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Abstract 

 

The analysis and design of offshore monopile foundations are generally undertaken 

using deterministic approaches. In this paper, a probabilistic analysis is performed 

taking into account the soil spatial variability. The aim is to compute the failure 

probability against exceeding a threshold value on the pile head displacement. The 

mechanical model employed for the computation of the monopile head displacement 

is based on 3D numerical simulations making use of Abaqus finite-element software. 

The soil is assumed to be an elastic perfectly plastic material obeying Tresca failure 

criterion. The soil undrained cohesion and Young modulus are considered as log-

normal random fields. 

 

As it is well known, numerical 3D deterministic models of offshore monopile 

foundations are computationally-expensive and thus they present a great obstacle to 

the use of the conventional Monte Carlo Simulation (MCS) methodology for the 

probabilistic analysis. Furthermore, the study of spatially varying soils with small 

values of the autocorrelation distances significantly increases the computational 

effort. To overcome this shortcoming, a reliable and efficient probabilistic model 

called Global Sensitivity Analysis enhanced Surrogate (GSAS) modeling is proposed. 

This model is based on kriging metamodeling. The essential issues in the classical 

kriging-based approaches such as the Active learning method combining Kriging and 

Monte Carlo Simulations MCS (named AK-MCS method)  are that both the choice of 

a ‘best new sample’ for the enrichment process and the stopping criterion concerning 

the addition of a new training sample are defined from the perspective of individual 

responses, which may lead to some extra evaluations of unnecessary added training 
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samples. In the proposed GSAS method, both the convergence criterion and the 

strategy of selecting new training samples are defined from the perspective of 

reliability estimate instead of individual responses of MCS samples. Probabilistic 

numerical results are then presented and discussed. 

 

 

Keywords: monopile, probabilistic analysis, Abaqus, failure probability, kriging. 

 

 

1. Introduction 
 

The analysis and design of offshore geotechnical structures are generally performed 

using deterministic approaches. With these approaches, mean values of the soil 

properties are used without rigorously taking into account the uncertainties of these 

parameters and without considering the spatial correlation structure of these 

properties. Also, mean values of the applied loads are considered in the analysis. The 

probabilistic approaches, on the contrary, allow one rigorously take into account the 

uncertainties of the soil properties and the spatial variability of these properties 

together with the uncertainties related to the applied loads. The outcomes of these 

approaches may be the statistical moments of the system response or the probability 

of failure against an acceptable threshold of this system response. 

 

For the probabilistic analyses of offshore geotechnical structures, several authors 

have considered the effect of the soil spatial variability on the statistical moments of 

the system response or on the failure probability against a prescribed value of this 

response. For instance, one may cite among others Li et al. (2016) and Li et al. (2017) 

for the bearing capacity of spudcan foundations, Charlton and Rouainia (2017) for the 

bearing capacity of skirted foundations and Vahdatirad et al. (2013) for the problem 

of a monopile foundation. In this paper, a probabilistic analysis of an offshore 

monopile foundation subjected to a combined loading was investigated. A soft clayey 

soil layer with spatially varying soil properties was considered in the analysis.  

 

As it is well known, the three-dimensional numerical deterministic models of offshore 

monopile foundations are very time consuming because they are based on finite 

element/finite difference methods. Furthermore, the probabilistic analysis of a very 

heterogeneous soil layer (i.e. a soil layer with small values of the autocorrelation 

distances) significantly increases the computation time as compared to the time 

required for a homogeneous soil layer due to the increase in the stochastic dimension 

of the treated problem (although the probabilistic analysis of a homogeneous soil 

layer is by itself computationally expensive).  

 

Because of the two mentioned issues related to the 3D mechanical modeling and the 

soil spatial variability, the conventional probabilistic method (i.e. Monte Carlo 

Simulation MCS methodology) is very expensive for the computation of the failure 

probability. It becomes unaffordable if an accurate value of the failure probability 

(i.e. with a small value of the coefficient of variation on this failure probability) is 

desired. Consequently, a more advanced probabilistic approach is needed.    
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Recently, several kriging-based metamodeling approaches (e.g. AK-MCS, AK-IS, 

etc.) have been developed [see Echard et al. (2011, 2013)] and were shown to be 

efficient with respect to the classical MCS methodology as one can obtain an accurate 

probability of failure needing a smaller number of calls to the mechanical model. 

Notice however that the essential issues in these approaches are (i) the choice of a 

best new training sample for the construction of the metamodel and (ii) the stopping 

criterion related to the addition of a new training sample. Indeed, these issues are 

defined from the perspective of individual responses. This may lead to some extra 

evaluations of unnecessary added training samples.  

 

In order to overcome this shortcoming, a Global Sensitivity Analysis enhanced 

Surrogate (GSAS) modeling was developed by Hu and Mahadevan (2016). Within 

GSAS, a powerful new stopping criterion was suggested and a new way of selecting a 

new training sample was proposed. In this regards, both the convergence criterion and 

the strategy of selecting new training samples are defined from the perspective of 

reliability estimate instead of individual responses of MCS samples. Indeed, the new 

training samples are identified according to their contribution to the uncertainty in the 

reliability estimate and the selection of new training samples stops when the accuracy 

of the reliability estimate reaches a specific target.  

 

It should be mentioned that Hu and Mahadevan (2016) have validated the proposed 

method based on several academic examples where the performance function was 

given by an analytical equation. The aim of this paper is to extend the GSAS 

approach proposed by Hu & Mahadevan (2016) to the case of random field problems 

in order to study geotechnical structures involving spatial variability of the soil 

properties. More specifically, this paper presents a probabilistic analysis at the 

Serviceability Limit State SLS of a large diameter monopile foundation in a spatially 

varying clay. The objective is the computation of the failure probability fP  of 

exceeding a threshold value on the pile head rotation due to a prescribed applied 

combined loading. Notice that the soil undrained cohesion was considered as a 

random field. The soil undrained Young’s Modulus was assumed to be linearly 

related to the soil undrained cohesion. Thus, it is implicitly assumed a random field 

having the same distribution of the soil cohesion. Only the soil spatial variability in 

the vertical direction was considered in this paper. The Expansion Optimal Linear 

Estimation method (EOLE) methodology proposed by Li and Der kiureghian (1993) 

was used to generate the random field. The mechanical model employed to calculate 

the system response (i.e. the pile head rotation) was based on numerical simulations 

using Abaqus finite-element software.  

 

This paper is organized as follows: The first section describes the soil-monopile 

mechanical model. This is followed by a brief description of the coupled mechanical 

probabilistic model based on GSAS approach and its application to the case of a large 

diameter monopile in a spatially varying clayey soil. Some numerical results are then 

presented and discussed. The paper ends by a conclusion of the main findings.    

 

 

 



Proceedings of the 54th ESReDA Seminar, April 25-26, 2018 

Université de Nantes, Nantes, France 

 4 

2 Mechanical model of the soil-monopile system 
 

A 3D finite element model of the soil-monopile system has been carried out using the 

commercial software Abaqus/Standard [ABAQUS (2016)]. Table (1) provides the 

geometrical and material properties of the monopile. An open-ended steel monopile 

of 3m diameter was considered in this study. The embedded length, L, was taken 

equal to 18 m. The pile was extended of 1.0 m above the seabed to prevent the soil 

from going over the pile (Kellezi and Hansen 2003). The wall thickness of the pile t  

was taken equal to 5 cm, thus respecting the minimum wall thickness required by the 

API (2000) and provided by the following equation: 

 

100

D
6.35t                                                     (1) 

 

Where  mmt  is the wall thickness of the monopile and  mm D  its outer diameter. 

The steel pile material was assumed to be linear elastic with Young’s modulus pE of 

210 GPa, Poisson’s ratio p  of 0.3 and a density of 7840 3kg/m . Concerning the type 

of soil used in the numerical modelling, an undrained clayey soil was considered in 

the analysis. It was assumed to follow the elastic-perfectly plastic Tresca constitutive 

model which is defined by the undrained cohesion uC , the undrained Young’s 

modulus ( uE ) and the Poisson’s ratio ( u ). In this paper, the soil was assumed to 

have a saturated unit weight of 18 3kN/m  and a Poisson ratio of 0.495. The statistical 

input data of the soil undrained cohesion and the soil undrained Young’s modulus 

will be given in the next section when dealing with the coupled mechanical 

probabilistic model.  

 

 

Table 1: Geometrical and material properties of the monopile. 

Outer diameter 

D (m) 

Embedded 

length L 

(m) 

Thickness t 

(m) 

Young 

modulus 

pE (GPA) 

Poisson ratio 

p  

Density 
3kg/m  

3.00 18.00 0.05 210 0.3 7840 

 

 

As it may be seen from Figure 1, an offshore monopile that is subjected to a vertical 

load V (representing the structure weight) together with a horizontal force acting at a 

height h (supposed equal to 38.6 m above the sea bed level) is considered in the 

analysis. The moment at mudline level is thus hHM  . In this paper, the vertical 

and horizontal loads are supposed to be equal to 2 MN and 0,55 MN respectively.   

 

Because of symmetry, only one half of the entire cylindrical soil domain is considered 

in the analysis. As may be seen from figure 1, the numerical model has a radius of 10 

D from the monopile center and a height equal to 1.6 L. It was verified that with these 

model dimensions, the behavior of the soil-monopile system was not influenced by 

the artificial boundary effects. Concerning the model boundary conditions, the bottom 
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of the soil model was fixed against translation in all directions whereas the lateral 

boundaries were fixed against lateral translation. Also, the symmetrical vertical plane 

was fixed against translation in the normal direction. The soil mesh was constructed 

using 8-noded linear brick elements (C3D8). Incompatible mode 8-noded linear brick 

elements (C3D8I) were used for the monopile in order to accurately simulate the 

flexural behavior of the pile. An illustration of the adopted mesh is shown in figure 1.  

 

 

Figure 1. Domain and mesh used in the numerical simulations of the soil-monopile system 

 

Surface-to-surface master/slave contact formulation was used to model the interaction 

between the monopile and the soil. Since the monopile is much stiffer than the soil, it 

was selected as the master surface while the soil in contact with the monopile was 

selected as the slave surface. In the normal direction, a linear pressure-overclosure 

relationship with default parameters was used in order to model the normal behavior. 

The frictional behavior was modelled using Coulomb friction law: the maximum 

shear stress at contact was equal to the contact stress multiplied by the friction 

coefficient   where   was taken equal to 0.24 in this paper. According to Jeong et 

al. (2004), Lemos and Vaughan (2000), and Tsubakihara and Kishida (1993), this 

coefficient was found to lie within the range [0.2 - 0.4]. When the shear stress reaches 

the maximum value, the surfaces slide relative to one another in the tangential 

direction.   

 

The finite element calculation was executed step-wised. A geostatic step was first 

performed for the generation of the initial stress state of the soil in the whole model 

consisting of soil elements only. This is done by defining the vertical total stress 

components and specifying the coefficient of earth pressure at rest 1K 0  , and then 

running the geostatic step in the presence of the gravity forces in order to reach a first 

equilibrium with negligible deformations. In a second step, the monopile was 

simulated by (i) removing the soil elements located at the pile position and generating 

the steel elements representing the monopile, (ii) activating the contact conditions 

between the monopile and the soil and (iii) applying the weight of the generated 

monopile. Finally, in a third step, the horizontal and vertical forces and the 

corresponding moment are applied in increments at a reference point (taken here as 

the center of the monopile at the pile head level) where the applied moment was equal 

to MN.m 20.681)-(hHM  . 
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For a deterministic calculation at the serviceability limit state using an undrained 

cohesion uC  of 50 kPa and an undrained Young’s modulus uE  of 10,000 kPa 

)C200 ( u , the obtained value of the monopile rotation at mud-line is equal to 

0.23 . This value is slightly lower than the limit rotation value )25.0( SLS   

imposed by the DNV (2014) at the Serviceability Limit State. 

 

3 Coupled mechanical probabilistic model 
 

Based on some investigations on the variability of seabed soils, Lacasse and Nadim 

(1996) found that the undrained cohesion of clay followed a normal or lognormal 

distribution with a coefficient of variation ranging between 5% and 35%. According 

to Li et al. (2016), the scale of fluctuation of offshore soils ranges between 7 m and 

9000 m in horizontal direction. In vertical direction, the scale of fluctuation is much 

smaller, ranging between 0.4 m and 7.14 m. As a result, the horizontal variability of 

the soil was not taken into account in this work for simplicity. It will be investigated 

in a future work. 

 

The uncertain soil parameters considered in this paper may be described as follows: 

the undrained soil cohesion uC  of the clay was modeled by a lognormal random 

field. A reference configuration with a mean value of kPa 50 , a coefficient of 

variation of 10% and a vertical autocorrelation distance of 2 m was considered in the 

analysis. Notice however that several other values of the vertical autocorrelation 

distance were also investigated in this paper in order to examine the effect of the soil 

vertical variability on the value of the failure probability. The undrained Young’s 

modulus uE  was assumed to be linearly related to uC  such that uc CK uE  (where 

cK  was taken equal to 200 in this work). This means that the soil undrained Young 

modulus was also considered to follow a log-normal random field distribution. Notice 

finally that cK  is a correlation factor that is dependent on the clay plasticity index 

and the over-consolidation ratio OCR [cf. USACE (1990)]. 

  

The coupled mechanical probabilistic model used to perform the probabilistic 

analysis may be described by the following steps: 

 

1. The random fields realizations were first generated using EOLE method [see Li 

and Der kiureghian (1993)]. It should be noted that a square exponential 

autocorrelation function was used in the analysis. In one dimension, this 

autocorrelation function is given by the following equation: 

 
2

exp
z

z

a


  
   
   

                                           (2) 

 

where az is the autocorrelation distance in the vertical direction. 

2. After the random fields generation, material random properties values were 

saved as solution-dependent state variables (SDV) and transmitted to the 

integration points of the soil elements by a User defined material subroutine 



Risk, Reliability and Safety of Energy Systems  

in Coastal and Marine Environments 

 7 

UMAT written in Fortran [see Clausen et al. (2007) for more details]. This 

subroutine was used to define an elastic-perfectly plastic Mohr-Coulomb 

constitutive model for the soil behaviour since it was not possible to spatially 

vary the soil strength parameters using the Abaqus built-in Mohr-Coulomb 

constitutive model. A typical realization of the soil Young modulus random 

field is shown in Figure 2 (notice that SDV2 in Figure 2 represents the soil 

Young’s modulus). 

3. After each mechanical calculation using Abaqus, the post-processing of the 

mechanical model response was performed using the Abaqus2Matlab toolbox 

[see Papazafeiropoulos et al. (2017)]. This toolbox is a suitable piece of 

software which is able to connect Abaqus with Matlab. Using this toolbox, the 

pile nodes displacement values at the mud-line level were read in Matlab and 

then used to compute the rotation value obtained from each realization.  

4. Finally, the response is stored in Matlab and used by the probabilistic GSAS 

method. 

 

 

 

Figure 2. Typical realization of the soil Young modulus 

 

 

The general procedure of the GSAS method (which may be considered as an 

improvement of AK-MCS) as adapted to the case of random fields problems can be 

summarized as follows: 

 

 Generation by Monte Carlo simulation of 
( ) ( 1, 2,..., )i

MCSx i N  samples. In this 

work, MCSN  was taken equal to 500,000. Each sample ( )ix consists of M 

standard Gaussian random variables where M is the number of random 

variables needed by EOLE methodology to accurately discretize the cohesion 

random field. This number will be given later in this paper [see Table 4].  

 Random selection of a small design of experiments DoE from the generated 

population (a DoE of 15 samples was used in this work). Then, use EOLE 

methodology to transform each sample into realizations of uC (and uE ) that 

provide the spatial distribution of the soil undrained cohesion (and Young 
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modulus). For each selected sample, the performance function G is evaluated 

using the following equation:  

 

    1


 SLSG                                               (3) 

 

where  25.0SLS  is the limit rotation value at the Serviceability Limit State 

[see DNV (2014)] and   is the pile rotation at mudline computed based on the 

Abaqus model. 

 Based on the DoE and the corresponding performance function evaluations, an 

approximate kriging meta-model is constructed in the standard space of random 

variables using the DACE toolbox [Lophaven et al. (2002)].  

 For each Monte Carlo sample ( )ix , the random response predicted by the 

approximate kriging surrogate model is a Gaussian variate as follows: 

          ( ) ( ) 2 ( ),
p

i i i

p GG x N g x x  

where  ( )ig x  and  2 ( )

p

i

G x  are the mean prediction and the corresponding 

mean square error (kriging variance) respectively. The kriging predictions 

values  ( )ig x (mean values) and their corresponding kriging variance 

 2 ( )

p

i

G x  values are determined for the whole MCS samples using the DACE 

toolbox. Then the failure probability fP  is estimated using equation (4) after 

replacing the meta-model random responses  ( )i

pG x  by the mean prediction 

values  ( )ig x . 

 

  ( )

1

/
MCSN

i
f p MCS

i

P I G x N


                                    (4) 

 

In this equation,   ( ) 1i

pI G x   if  ( ) 0i

pG x  , otherwise,   ( ) 0i

pI G x   

where 
( ) ( 1, 2,..., )i

MCSx i N  are the sampling points from MCS. Thus, fP  is 

estimated by counting the number of negative mean predictors and dividing it 

by the total number of MCS samples. The corresponding coefficient of 

variation  fCOV P  is given by the following equation: 

 

  1 f
f

f MCS

P
COV P

P N





                                      (5) 

 

 It should be emphasized here that the value of the failure probability computed 

at this stage is far from being accurate because of the small DoE used so far. An 

enrichment process is thus needed. Within AK-MCS approach, the best next 

candidate sample adopted during the enrichment process is selected as the one 

that is the most close to the limit state surface. This sample could be considered 
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as the one that mostly reduces the uncertainty in fP  if the sample responses 

 ( )i

pG x  predicted from the surrogate model were completely independent. 

Notice however that these sample responses are correlated normal variables 

according to the property of the kriging model. The GSAS approach allows one 

to overcome this shortcoming. The basic idea of this approach is to treat the 

probability of failure estimate fP  as a random variate representing the output 

of the system presented in Figure 3 where the system inputs are the random 

responses  ( )i

pG x  predicted by the kriging meta-model. In other words, the 

uncertainty in the input random variates  ( )i

pG x  is propagated through the 

system given by equation (4) and thus, the uncertainty in the failure probability 

estimate can be quantified. 

 

 

 

Figure 3. Probability of failure estimate as a system response 

 

 

For an efficient enrichment of the kriging meta-model within GSAS, the new 

training sample is selected based on its contribution to the uncertainty of the 

quantity of interest (i.e. fP ). It should reduce the uncertainty in fP  in the most 

significant way. This is done via a global sensitivity analysis method extended 

to the case of models with dependent inputs. The extended FAST method 

developed by Xu and Gertner (2007) was used in this paper. The enrichment 

process within GSAS approach can be briefly described as follows:  

The MCS samples are firstly classified into two groups according to their U 

values where U is a learning function usually employed in the kriging-based 

approaches. It is given by the following equation:  

 

 
 

 

( )

( )

( )

p

i

i

i

G

g x
U x

x
                                                  (6) 

 

Notice that a large value of U indicates a low probability of making an error on 

the sign of  g x . For   2U x  , the probability of making a mistake on the 

sign of the performance function value is less than 0.023 [Echard et al. (2011)]. 

Based on that, the MCS samples 
( ) ( 1, 2,..., )i

MCSx i N  are divided into two 

groups: The group 1

MCS

gx  with U  values larger than 2 and the group 2

MCS

gx  with 
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the remaining samples in MCSx . The global sensitivity analysis is then 

performed on the 2

MCS

gx  group samples to determine their contributions to the 

uncertainty of fP  since we assume that the uncertainty of fP  comes from this 

group of samples. It should be noted that in order to reduce the dimensionality 

of the problem, only a reduced number cann  of samples (taken equal to 20 in 

this work) of the 2

MCS

gx  group with the lowest U  values are selected to perform 

the global sensitivity analysis since they have high probability of having wrong 

performance function signs (i.e. high probability of being the new selected 

training sample).   

 A powerful stopping criterion based on the quantification of the uncertainty in 

the failure probability was suggested within GSAS approach. Although a 

prescribed maximal value of the uncertainty on the failure probability would be 

a quite relevant stopping condition (because it makes sure that the uncertainty 

in fP  is sufficiently small), Hu and Mahadevan (2016) suggest stopping the 

addition of new samples based on the uncertainty of the error on the failure 

probability r . The error on the failure probability is a measure of the error 

between the theoretical and the computed values of the failure probability. It is 

defined by the following equation: 

 
'

f f

r

f

P P

P



                                                      (7) 

 

where fP  is the theoretical failure probability given by equation (4) and 
'

fP  is 

the estimate value of the failure probability that can be directly computed based 

on the kriging meta-model mean prediction values  ( )ig x . 

It should be noted here that fP  is not a unique scalar value that can be 

computed [because 
( )( )i

pG x  in equation 4 is a Gaussian variate], but a random 

variate for which one can quantify the corresponding uncertainty. The 

uncertainty in r  as given by equation (7) was thus quantified herein based on 

the uncertainty quantification of fP . The sampling based method was used: 

This method consists in generating rn  samples ( 600rn   in this work) of 

2N correlated normal variables  2 2( ) , 1, 2,...,MCS

p gG x i i N  for each sample 

where 2N  is the number of samples in the 2

MCS

gx  group. From these samples, 

one can compute rn  samples of the failure probability fP  and other rn  

corresponding samples of the error r . From the ( ), 1, 2,...,r ri i n   samples, the 

Kernel Smoothing function is employed to fit the distribution of the error r . 

Based on the fitted distribution, Hu and Mahadevan (2016) have suggested 

stopping the addition of new samples when the quantity 
max

r  becomes smaller 
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than a prescribed threshold a (where a is taken equal to 0.1% in this paper) 

where max

r is defined as follows: 

 

    max 1 1max 0.99 , 0.01
r rr F F                                      (8) 

 

In this equation, 
1

r
F


 is the inverse CDF of r . The proposed stopping 

condition corresponds to a probability that, the actual estimation error on fP  is 

larger than 0.1%, is equal to 0.02. For more information on this criterion, the 

reader may refer to Hu and Mahadevan (2016).   

Notice finally that the value of max

r  was checked every time the surrogate 

model was updated except for the case where the number 2N  was too large 

(>8000 samples). The reason is related to the fact that the error computation 

cost is very expensive in this case. Furthermore, this cost would be with no 

interest since the uncertainty on the failure probability estimate is obviously 

significant. 

 

4 Numerical results 
 

4.1 Probabilistic numerical results 

 

The probabilistic numerical results are presented in this section for the reference case 

presented above where the vertical autocorrelation distance was taken equal to 2m.  

 

 

Figure 4. Failure probability vs the number of added samples 

 

Figure (4) presents the evolution of fP  with the number of added samples (as given 

by GSAS) until reaching the stopping criterion 
max 0.1%r  . As may be seen from 

this figure, the stopping condition was reached for only 44 added samples. For this 
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number of samples, a failure probability of 33.41 10  and a corresponding 

coefficient of variation of 2.42%  were obtained. 

  

 

Table 2: Comparison of GSAS and AK-MCS results. 

Method 
3

( 10 )fP


   % fCOV P  Added samples 

GSAS 3.41 2.42 44 

AK-MCS 3.41 2.42 440 

 

 

In order to check the efficiency of GSAS with respect to the classical AK-MCS 

approach, a probabilistic computation has been performed on the same problem 

treated in this section but using AK-MCS. Figure (4) presents the failure probability 

(as obtained by AK-MCS) versus the number of added samples until reaching the 

classical stopping criterion used in AK-MCS (i.e. U>2). As may be seen from Figure 

(4) and Table (2), GSAS is a powerful approach since it provides quasi-similar values 

of the failure probability and the coefficient of variation on this failure probability as 

AK-MCS making use of a much reduced number of calls to the mechanical model. 

  

Table 3 shows (as was prescribed by the stopping condition) that the error 
max

r becomes smaller than 0.1% for the optimal number of samples suggested by 

GSAS (44 added samples in this example). This error was not computed before 

reaching 41 samples (thus reducing the computation time) because of the high values 

of the uncertainty in fP for these cases 2( 8000)N   as mentioned above.  

 

 

Table 3: 
max

r
 vs the number of added samples 

Number of Added samples 
max (%)
r

  

41 0.23 

42 0.18 

43 0.21 

44 0.08 

 

 

Figure 5 presents the evolution of the distribution of r  with the number of added 

samples. This figure shows that (i) the variability of r  decreases with the number of 

added samples, the corresponding standard deviation value becomes very small with a 

value of 42.03 10  when reaching the optimal number of added samples (i.e. 44 

samples) and (ii) the final mean value of the error converges to zero. These two 

observations provide a quite good indication on the convergence of the estimated 

failure probability to its theoretical value. 
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Figure 6 presents the evolution of the distribution of fP with the number of added 

samples. As in Figure 5, one can observe a decrease in the variability of this 

distribution with the increase in the number of added samples. A very small standard 

deviation value of 76.94 10  was obtained when reaching the optimal number of 

added samples.  

 

The obtained results confirm that the stopping criterion on the error not only makes 

sure that a small uncertainty on the error was reached but it also leads to a small 

uncertainty on the computed failure probability.  

 

 

 

Figure 5. Evolution of the fitted distribution of 
r

  with the added points 

 

Figure 6. Evolution of the fitted distribution of fP  with the added points 

 

 

The kriging meta-model was expressed in this paper in the standard space of random 

variables. The computation of the Hasofer-Lind reliability index and the 

corresponding design point is thus quite straightforward. A minimization of the 
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reliability index subjected to the constraint that the performance function is equal to 

zero was performed. 

 

Figure 7 presents the critical realization of the soil Young modulus corresponding to 

the obtained design point. This figure exhibits some symmetry in the soil Young 

modulus about the pivot point of the monopile indicated by a red circle in Figure 8.  

 

Figure 7. Critical realization of the soil Young modulus 

  

 

 
 

Figure 8. Distribution of the lateral displacement along the pile depth 

 

 

A close examination of the obtained Young modulus distribution allows one to 

observe that a weaker soil appears for the depths corresponding to higher horizontal 

monopile displacements. It should be noted that an increase in the value of the Young 

modulus was observed below the base of the monopile. This is to be expected since 

the soil mass under the base has no influence on the monopile horizontal 

displacements. 
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4.2 Parametric study 

 

In this section, a parametric study was undertaken. The aim is to investigate the effect 

of the vertical autocorrelation distance on the failure probability at SLS.  

 

Table 4 provides the number of random variables adopted within EOLE methodology 

and the corresponding value of the variance of the error for different values of the 

vertical autocorrelation distance. As may be seen from this table, a small value of the 

variance of the error (smaller than 5%) was adopted for all the configurations treated 

in this paper. This means that a sufficiently accurate random field discretization was 

adopted in the analysis. 

 

Table 4: Adopted number of random variables and the corresponding value of the variance of error of 

EOLE together with the values of  fP ,  fCOV P and  number of added realizations for various soil 

variabilities. 

Correlation 

length (m) 

Adopted number 

of random 

variables 

Variance of 

the error % 
3( 10 )fP    % fCOV P  

Added 

samples 

2 16 3.77 3.41 2.42 44 

3 11 3.22 10.4 1.37 32 

5 7 3.22 26.9 0.84 34 

12 3 4.57 69.9 0.51 3 

18 3 0.84 91.8 0.44 1 

30 2 1.27 107.5 0.40 1 

50 2 0.19 114.6 0.39 1 

100 1 1.79 117.5 0.38 1 

10000 1 3
1.65 10


  120.6 0.38 1 

 

 

Figure 9. Evolution of fP  with the vertical autocorrelation distance 

 

 

Table 4 and Figure 9 show that the failure probability increases with the increase in 

the vertical autocorrelation disrtance. The increase is significant for the small values 
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of the autocorrelation length (as compared to the embedded length of the monopile). 

Beyond the value of 18 m (length of the monopile), the increase in the failure 

probability becomes less significant. For the large values of the vertical 

autocorrelation length, the failure probality attains an asymptote corresponding to the 

case of a homogeneous soil.    

 

5 Conclusions  
 

A probabilistic analysis was performed at the Serviceability Limit State SLS for a 

large diameter monopile foundation in a spatially varying clay. The soil undrained 

cohesion was considered as a random field following a Lognormal distribution and 

the soil undrained Young’s Modulus was assumed to be linearly related to the soil 

undrained cohesion. EOLE method was used for the generation of realizations of the 

random field. 

 

The Global Sensitivity Analysis enhanced Surrogate (GSAS) modeling proposed by 

Hu & Mahadevan (2016) was extended in this work to the case of random field and 

used to perform the reliability analysis. The method has shown high efficiency as 

compared to AK-MCS since it has led to quasi similar values of the failure 

probability and coefficient of variation making use of a much reduced number of calls 

to the mechanical model.  

 

The critical realization of the soil Young modulus exhibited some symmetry about the 

pivot point of the monopile. Weaker soil was observed for the depths corresponding 

to higher horizontal monopile displacements.  

 

A parametric study has shown that the failure probability increases with the increase 

in the vertical autocorrelation disrtance. This increase was shown significant for a 

ratio of monopile embedded length to the vertical correlation length bigger than 1 

( / 1zL a  ) and tend to be negligible for the large values of the vertical 

autocorrelation length (as compared to the embedded length of the monopile). 
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