can then be used 
in the classical probabilistic methods such as the Monte Carlo simulation method. It 
should be mentioned that the conventional formalism of CSRSM requires performing 
a new set of deterministic computations each time the probabilistic parameters of the 
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input random variables are slightly modified. An extension of CSRSM is therefore 
proposed in this paper. It allows the realization of a parametric study at a limited time 
cost without loss of accuracy. As an illustrative application of CSRSM and its 
extension, one considers in this paper the probabilistic stability analysis of a 
pressurized tunnel face. The paper is organised as follows: A brief description of the 
deterministic model concerning the collapse pressure of a pressurized tunnel face is 
first presented. It is followed by the presentation of CSRSM and its extension. 
Finally, a verification of CSRSM (by comparison with the results of Monte Carlo 
simulation method) and a comparison between the results obtained from both 
CSRSM and its extension are presented and discussed. 
 
DETERMINISTIC MODEL 
 

The face stability analysis of a circular tunnel driven by a pressurized shield is 
of major interest. It requires the determination of a so-called “critical collapse 
pressure” of the tunnel face (denoted σc), i.e. the greatest one under which the tunnel 
face collapses. The deterministic model chosen in this study is analytical. It is based 
on the kinematical theorem of limit analysis. The collapse mechanism is translational. 
It is composed of five conical blocks (Fig. 1) with an opening angle equal to φ where 
φ is the soil friction angle.  
 

 
 

Figure 1. Five-block collapse mechanism 
 

This mechanism was extensively presented in Mollon et al. [2009]: it is able 
to provide a quite correct estimation of σc despite the fact that it does not intersect the 
entire circular tunnel face as was observed experimentally by Takano et al. (2006). 
The analytical five-block model was chosen in this study because its extremely small 
time cost (smaller than 0.1s) makes it very convenient for the verification of CSRSM. 
This verification is performed by comparison with Monte Carlo simulation method 
which requires a great number of calls of the deterministic model. In this study, the 
output random variable is the critical collapse pressure, and the two input random 
variables are the friction angle (φ) and the cohesion (c) of the soil. 
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BRIEF DESCRIPTION OF CSRSM 
 

In this section, the classical formalism of CSRSM (Isukapalli [1999], Sudret 
[2007], Phoon and Huang [2007] and Huang et al. [2009]) is presented in the case of 
two input random variables (φ and c). CSRSM aims at replacing the initial 
deterministic model by an approximate analytical expression (meta-model) when 
performing a probabilistic analysis. The meta-model is a Polynomial Chaos 
Expansion (PCE). For a PCE of order n, the meta-model is expressed in the basis of 
the multidimensional Hermite polynomials of order n≤ . For a given set of the 
probabilistic parameters of the input random variables (i.e. type of distribution and 
statistical moments of the random variables, and correlations between random 
variables); the unknown coefficients of the PCE are obtained in this paper by 
regression using the response of the deterministic model at a given number of 
collocation points. The different steps of CSRSM may be described as follows: 

The two random variables (i.e. φ and c) have first to be represented in the PCE 
by two standard variables ξ1 and ξ2, which are normal uncorrelated variables with 
zero mean and unit variance. For a PCE of order n, the available collocation points 
are classically determined as follows: each standard variable is assumed to take the 
values of the roots of the one-dimensional Hermite polynomial of order n+1, and the 
available collocation points result from the combinations of all these roots for the 
different random variables. It should be noted that this method of choosing the 
collocation points is not mandatory as will be seen later in this paper. For the present 
case of two input random variables, the output random variable may be expressed by 
a PCE as follows: 
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In this expression, the terms Γi are multidimensional Hermite polynomials 

(which constitute the basis of the PCE) and the terms ai are unknown coefficients to 
be determined. The number p of terms in this summation and the number M of the 
available collocation points are given by: 
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where nv is the number of random variables. It should be mentioned that when the 
number nv of the random variables is important, the number M of the available 
collocation points becomes much larger than the number p of the unknown 
coefficients. This leads to a linear system of equations where the number of equations 
is greater than the number of unknown. It is therefore necessary to make a judicious 
choice of the collocation points to be used in the regression process. Several methods 
exist (Isukapalli [1999], Sudret [2007]), but they are useless when using only two 
random variables as is the case in the present paper. Hence, all the available 
collocation points are considered in the analysis. To be introduced in the deterministic 
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model, the collocation points represented by vectors ( )mm ,2,1 ,ξξ  (with Mm ≤≤1 ) 
have to be expressed in the space of the physical variables corresponding to vectors 
( )mm c,ϕ , using the following expressions: 
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In these equations, H is the Cholesky transform of the correlation matrix of φ 

and c, Fφ is the cumulative density function (CDF) of φ, Fc is the CDF of c, and Φ is 
the normal cumulative density function with zero mean and unit variance. When the 
response of the deterministic model (i.e. the value of σc) is obtained for each 
collocation point, the values of the PCE coefficients are determined by regression 
using the following equation: 
 

t tN N a N f⋅ ⋅ = ⋅          (6) 
 
where a=column vector of the unknown coefficients, f=column vector of the 
deterministic responses, and N is a matrix given by: 
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Once the unknown coefficients are determined, one obtains an analytical 

equation (i.e. a meta-model) that can be used in place of the deterministic model to 
perform a probabilistic analysis using (for example) Monte Carlo simulation method. 

 
VERIFICATION OF CSRSM 
 

A set of probabilistic parameters is chosen as a reference case for the two 
input random variables φ and c as follows: the two variables are considered as normal 
uncorrelated variables with μφ=17° and COV(φ)=10%, μc=7 kPa and COV(c)=20%. 
Characteristics of a soft clay are chosen because this kind of soil is likely to allow 
face instabilities. For this reference case, the coefficients of the PCEs of orders 2 to 5 
are determined using the process described above. Fig. 2 shows the response surfaces 
(represented by lines of equal value of σc in a φ-c plane) as provided by the original 
deterministic model and by its approximations by the PCEs of orders 2 and 4. It 
clearly appears that both PCEs are able to provide a very good approximation of the 
original deterministic model in the central part (i.e. in the region of maximum 
probability of occurrence), but that the order 4 is much more accurate in the 
surrounding areas corresponding to zones with lower probabilities of occurrence. 
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A Monte-Carlo (MC) simulation with 106 samples is performed on the 
original deterministic model and on the PCEs of orders 2 to 5. This simulation is only 
made possible due to the very small time cost of the original deterministic model 
chosen in this paper, which allows a great number of samples. The results in terms of 
probability density function (PDF) and in terms of failure probability are shown in 
Figs. 3a and 3b respectively. It appears from Fig. 3a that the PDF obtained for the 
meta-models are in good agreement with the one of the original deterministic model, 
especially when the PCE order is larger than 2. Moreover, Fig. 3b shows that all the 
PCEs of order greater than 2 provide a good estimation of the failure probabilities at 
the distribution tail which is the zone of interest of the geotechnical engineer; the 
accuracy increases with the PCE order.  
 

 
 

Figure 2. Response surfaces of the critical collapse pressure (in kPa) as provided 
by the original deterministic model and by the PCEs of orders 2 and 4 

 

a.      b.  
 

Figure 3. Results of the Monte-Carlo Simulation; a. PDF of σc; b. Failure 
probability 

 
As a conclusion, the PCE of order 2 provides good results only in terms of 

trends, but the PCEs of orders 3, 4 and 5 provide very close probabilities to the ones 
of the original deterministic model. There is also a good agreement with FORM 
results obtained in a previous study (Mollon et al. [2009]). The PCE of order 4 seems 
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to be the best compromise between accuracy and computational cost, but the order 3 
may reasonably be used for computationally-expensive models. Notice finally that the 
number of collocation points used for the fourth order PCE is equal to 25, which 
means that 25 calls of the deterministic model were needed to obtain this PCE. 
 
EXTENSION OF CSRSM 
 

CSRSM is an efficient and accurate tool for the probabilistic study of a 
mechanical model, but it suffers from the fact that its conventional formalism implies 
a new set of deterministic computations each time one of the probabilistic parameters 
of the input variables (such as the COV or the correlation coefficient) is changed. 
This is due to equations (4) and (5) which state that the position of the collocation 
points in the physical space is dependant on the correlation matrix and the CDF of the 
input variables. The time cost of a parametric study (when using a computationally-
expensive model) is therefore very expensive, while such a study may be interesting 
because these parameters are usually not known with a great accuracy. This section 
presents an extension of CSRSM, which makes possible the use of existing 
deterministic results to carry on a parametric study with no additional time cost. This 
extension is based on the fact that the position of the collocation points described 
earlier is not mandatory and that it is possible to use other kinds of collocation 
schemes, without loss of accuracy of the meta-model. For example, Fig. 4a shows 
two response surfaces of σc in the physical φ-c plane. The first one corresponds to a 
PCE of order 4 used for the reference case described above, and the second one 
corresponds to a PCE of order 4 for a different probabilistic case (lognormal variables 
with μφ=17° and COV(φ)=8%, μc=7 kPa and COV(c)=25% and with a correlation 
coefficient ρφc=-0.3). Since the type of the probability distributions, the COVs and the 
correlation coefficient have been changed, the collocation points are different with 
respect to the reference case. However, the two response surfaces appear very similar 
on the entire range of the parameters. This illustrates the claim that there is no need 
for new calls of the deterministic model for a parametric study. When a first set of 
deterministic computations has been performed and a new set of probabilistic 
parameters is chosen, one may compute the positions of the collocation points in the 
standard space which would have led to the physical collocation points that were 
already computed. These positions ( )mm ,2,1 ,ξξ ′′  are obtained by the following 
equations: 
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This process provides a new set of collocation points ( )mm ,2,1 ,ξξ ′′  for which the 

corresponding deterministic results are already available. Equation (6) can therefore 
be applied to compute the coefficients of a new PCE, with no additional deterministic 
computation. A MC simulation with 106 samples is carried out for the new 
probabilistic properties described above, using the three following models: (i) the 
original deterministic model, (ii) the PCE of order 4 based on the conventional 
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CSRSM (which implies 25 new calls to the deterministic model), and (iii) the PCE of 
order 4 based on the proposed extension method (which uses only the existing 25 
deterministic results and do not require any new call to the deterministic model).  
 

a.      b.  
 

Figure 4. a. comparison between the response surfaces provided by two PCEs 
with different probabilistic parameters; b. Statistical moments of the 

conventional and proposed CSRSM (normalized to the ones of the original 
deterministic model) 

 

a.   b.  
 

Figure 5. Comparison of the classical and the proposed CSRSM with respect to 
the original deterministic model; a. PDF of σc; b. Failure probability 

 
Figs. 4b, 5a and 5b present a comparison between the three models, 

respectively in terms of the statistical moments of σc, in terms of the PDF of σc, and 
in terms of the probability of failure at the distribution tail. A very good agreement 
appears between the two meta-models. It clearly means that the proposed extension of 
CSRSM does not reduce the accuracy of the probabilistic results. Notice however that 
the proposed methodology is only relevant if the area covered by the new collocation 
points in the standard space is not too different from the one obtained using the 
original collocation scheme. From a practical point of view, it means that the changes 
made to the probabilistic parameters of the input variables should remain small during 
the parametric study. 
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CONCLUSION 
 

The Collocation-based Stochastic Response Surface Methodology (CSRSM) 
is presented and applied to an analytical deterministic model (devoted to the 
determination of the critical collapse pressure of a pressurized tunnel face). CSRSM 
is first verified by a comparison with the results obtained from the Monte-Carlo (MC) 
simulation method. In a second time, an extension of the CSRSM is proposed, 
allowing a parametric study for no additional call to the deterministic model. The 
proposed extension method is verified by a MC simulation approach. It shows that 
the proposed collocation scheme does not reduce the accuracy of the meta-model. 
However, the proposed methodology is only relevant if the area covered by the new 
collocation points in the standard space is not too different from the one obtained 
using the original collocation scheme. From a practical point of view, it means that 
the changes made to the probabilistic parameters of the input variables should remain 
small during the parametric study. 
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