
Contents lists available at ScienceDirect 

Structural Safety 

journal homepage: www.elsevier.com/locate/strusafe 

Improved active learning probabilistic approach for the computation of 
failure probability 
Abdul-Kader El Haj⁎, Abdul-Hamid Soubra⁎ 

University of Nantes, Bd. de l’Université, 44603 Saint-Nazaire Cedex, France  

A R T I C L E  I N F O   

Keywords: 
Failure probability 
Kriging metamodeling 
Gaussian process 
Uncertainty 

A B S T R A C T   

This paper presents a cost-effective probabilistic approach to be used in engineering applications. The proposed 
approach consists of an improved Kriging-based method aiming at reducing to a minimum the number of 
evaluations of the true performance function when computing a failure probability. It is a kind of variant of the 
classical Active learning method combining Kriging and Monte Carlo Simulation (AK-MCS) developed by Echard 
et al. (2011) [1], where some improvements are introduced to enhance the learning process. Some illustrative 
and practical examples are presented and discussed. The proposed approach has shown a great efficiency as 
compared to the classical AK-MCS approach.   

1. Introduction 

The conventional method for the assessment of failure probability of 
an engineering system is the crude Monte Carlo Simulation (MCS). This 
method is considered as a reference tool when performing a probabil-
istic analysis due to its accuracy and ease of implementation. The es-
timation of the failure probability by MCS methodology requires the 
evaluation of the performance function for the whole Monte Carlo po-
pulation. This might be an easy task when the performance function is 
expressed by an analytical equation for which the computational cost is 
negligible, but it becomes a great impediment when computationally- 
expensive computer codes such as finite element/finite difference 
models are used. Therefore, it is desirable to develop alternative more 
efficient probabilistic approaches to determine the failure probability 
estimate with a minimum number of calls to the computationally-ex-
pensive computer code. 

FORM and SORM approximate methods [2] may be very efficient 
for the computation of the failure probability due to the fact that only a 
relatively small number of model evaluations is needed to find the Most 
Probable Failure Point (MPFP). Notice however that the use of these 
methods may not be acceptable in many practical problems involving a 
high stochastic dimension or a nonlinear limit state surface. 

Metamodeling techniques are often used in the literature in the 
domains of design optimization and reliability analysis because of the 
significant number of simulations that are required within these do-
mains. The metamodeling techniques aim at approximating the model 
response by a surrogate model (called also metamodel). Various types 

of metamodeling techniques can be found in the literature such as the 
Response Surface Methodology (RSM) [3–5], the Polynomial Chaos 
Expansion (PCE) and its extension the Sparse Polynomial Chaos Ex-
pansion (SPCE) [6–13], the Artificial Neural Networks (ANN) [14], the 
Support Vector Machine (SVM) [15–18] and the Kriging method  
[19–23]. Notice that each type of metamodel is characterized by its 
own underlying assumptions and that the approximation of the model 
responses depends on the type of the selected surrogate model [24]. 

In the past few decades, interesting probabilistic approaches based 
on metamodeling techniques and aiming at alleviating the computa-
tional cost of the simulation methods (i.e. the crude MCS and the var-
iance reduction techniques as Importance Sampling IS and Subset 
Simulation SS) have gained a lot of interest. The principle of these 
approaches may be summarized in two main steps: (i) substituting the 
system model which may consist in a costly-to-evaluate finite element/ 
finite difference model with a cheap-to-evaluate surrogate model that 
should be sufficiently accurate and (ii) performing the probabilistic 
analysis (i.e. computing the failure probability) using one of the si-
mulation methods on the basis of the obtained time-efficient surrogate 
model. These approaches may be defined as adaptive approaches [24]. 
This means that an initial set of few points (called initial Design of 
experiments DoE) is firstly selected to be computed by the true per-
formance function and to be used as input for the construction of a 
preliminary surrogate model and secondly, the constructed surrogate 
model is iteratively updated (by updating the DOE with additional 
training points) via an active learning process until sufficient accuracy 
is achieved. In this regards, various advanced probabilistic approaches 
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combining a metamodeling technique with a simulation method have 
been reported in the literature. For instance, [25] proposed a method 
combining subset simulation and support vector machines, [26] sug-
gested a combination between subset simulation and Kriging, and  
[1,27] combined Kriging metamodeling with Monte Carlo and Im-
portance Sampling leading to what is called AK-MCS and AK-IS ap-
proaches respectively. All these methods take advantage of both the 
metamodeling and the simulation techniques. They aim at efficiently 
computing a small failure probability based on the constructed meta-
model making use of a reduced number of calls to the true performance 
function. 

Among the different metamodeling techniques, the Kriging meta-
modeling has gained attention in the domain of reliability analysis since 
it presents several interesting features compared to the other types of 
metamodeling. Kriging is an exact interpolation method that provides 
(thanks to its stochastic property) not only the predicted value at a 
certain point, but also the estimation of the local variance of this pre-
diction that defines the local uncertainty on the prediction. It was 
shown to be a relevant tool for the efficient assessment of failure 
probability due to its flexibility and adaptation to a wide range of 
model responses. 

Within the Kriging-based probabilistic methods, the AK-MCS ap-
proach by [1], which is an Active learning method that combines Kri-
ging metamodeling and Monte Carlo Simulation, has gained popularity 
in the literature. This method involves the construction of an approx-
imate Kriging metamodel on the basis of the responses of a small DoE 
computed using the system model. This approximate Kriging meta-
model is then successively updated via an enrichment process making 
use of a learning function that takes benefits from the Kriging char-
acteristics. Once the stopping criterion indicates that the Kriging me-
tamodel is sufficiently improved, MCS methodology is applied on the 
obtained Kriging surrogate model instead of the system model in order 
to estimate the probability of failure. 

In AK-MCS method, the training point chosen for the enrichment 
process is selected as the one having the highest probability of being 
misclassified among all the candidate points. Notice however that the 
chosen point does not reduce most efficiently the variance of Pf because 
one does not take into account the correlations between the points 
predictions as will be shown later in this paper. Moreover, the enrich-
ment in AK-MCS approach stops when satisfying a criterion that ensures 
an appropriate classification (safe/failure) of the whole MC population 
points. Such a stopping criterion is not very relevant because it is not 
based on the failure probability estimate. A variant of AK-MCS ap-
proach is proposed in this paper. It is called herein AK-MCSd where d 
stands for dependent Kriging predictions. Within this approach, one 
takes benefits of the dependencies between the Kriging predictions. 
This is done by using the complete Gaussian process output of the 
Kriging metamodel as was suggested by [28]. In other words, not only 
the mean predictions and the corresponding prediction variances are to 
be considered, but also the correlations between the Kriging predictions 
at all candidate points shall be taken into account in the enrichment 
process. Concerning the stopping criterion of AK-MCSd approach, a 
relevant stopping criterion that is based on the measure of the gap 
between the estimated value of the failure probability and the ex-
pectation of this failure probability (that takes into account the un-
certainty of the Kriging predictions) is suggested. This criterion allows 
one to focus on the accuracy of the reliability estimate (i.e. the failure 
probability) instead of focusing on an appropriate classification of the 
whole MC population points as suggested in AK-MCS approach. This 
may provide more efficiency to the proposed AK-MCSd approach by 
avoiding excessive computations of unnecessary extra training points 
responses. 

This paper is organized as follows: The next two sections present an 
overview on the AK-based methods available in literature and the 
Kriging metamodeling theory used in the present probabilistic ap-
proach. This is followed by a brief description of the classical Kriging- 

based AK-MCS approach. Then, the proposed AK-MCSd probabilistic 
approach is presented in some detail. Finally, the proposed approach is 
applied to some illustrative and practical problems. 

2. Overview on the AK-based methods 

Although AK-MCS method has shown great efficiency in many 
cases, it nevertheless has several weaknesses. One may cite (i) the large 
population that is required when estimating very small values of the 
failure probability, (ii) the low efficiency of the method when dealing 
with system reliability problems, (iii) the point-by-point enrichment 
process that is used for learning, (iv) the type of the adopted learning 
function used for the selection of the training points and (v) the stop-
ping condition for learning that is often agreed to be too conservative. 

To solve the large population problem, [27,29] replaced the original 
population with the population generated by IS and SS respectively. An 
extension of the method by [27] was proposed by [30] to deal with 
problems involving multiple failure regions. Xu et al. [31] proposed a 
new approach called AK-MSS that combines AK-MCS and the modified 
subset simulation. This approach replaces the large population with a 
population that consists of conditional samples that are generated by 
the MSS. Moreover, Lelièvre et al. [32] made use of a sequential MCS 
technique to estimate the small failure probabilities. Other adaptive 
methods based on Kriging have been developed for system reliability 
problems by [33–35]. In order to overcome the point-by-point enrich-
ment process that is used for learning in AK-MCS, [32] proposed a 
multi-point enrichment process based on an improved clustering tech-
nique. 

Concerning the use of learning functions for the selection of training 
points, the expected feasibility function (EFF) proposed by [23] and the 
U function developed by [1,27] select points near the limit state surface 
of the Kriging model. Yang et al. [36] suggested identifying the new 
training point by selecting the point having the maximum value of the 
expected risk function (ERF). This corresponds to the point for which 
the sign of the response has the largest risk to be wrongly predicted. Lv 
et al. [37] proposed the use of the information entropy function H 
where the new training point is selected such that it has the maximal 
value of H. Indeed, the prediction is more certain when the information 
entropy is lower. Sun et al. [38] developed the least improvement 
function (LIF) which quantifies how much the accuracy of the failure 
probability estimate will be improved when a new point is added to the 
DoE. Finally, Zhang et al. [39] proposed a novel active learning func-
tion called Reliability-based expected improvement function (REIF). 

Concerning the stopping criterion for learning, many authors rea-
lized that the U-criterion adopted by AK-MCS may be too conservative 
for engineering applications. [35] stated that the accuracy of the Kri-
ging model may be considered as acceptable if fewer than 2% of the 
points violate the stopping criterion defined in AK-MCS. Gaspar et al.  
[40,41] proposed an additional convergence criterion to the one pro-
posed in AK-MCS that exploits the stabilization of the failure probability 
estimate during the active learning process in order to provide a com-
promise between the accuracy of the Kriging metamodel and the 
computation cost. Wang et al. [42] defined a cumulative confidence 
level CCL measure of the Kriging model to quantify the accuracy of the 
reliability estimate and considered the metamodel as acceptable when 
its CCL is above a given confidence target. Schöbi et al. [43] defined a 
limit state margin characterized by upper and lower boundaries of the 
limit state surface that takes into account the prediction uncertainty in 
the Kriging metamodel. These authors stated that when these bound-
aries become close to each other, a thin limit state margin is obtained 
and thus, the estimated failure probability can be considered as accu-
rate. Finally, Jian et al. [44] defined two accuracy measures that de-
termine how well the Kriging metamodel and the estimate of failure 
probability are. As mentioned by these authors, the two measures may 
be used to construct a stopping criterion within a reliability analysis. 

Other improvement within the AK-based methods was proposed by 
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Gaspar et al. [41] and Cheng and Lu [45]. [41] proposed an adaptive 
surrogate model with active refinement combining Kriging and a trust 
region method. [45] developed a new adaptive approach for reliability 
analysis via an ensemble learning of multiple competitive surrogate 
models, including Kriging, polynomial chaos expansion and support 
vector regression. The developed approach consists in fitting the per-
formance function with multiple different surrogate models to get a 
more robust approximation of this function through a weighted average 
strategy. 

3. Kriging metamodeling theory 

The Kriging metamodeling assumes that the performance function 
xG ( ) (where x is a n-dimensional vector, n being the number of random 

variables) is a realization of a Gaussian process G x( ) that is composed 
of a deterministic trend xF ( , ) and a centered stochastic process xZ ( ). 
It can be described by the following equation [19]: 

G = +x x xF Z( ) ( , ) ( ) (1) 

where the deterministic part xF ( , ) corresponds to a regression model 
that can be written as follows: 

=x f xF ( , ) ( )T (2)  

In this equation, =f x x x xf f f( ) [ ( ), ( ), , ( )]T
p1 2 is a vector of re-

gression functions and = [ , , , ]T
p1 2 is a vector of regression 

coefficients. The stochastic process xZ ( ) represents the fluctuations 
around the mean trend xF ( , ). It interpolates the gaps between the 
regression model and the true performance function values at the dif-
ferent N points of the DoE. It is defined by a stationary Gaussian process 
with zero mean and covariance given as follows: 

=x x x xRcov( , ) ( , )z
2 (3) 

where z
2 is the process variance and R is the correlation function be-

tween two arbitrary points x and x ’ of the DoE. This function is defined 
by its corresponding set of correlation parameters , where is a vector 
of dimension n. Several models exist to define the correlation function, 
the most commonly used being the anisotropic square-exponential 
function (or the anisotropic Gaussian function) given as follows: 

=
=

x xR e( , )
k

n
x x

1

( ( ) )k k k
2

(4) 

where xk and x’k are the kth coordinates of the points x and x’ and θk is a 
scalar which is equal to the inverse of the correlation length in the kth

direction. There are different types of Kriging: (i) Simple Kriging that 
assumes a known constant trend, (ii) Ordinary Kriging that assumes an 
unknown constant trend and (iii) Universal Kriging that assumes a 
general polynomial trend model. In this paper, ordinary Kriging is used 
and thus, xF ( , ) is replaced by a scalar to be determined. Notice that 
all the following equations are based on ordinary Kriging assumption. 

In order to predict the value of the performance function xG ( ) at an 
unknown point x , the Best Linear Unbiased Predictor BLUP xG ( )p of 
G x( ) is shown to be a Gaussian random variate characterized by a mean 
prediction value µ xG ( )p and a corresponding prediction variance xG ( )

2
p

as follows: 

= + r x R G Fµ ( ) ( )x
T

G ( )
1

p (5)  

= +
r x R r x

F R r x F R F
F R r x

1 ( ) ( )
[ ( ) 1] ( )

[ ( ) 1]
xG z

T

T T T

T
( )

2 2

1

1 1 1

1
p

(6) 

where =G x x xG G G[ ( ), ( ), , ( )]N T1 2 is a vector of exact responses at 
the training points (i.e. the points of the DoE), 

=r x x x x x x xR R R( ) [ ( , ), ( , ), , ( , )]N T1 2 is a correlation vector con-
taining the correlation between the point x and each of the N training 
points, = =R x xR i j N[ ( , )]( , 1, 2, , )i j( ) ( ) is a correlation matrix 

containing the values of the correlation function for all possible com-
binations of the N training points and F is a vector of length N filled 
with 1. Notice also that the prediction responses at two given points x
and x ' are correlated random variates having the following covariance: 

= +x x
x x r x R r x

F R r x F R F
F R r x

R
covar( , )

( , ) ( ) ( )
[1 ( )] ( )

[1 ( )]
z

T

T T T

T

2

1

1 1 1

1 (7)  

According to [46], the scalar β and the process variance z
2 may be 

estimated by: 

= F R F F R G( )T T1 1 1 (8)  

= G F R G F
N

^ ( ) ( )
z

T2 1

(9)  

Both and z
2 depend on the set of correlation parameters through 

the matrix R. These parameters can be obtained by solving an opti-
mization problem making use of the maximum likelihood estimation 
MLE method. 

Notice that the construction of a Kriging metamodel (i.e. the de-
termination of the set of correlation parameters , the scalar and the 
process variance z

2) and the computation of Kriging predictions at 
unknown points (i.e. at points outside the DoE) can be easily performed 
using DACE (Design and Analysis of Computer Experiments) toolbox in 
Matlab. For more details, the reader may refer to [47]. Notice here that 
the variances of the training points (i.e. the points of the DoE) used for 
the construction of the metamodel are zero, i.e. the corresponding 
predictions are exact. However, the variances of the other points (i.e. 
the points outside the DoE) are always different from zero and they are 
as large as the corresponding predictions are not accurate. The pre-
diction variance was used by [1] as a key parameter for the learning of 
the Kriging metamodel when performing a Kriging-based probabilistic 
analysis. 

4. Active learning method combining Kriging and Monte Carlo 
Simulation (AK-MCS) 

The Active learning method combining Kriging and Monte Carlo 
Simulation (named AK-MCS method) was developed by [1]. It involves 
the two main stages:   

Construction of a preliminary Kriging metamodel  
1. Generation of a large Monte Carlo population S in the design 

space. This population is composed of NMCS points 
=x i N( 1, ..., )i

MCS
( ) .  

2. An initial small DoE is randomly selected among the population 
S. These points are evaluated on the real performance function 
and are used to construct a preliminary Kriging metamodel.   

Enrichment process  
1. The Kriging predictions µ xG ( )p and their corresponding Kriging 

predictions variances xG ( )
2

p are computed for the whole popula-
tion S according to Eqs. (5) and (6). The probability of failure is 
then estimated as follows: 

=
=

xP
N

I G
N

N
1 ( ( ))f
MCS i

N

p
i

µ

MCS1

( )
0xMCS Gp ( )

(10) 

where xG ( )p
i( ) in this equation is the metamodel random response at the 

point x i( ), NMCS is the number of MCS points (taken here equal to ×5 105

points) and I is the indicator function such that =xI G( ( )) 1p
i( ) if 

xG ( ) 0p
i( ) ; otherwise, =xI G( ( )) 0p

i( ) . Notice that the failure prob-
ability Pf in Eq. (10) is computed by replacing the metamodel random 
responses =xG i N( ), 1, 2, ,p

i
MCS

( ) by the mean prediction values 
µ xG ( )ip ( ) of the Kriging metamodel. In other words, it is obtained as the 
ratio of the points in the population S with a negative or null Kriging 
prediction and the total number of points in S. 
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2. The best next point in S is identified to be evaluated on the real 
performance function: This is performed by evaluating a learning 
function xU ( )i( ) for each point in the population S where xU ( )i( ) is 
given by: 

= =xU
µ

i N( )
| |

1, ,x

x

i G

G
MCS

( ) ( )

( )

i

i

p

p

( )

( ) (11)  

The best next point x* is chosen as the one with the minimum value 
of U . This corresponds to the point having the maximal probability of 
having a wrong performance function sign.  

3. The learning stops if the minimum value of U is greater than 2. This 
corresponds to a probability of a wrong sign of the performance 
function that is lower than 0.0228 (see [1]). If not, the best point x* 
is evaluated on the true performance function and the DoE is up-
dated with this additional point. Then, a new Kriging metamodel is 
constructed on the basis of the updated DoE and the method goes 
back to the first step of the enrichment process. This process of 
learning is repeated until the stopping condition is satisfied.  

4. The coefficient of variation of the failure probability estimate is 
calculated based on the following equation using the final Kriging 
metamodel: 

=COV P
P

P N
( )

1
.f

f

f MCS (12)  

5. Proposed probabilistic approach 

The proposed AK-MCSd probabilistic approach aims at improving 
the performance of AK-MCS approach. It consists of an active learning 
method combining Kriging and MCS and making use of the Kriging 
predictions dependencies. In the proposed approach, the failure prob-
ability estimate Pf given by Eq. (10) is considered as a random variable 
because it is a function of Kriging predicted responses xG ( )p

i( ) that are 
random variates according to the property of the Kriging metamo-
deling. [28] proposed two formulas for the mean (or expectation) and 
the variance of the estimated failure probability that involve not only 
the mean predictions and the corresponding predictions variances, but 
also the dependencies (i.e. the correlations) between the Kriging pre-
dictions. The expectation of the failure probability estimate is given by 
the following formula: 

=
=

E P
N

e( ) 1
f

MCS i

N

i
1

MCS

(13) 

where the term ei is given as follows: 

=e
µ x

x
i

G

G

( )

( )

i

i

p

p

( )

( ) (14)  

In this formula, stands for the cumulative density function CDF of 
the standard Gaussian distribution. Thus, ei may be defined as the CDF 
of the Normal distribution N µ( , )x xG G( ) ( )i ip p( ) ( ) at 0 where µ xG ( )ip ( ) and 

xG ( )
2

p i( ) are respectively the mean prediction and prediction variance at 

the point x i( ) . 
The variance of the failure probability estimate (which represents 

the error of the failure probability estimate) is given as follows: 

=
=

Var P
N

c( ) 1
f

MCS i

N

i2
1

MCS

(15) 

where ci is the contribution of the point x i( ) ( =i N1, 2, , MCS) in the 
variance of the failure probability estimate. It is given as follows [28]: 

= +
=

c e e e e e(1 ) ( )i i i
j j i

N

ij i j
1,

MCS

(16)  

Equation (16) can be presented as the summation of two parts: The 
first part e e(1 )i i represents the individual contribution of each point 
(independently from the other points) in the uncertainty of the failure 
probability. The second part = e e e( )j j i

N
ij i j1,

MCS represents the con-
tribution of the mutual effects between points to the uncertainty of the 
failure probability, where eij is the joint CDF of the bivariate Normal 
distribution µN ( , )ij ij2 at (0, 0). The term µij in this distribution is a 
vector containing the mean predictions values µ xG ( )p i( ) and µ xG ( )p j( ) of 
the two points x i( ) and x j( ) respectively and the term ij is the covar-
iance matrix given as follows: 

=
x x

x x

covar

covar

( , )

( , )
x

x

ij
G

i j

j i
G

( )
2 ( ) ( )

( ) ( )
( )

2
p i

p j

( )

( ) (17) 

where xcovar ( i( ), =x xcovar) (j j( ) ( ), x )i( ) is the covariance between the 
predictions at the two points x i( ) and x j( ). Its expression is given by Eq.  
(7). 

A simple way of learning may consist in choosing among the MCS 
population the point having the highest contribution ci in Var P( )f and 
stopping the enrichment when Var P( )f becomes smaller than a certain 
prescribed threshold. Notice however that the computation of ci [and 
thus Var P( )f ] is cumbersome because the total number of calculations 
of the bivariate probabilities eij ( =i N1, 2, , MCS; =j N1, 2, , MCS) 
corresponding to the whole population involving NMCS points is very 
high and thus it requires a large computation time. In order to address 
this issue, [28] proposed the construction of a subdomain of candidate 
points where the computation of ci and Var P( )f will be based on only 
this subdomain. In their approach, [28] established a relationship be-
tween Var P( )f and E P( )f computed on the basis of the subdomain and 
those computed on the basis of the whole MC population. 

To accurately determine Var P( )f and E P( )f based on the subdomain, 
the constructed subdomain has to include all the points in the failure 
region (G  <  0) in order to deal with high values of the failure prob-
ability and thus small values of the error on this failure probability. The 
remaining points of the subdomain are chosen such that they have the 
highest individual contributions e e(1 )i i (first term of Eq. (16)) in the 
uncertainty of the failure probability among the safe (G  >  0) MC 
population points. 

It should be emphasized that the subdomain proposed by [28] 
considers a large amount of points in the failure domain. These points 
may not be necessarily close to the LSS and thus, they will not effi-
ciently contribute to the improvement of the LSS. A more efficient 
candidate pool is proposed in this paper where a quite simple candidate 
selection procedure was adopted. This procedure aims at considering a 
maximal number of candidate points in the vicinity of the limit state 
surface. In addition, a new stopping criterion based on the quantity of 
interest (i.e. failure probability) without resorting to Var P( )f is pro-
posed. 

5.1. Steps of construction of the Kriging metamodel 

Two stages are necessary for the construction of the Kriging meta-
model in the present AK-MCSd probabilistic approach. The first stage 
which involves the construction of an approximate preliminary Kriging 
metamodel based on a small DoE remains similar to that presented in 
the AK-MCS procedure described above. It will not be repeated in this 
section. The second stage related to the enrichment process may be 
described as follows: 

The basic idea of the learning process (or enrichment process) 
within AK-MCSd approach consists in identifying the point having the 
biggest contribution to the uncertainty in the estimated failure prob-
ability. The uncertainty in the estimated failure probability may be 
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computed by using the formula of the variance of Pf provided by Eq.  
(15). The identified point is added to the DoE in order to reduce the 
uncertainty of Pf in the most efficient manner. The step-by-step pro-
cedure of the enrichment process may be summarized as follows:  

1. Compute for the whole Monte Carlo population (i.e. for all the NMCS
points) only the individual contributions to the variance of Pf (i.e. 
the first part of Eq. (16)) and choose among the whole population 
only ncan points (ncan is taken equal to 20 herein) having the highest 
individual contributions e e(1 )i i .  

2. Compute for the selected ncan points the whole formula (Eq. (16)) 
including both the individual and the mutual contributions. It 
should be noted that the first step (related to the use of only the first 
part of Eq. (16)) was adopted in the analysis because the total 
number of calculations of the bivariate probabilities eij
( =i N1, 2, , MCS; =j N1, 2, , MCS) corresponding to the whole 
population involving NMCS points is equal to +N N( 1) 2MCS MCS . A 
such number of computations requires a large computation time. 
Hence, in order to avoid computing bivariate probabilities eij for the 
whole points of the population and thus reducing the corresponding 
computation time, a reduced number ncan of points (instead of NMCS
points) was adopted for the computation of the mutual contribu-
tions. 

3. Select among the ncan points, the point having the highest con-
tribution ci to the uncertainty in the failure probability. Then, 
compute the response of the selected point by the system model.  

4. Add the selected point and the corresponding computed response to 
the DoE and update the Kriging metamodel.  

5. Repeat steps 1–4 until reaching the stopping condition described in 
the following section. 

5.2. Stopping condition 

The enrichment process of the Kriging metamodel ends when sa-
tisfying a stopping condition. A new stopping criterion is proposed in 
this paper. It is based on the measure of the gap between the ex-
pectation of the failure probability E P( )f given by Eq. (13) and the 
estimated value of the failure probability Pf given by Eq. (10). It may be 
expressed by the following percentage error: 

= ×
P E P

P
| ( )|

100%r
f f

f (18)  

It should be noted that the indicator function I that appears in Eq.  
(10) presents some uncertainty due to the uncertainty in the predicted 
random responses xG ( )p

i( ) . This uncertainty is not considered in Eq.  
(10); however, it is taken into account through Eq. (13). 

In order to better understand the proposed stopping condition, let us 
consider the case of a point that has an “exact” predicted response and 
a corresponding standard deviation equal to zero (i.e. a point that does 
not present any uncertainty in the corresponding predicted response 
and thus in the indicator function I ). This corresponds to a typical point 
of the DoE. In such case, the value of ei will be equal to: 
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Thus, for the case where all points have exact responses [which will 
be equivalent to the case of application of the crude MCS approach 
using the system model (not the metamodel) responses], ei will be equal 
to xI G( ( ))p

i( ) for all points =x i N1, 2, ,i
MCS

( ) where xG ( )p
i( ) are 

herein the exact values of the performance function. For that particular 
case, Eq. (13) will be identical to Eq. (10). Notice however that the 
predicted responses of points that are outside the DoE are never com-
pletely exact. Indeed, these points present some errors corresponding to 
the standard deviation values xG ( )ip ( ) that are different from zero. The 
more the standard deviation is smaller (i.e. the predicted response is 

more accurate), the more the value of ei will be closer to 0 (respectively 
to 1) if >µ 0xG ( )ip ( ) (respectively <µ 0xG ( )ip ( ) ). 

The convergence of the estimated failure probability Pf was thus 
considered to be achieved when Eqs. (10) and (13) lead to sufficiently 
close values, i.e. when the error r (given by Eq. (18)) becomes smaller 
than a prescribed threshold. A threshold value of = 1%r was adopted 
in this work. Compared to the U-criterion adopted within AK-MCS, the 
present stopping criterion allows one to focus on the accuracy of the 
reliability estimate (i.e. the failure probability) instead of focusing on 
the well classification of each point of the MC population. 

6. Application examples 

In this section, the performance of the proposed AK-MCSd prob-
abilistic approach is firstly checked through two illustrative examples. 
Secondly, a comparative study with the work of Zhu and Du [28] was 
performed via a third application example. Finally, a practical geo-
technical problem involving the study of a monopile foundation em-
bedded in a spatially varying clayey soil was presented and discussed. 

6.1. Example of a non-linear performance function with two random 
variables 

This example involves a non-linear analytical equation of the per-
formance function as follows: 

= × ×G u u u0.4 ( ) 0.4 ( 5) 101 2
2

2
3 (20) 

where u1 and u2 are two standard normal random variables. Firstly, only 
the enrichment process (i.e. the training points selection) of the pro-
posed method was investigated. The same stopping condition used in 
AK-MCS method (i.e. the U -criterion) was adopted. The effect of the 
stopping condition will be presented in a subsequent section. Finally, 
the evolution of the LSS during the different iterations of the enrich-
ment process is presented and discussed. 

6.1.1. Effect of the training points selection 
After the generation of a Monte-Carlo population of 500, 000 points 

(where each point consists of two standard Gaussian random variables 
herein), an initial DoE of seven points was randomly selected from the 
generated points (cf. Fig. 4). This small DoE was found sufficient to 
construct a preliminary Kriging metamodel for the present performance 
function as may be shown from Fig. 4. 

Fig. 1 presents a comparison between the enrichment strategy of the 
AK-MCS method and that of the AK-MCSd approach. One can observe 

Fig. 1. Comparison between the enrichment strategies of AK-MCS and AK- 
MCSd. 
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that the enrichment strategy of AK-MCSd method is more efficient than 
that of AK-MCS since it leads to a quasi-similar value of the failure 
probability with a reduced number of added points (9 added points in 
AK-MCSd instead of 12 added points in AK-MCS). This may be explained 
by the fact that AK-MCSd enrichment strategy, which considers the 
dependency between the candidate points, leads to better selected 
points for training. 

6.1.2. Effect of the stopping condition 
The effect of the proposed stopping criterion was investigated in this 

section. 
Fig. 2 presents the evolution of the failure probability estimate Pf

[as given by Eq. (10)] and its expectation E P( )f [as given by Eq. (13)] 
with the number of added points, and Fig. 3 presents the evolution of 
the corresponding error r as defined in Eq. (18). 

One can notice that (i) the values of Pf and E P( )f become closer to 
each other (cf. Fig. 2) and (ii) the corresponding error r decreases (cf.  
Fig. 3), as the number of added points increases. From Figs. 2 and 3, one 
may observe that when using the proposed stopping criterion (and by 
adopting a threshold value on the error of 1%), only 5 added points were 
required during the enrichment process to attain the convergence of the 

failure probability. Notice however that by adopting the U -criterion of 
AK-MCS approach, 9 added points were required for which an ex-
tremely low value of the error ( = 0.0007%r ) was attained. 

As a conclusion, the adopted AK-MCSd approach was found to be 
very efficient with respect to AK-MCS approach since it leads to quasi 
similar values of Pf ( = ×P 9.72 10f

3 in AK-MCSd and = ×P 9.69 10f
3

in AK-MCS) using a much reduced number of added points (5 added 
points in AK-MCSd instead of 12 added points in AK-MCS). It should be 
noted that a very close value of = ×P 9.802 10f

3 (with a corresponding 
coefficient of variation of 1.42%) was obtained when using the crude 
MCS methodology based on 500, 000 simulations. 

6.1.3. Evolution of the limit state surface with the number of added points 
Fig. 4 presents the evolution of the LSS with the number of added 

points. In this figure, the points corresponding to the initial DoE are 
presented in green filled circles; the five added points being presented 
in blue circles. The LSS of the preliminary constructed metamodel based 
on the initial DoE is presented in dotted black line. The LSS is also 
presented at three different iterations of the enrichment process (initial 
DoE + 1 added point, initial DoE + 3 added points and initial DoE + 5
added points). Notice finally that the true LSS (i.e. that corresponding 
to the true performance function G) is presented in continuous red line 
on the same figure. As may be seen from this figure, the LSS of the 
preliminary Kriging metamodel is very different from the LSS of the 
true performance function. This LSS progressively improves with the 
number of added points. At the end of the enrichment process, the LSS 
corresponding to the obtained metamodel (in continuous black) is very 
well matched with that of the true performance function (in continuous 
red), especially in the zone where the probability density is not negli-
gible. 

6.2. Example of a series system involving four limit state functions 

This example involves a series system having four limit state func-
tions. It is given by the following equation: 

=

+ × ±

+

+

+

G min

u u

u u

u u

3 0.1 ( )

( )

( )

u u
1 2

2 ( )
2

1 2
7
2

2 1
7
2

1 2

(21) 

where u1 and u2 are two standard normal random variables. After the 
generation of a large population of 500, 000 points (where each point 
consists of two standard Gaussian random variables), an initial DoE of 

Fig. 2. Evolution of Pf and E P( )f with the number of added points.  

Fig. 3. Evolution of the error on the failure probability with the number of 
added points. 

Fig. 4. Evolution of the limit state surface with the number of added points.  
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20 points randomly selected from the generated population was found 
necessary to construct a preliminary Kriging metamodel for the present 
complex multi-branch LSS. 

Fig. 5 presents the evolution of the failure probability estimate Pf
and its expectation E P( )f with the number of added points, and Fig. 6 
presents the evolution of the corresponding error r as given by Eq. (18). 
One can notice that (i) the values of Pf and E P( )f become closer to each 
other (cf. Fig. 5) and (ii) the corresponding error r decreases (cf.  
Fig. 6), as the number of added points increases. The error attains a 
value of <0.18%( 1%) for a number of added points equal to 96. 

6.2.1. Comparison with AK-MCS results 
Fig. 7 presents the evolution of the failure probability estimate with 

the number of added points as given by AK-MCS and AK-MCSd ap-
proaches. One can observe that AK-MCSd method is more efficient than 
AK-MCS since it leads to a quasi-similar value of the failure probability 
( = ×P 2.24 10f

3 using AK-MCSd and = ×P 2.23 10f
3 using AK-MCS) 

with a reduced number of added points (96 added points in AK-MCSd 
instead of 182 added points in AK-MCS). It should be noted that a very 
close value of = ×P 2.22 10f

3 (with a corresponding coefficient of 
variation of 2.99%) was obtained when using the crude MCS based on 
500, 000 simulations. 6.2.2. Evolution of the limit state surface with the number of added points 

Fig. 8 aims at presenting the evolution of the LSS with the number of 
added points. The points corresponding to the initial DoE and those 
corresponding to the added points are presented in this figure in red 
crosses and in blue crosses respectively. The LSS of the preliminary 
constructed metamodel (based on the initial DoE) and the true LSS (i.e. 
that corresponding to the true performance function) are plotted on the 
same figure. Fig. 8 also shows the LSSs of the metamodel corresponding 
to four different iterations of the enrichment process [i.e. initial 
DoE+ 10 added points, initial DoE+ 50 added points, initial DoE+ 90
added points and initial DoE+ 96 added points]. 

As may be seen from Fig. 8, the LSS of the preliminary Kriging 
metamodel is extremely different from that of the true performance 
function. Notice however that this LSS progressively improves with the 
number of added points. At the end of the enrichment process (i.e. for 
96 added points), the LSS corresponding to the obtained metamodel (in 
continuous black) is well matched with that of the true performance 
function (in continuous red), especially in the zones where the prob-
ability density is not negligible (i.e. in the zones that are the most close 
to the origin of the standard coordinate system). The proposed method 
is thus shown to be very efficient even when dealing with complex limit 
state surfaces. 

It should be noted that AK-MCSd approach is an efficient approach 

Fig. 5. Evolution of Pf and E P( )f with the number of added points.  

Fig. 6. Evolution of the error on the failure probability with the number of 
added points. 

Fig. 7. Comparison between AK-MCS and AK-MCSd approaches.  

Fig. 8. Evolution of the limit state surface with the number of added points.  
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since it can detect the convergence of the failure probability from its 
early beginning. Indeed, Fig. 9 presents a comparison between the LSS 
obtained one enrichment step before the proposed stopping criterion is 
satisfied (i.e. for 95 added points) and that of the true performance 
function plotted in red on the same figure. One can notice that at this 
stage, the LSS is clearly not well matched with the true LSS. Fig. 10 
presents a comparison between the LSS of the obtained metamodel after 
satistfying the proposed stopping criterion (i.e. for 96 added points) 
with that of the true performance function. 

One can observe that the LSS of the metamodel is well but not 
perfectly matched with that of the true performance function. Indeed, 
by continuing the enrichment process until attaining the U -criterion 
(i.e. for 155 added points in this example), the metamodel continues to 
be improved as is shown in Fig. 11. However, the obtained LSS by AK- 
MCSd approach (i.e. for 96 added points) is considered to be sufficient 
to accurately determine the failure probability; the newly added points 
(i.e. =155 96 59 points) being unnecessary training points. 

Table 1 presents the value of the failure probability estimate Pf and 
the corresponding value of COV P( )f together with value of the error r
as obtained from AK-MCSd using different stopping criteria (cf. the first 

three lines of this table). This table also provides the values of Pf and 
COV P( )f as obtained using AK-MCS approach and the crude MCS (cf. 
the last two lines of this table). The number of added points together 
with the error on Pf with respect to the value provided by the crude 
MCS methodology are also given in this table (cf. the last two columns 
of this table). 

From Table 1, one can see that for 95 added points (corresponding to 
one enrichment step before satisfying the r -stopping criterion), the 
value of the failure probability is not yet well predicted by the Kriging 
metamodel (with an error of 14.66% with respect to Pf value obtained by 
the crude MCS). However, after satisfying the proposed stopping cri-
terion (i.e. for 96 added points), the value of the failure probability 
becomes well predicted by the metamodel (with an error of 0.99% with 
respect to Pf value obtained by the crude MCS). The reason why the 
value of Pf corresponding to 96 added points (i.e. when the stopping 
criterion is satisfied) is a bit far from that corresponding to 95 added 
points (i.e. one step before) [cf. Fig. 5 and table 1] may be explained by 
the evolution of the LSS of the constructed metamodel. This LSS has 
undergone a non-negligible improvement in the zone of interest for the 
computation of the failure probability when the number of added points 
increases from 95 to 96 as may be shown from Figs. 9 and 10. Indeed, 
this improvement in the form of the LSS has influenced the classifica-
tion of several MC points (safe/failure) and has led to a relatively sig-
nificant change in the value of Pf . This phenomenon was observed 
herein because of the complex multi-branch limit state surface con-
sidered in this example and it may explain the reason why the con-
vergence of Pf to the “true” value is not very smooth until the end of the 
enrichment process. 

From Table 1, it can also be seen that a further improvement in the 
metamodel beyond 96 added points (by adding new training points 
until reaching the U -criterion, i.e. for 155 added points) leads to a quasi- 
similar value of the failure probability as the case of 96 added points, 
thus proving the convergence of Pf beyond this number of added points. 
The additional improvement of the metamodel is thus shown to be 
unnecessary as the cost of the extra evaluations induced by the newly 
added training points is with no benefit in terms of the improvement in 
the value of the failure probability. The preceeding observations con-
firm the accuracy of AK-MCSd approach with the corresponding stop-
ping condition adopted in this paper. 

6.3. Example of a roof truss structure 

This example application consists of a roof truss structure problem 

Fig. 9. Comparison between the LSS obtained one enrichment step before sa-
tisfying the proposed stopping criterion (i.e. for 95 added points) and that of the 
true performance function. 

Fig. 10. Comparison between the LSS of the obtained metamodel (i.e. for 96 
added points) and that of the true performance function. 

Fig. 11. Comparison between the LSS obtained by adopting the U-criterion (i.e. 
for 155 added points) and that of the true performance function. 

A.-K. El Haj and A.-H. Soubra   Structural Safety 88 (2021) 102011

8



(cf. Fig. 12) where the performance function involves six random 
variables. This problem was solved by Zhu and Du [28] in order to 
check the efficiency of their approach. The main purpose herein is to 
show the improvement provided by the proposed AK-MCSd approach 
with respect to the approach proposed by these authors [28]. 

Assume that the truss bars bear a uniformly distributed load q that 
can be transformed into nodal load =P ql 4. The perpendicular de-
flection of the truss peak node C is computed by the following equation: 

= +C ql
A E A E2
3.81 1.13

c c s s

2

(22) 

where Ac and As are respectively the cross-sectional areas of the re-
inforced concrete and steel bars, Ec and Es are their corresponding 
elastic modulus, and l is the length of the truss. A failure event occurs 
when the perpendicular deflection C exceeds 3 cm. The performance 
function is given as follows: 

= +G ql
A E A E

0.03
2

3.81 1.13
c c s s

2

(23) 

where (q, l, As, Ac, Es, Ec) are normal independent variables. The cor-
responding distribution parameters are given in Table 2. 

Twenty runs of the proposed AK-MCSd approach were performed 

for this example in order to be compatible with the work by Zhu and Du  
[28]. For each run, an initial DoE of 12 points was adopted. Figs. 13 and 
14 present respectively the evolution of the failure probability estimate 
and the error on this failure probability with the number of added 
points for the 20 runs. One can observe from Fig. 14 the decreasing 
trend of the error for each run until reaching a value smaller than 1%, 
thus indicating the convergence of the failure probability estimate. 

Table 3 shows the average results from 20 runs. From this table, one 
can observe that the proposed AK-MCSd approach provides an accurate 
value of the failure probability (averaged over 20 runs) making use of a 
much reduced number of calls to the true performance function as 

Table 1 
Pf , COV P( )f and r as obtained from AK-MCSd methodology using different stopping criteria, together with the values of Pf and COV P( )f as obtained using AK-MCS 
and the crude MCS approaches.        

Method ×P 10f 3 COV P( )f (%) (%)r (Eq. (18)) Number of added points Error with respect to MCS (%)

AK-MCSd (one step before satisfying r criterion)  1.898 3.243 1.41 95 14.66
AK-MCSd + r criterion  2.246 2.980 0.18 96 0.99
AK-MCSd + U-criterion  2.220 2.998 ×2.52 10 4 155 0.18
AK-MCS  2.230 2.991 182 0.27
Crude MCS  2.224 2.995

Fig. 12. Roof truss structure [28].  

Table 2 
Random variables of the roof truss structure example.     

Variable Mean Standard deviation  

q 20,000 1400 
l 12 0.12 
As ×9.82 10 4 ×5.982 10 5

Ac 0.04 0.0048 
Es ×1 1011 ×6 109

Ec ×2 1010 ×1.2 109
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compared to the approach proposed by [28]. The reduction in the 
number of calls within the present approach is equal to 44%. Thus, AK- 
MCSd approach may be considered more efficient than the approach 
proposed by [28]. 

6.4. Appilaction to a problem of a monopile foundation embedded in a 
spatially varying soil 

AK-MCSd approach was applied in this section to a geotechnical 
problem involving a monopile foundation embedded in a spatially 
varying clayey soil and subjected to a combined loading. 

The numerical model is presented in Fig. 15. The monopile consists 
of a 3 m diameter open-ended steel pile having a thickness of 5 cm and 
an embedment depth L of 18 m. The soil consists of an undrained 
normally consolidated clay. The soil undrained cohesion was con-
sidered as a 1-D vertical random field defined by a constant mean of 

50 kPa, a coefficient of variation of 10% and a square exponential 
autocorrelation function with a corresponding autocorrelation distance 
of 2 m. The generation of the cohesion random field was performed by 
EOLE discretization method making use of 16 standard Gaussian 
random variables. Details on the numerical modeling of the mechanical 
problem and the discretization of the cohesion random field are not 
provided herein to avoid repetition. Interested readers may refer to  
[48]. 

Notice that the present problem can be considered as a black-box 
costly-to-evaluate finite element model. It requires 15 min per run. The 
corresponding performance function depends on 16 standard Gaussian 
random variables. The use of a Kriging-based approach for the prob-
abilistic analysis is of great interest herein because it allows one to 
substitute the unknown performance function of the time-demanding 
black-box numerical code by a metamodel on the basis of a few number 
of runs of the finite element software, which may enormously reduce 
the computational cost of the probabilistic analysis. Notice also that a 
Monte Carlo simulation is not straightforward for such a problem and it 
requires a huge computational effort. Indeed, a crude MCS with a po-
pulation of 500,000 points (or realizations of the random field) would 
take about 125,000 h ( 5208 days) to be performed. 

6.4.1. Comparison between AK-MCSd and AK-MCS results 
The aim of this sub-section is the comparison between the perfor-

mance of the proposed AK-MCSd approach and that of the classical AK- 
MCS approach as applied to the present practical geotechnical problem 
in order to quantify the benefit that can be afforded by AK-MCSd in 
terms of computational effort. 

An initial DoE of 15 points (close to the problem stochastic di-
mension of 16 random variables) was randomly selected from a large 
MC population of 500,000 points. Indeed, for geotechnical engineering 
problems involving spatially varying soil properties (with a relatively 
high stochastic dimension i.e., with a relatively high number of random 
variables), it was found that an initial DoE size that is close to the 
problem stochastic dimension may be a suitable choice to capture the 
LSS of the studied problem (cf. Soubra et al. [49]). 

Figs. 16 and 17 present respectively the evolution of the failure 
probability and the corresponding coefficient of variation with the 
number of added points as obtained by AK-MCS and AK-MCSd ap-
proaches. One can observe that AK-MCSd method is more efficient than 
AK-MCS since it leads to a quasi-similar value of the failure probability 
with a reduced number of added points. As may be seen from Table 4, a 
failure probability = ×P 3.40 10f

3 is obtained when using AK-MCSd 
requiring 186 added points and a corresponding computational time of 
about 44.54 h while a very close value of = ×P 3.41 10f

3 is obtained 
when using AK-MCS with a much larger number of added points equal 
to 440 and a corresponding computational time of about 178.18 h. The 

Fig. 13. Evolution of the failure probability with the number of added points 
for 20 runs. 

Fig. 14. Evolution of the error on the failure probability with the number of 
added points for 20 runs. 

Table 3 
Average results from 20 runs.      

Method ×P ( 10 )f 3 Number of calls Error with respect to MCS (%)

MCS [28]  9.4890 ×2 106 – 
AK-MCS [28]  9.3935 92.40  1.01 
Zhu and Du [28]  9.5482 43.25  0.62 
AK-MCSd  9.4610 24.35  0.29 

Fig. 15. Monopile foundation model [after El Haj et al. (2019)].  
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coefficient of variation of the failure probability as obtained by both 
approaches is very small (about 2.42%) thus indicating the accuracy of 
the obtained results. 

Fig. 18 presents the evolution of the failure probability estimate Pf
and its expectation E P( )f with the number of added points, and Fig. 19 
presents the evolution of the corresponding error r as given by Eq. (18). 
One can notice that (i) the values of Pf and E P( )f become closer to each 
other (cf. Fig. 18) and (ii) the corresponding error r decreases (cf.  
Fig. 19), as the number of added points increases. This error attains a 
value of <0.98%( 1%) for a number of added points equal to 186. 

6.4.2. Performance of FORM approximation method for problems involving 
spatially varying soil properties 

The aim of this sub-section is to investigate the effect of the vertical 

autocorrelation distance (or the degree of soil heterogeneity in the 
vertical direction) on the performance of FORM approximation method. 
This task is of great importance since it allows one to identify the cases 
where the proposed AK-MCSd probabilistic approach should be used. 
Indeed, the estimation of the failure probability for the cases corre-
sponding to a low stochastic dimension and a nearly linear LSS may be 
simply performed using approximation methods such as FORM or 
SORM [2] without the need to resort to more sophisticated approaches. 

Fig. 20 presents the relative error between the failure probability 
obtained using AK-MCSd and that obtained from the following formula 
using FORM approximation: 

P ( )f HL
FORM (24) 

where HL in this equation is the Hasofer-Lind reliability index. Notice 
that the Hasofer-Lind reliability index can be easily obtained from the 
Kriging metamodel of the performance function since the metamodel is 
expressed in the standard Gaussian space of random variables. 

Fig. 20 shows that the error between the failure probability ob-
tained using the proposed AK-MCSd approach and that obtained using 
FORM approximation is high for the cases of small autocorrelation 
distances corresponding to high soil heterogeneity. This error decreases 
with the increase in the autocorrelation distance and tends to a small 
constant value (smaller than 2%) once the autocorrelation distance 

Fig. 16. Failure probability versus the number of added points.  

Fig. 17. Coefficient of variation of the failure probability versus the number of 
added points. 

Table 4 
Comparison between AK-MCS and AK-MCSd results.       

Method ×P 10f 3 % COV (Pf ) Nb. of added points Time (h)  

AK-MCS  3.41  2.42 440 178.18
AK-MCSd  3.40  2.42 186 44.54
Crude MCS  -  - - 125,000 

Fig. 18. Evolution of Pf and E P( )f with the number of added points.  

Fig. 19. Error on the failure probability versus the number of added points.  
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becomes close or higher than the monopile embedded length (i.e. 
18 m). Thus, FORM approximation method may lead to inaccurate re-
sults for the cases involving small values of the autocorrelation dis-
tance. 

As a conclusion, the proposed AK-MCSd approach is of great interest 
for the cases where the vertical autocorrelation distance is smaller than 
the monopile embedded depth; the approximate methods being not 
accurate for the problems involving a relatively high spatial variability. 

6.4.3. Effect of the number of candidate points 
This section aims at studying the effect of increasing the number of 

candidate points within AK-MCSd approach on the number of added 
points. Indeed, this number may improve the selection of the enrich-
ment points and lead to a further reduction in the number of added 
points. Three tests were performed for the present geotechnical pro-
blem where an increased number of candidate points is used for each 
test (100, 200 and 300 candidate points instead of 20 points). The re-
sults are shown in Table 5. 

From this Table, one may see that when increasing the number of 
candidate points from 20 points to 200 points, the number of added 
points decreases from 186 to 120 points and the computational time 
decreases from 44.54 h to 30.03 h. Notice however that a further in-
crease in the number of candidate points (i.e. for 300 candidate points) 
was shown to be detrimental to the computation time. This may be 
explained by the fact that when the number of candidate points exceeds 
a certain limit nlim, the number of added points stops to decrease (i.e. it 
remains equal to 120 points) and the time required by the algorithm to 
find the best point naturally increases with the increase in the number 
of candiate points. Thus, the number of 200 candidate points seems to 
be the optimal one for the present problem in terms of computational 
cost. 

7. Conclusions 

An improved Kriging-based probabilistic approach was proposed in 
this paper for practical use in reliability engineering. The proposed 
approach is a variant of AK-MCS method developed by [1] where some 
improvements were introduced to the learning process in the aim of 
increasing the efficiency of the failure probability estimation. An en-
hanced methodology of selection of a training point that considers the 

complete output of the Kriging process was suggested. Furthermore, a 
new stopping condition was proposed. This stopping condition is based 
on the gap between the estimated value of the failure probability and 
the expectation of this failure probability that takes into account the 
uncertainty of the Kriging predictions. 

The proposed approach was shown to lead to quasi-similar prob-
abilistic results as compared to the classical AK-MCS approach when 
dealing with a nonlinear or a complex limit state function, with a much 
reduced number of evaluations of the true performance function. It was 
also demonstrated that the proposed approach is of great interest for 
geotechnical engineering problems involving spatially varying soil 
properties with small values of the autocorrelation distance, the ap-
proximate methods being inaccurate for these configurations. 
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