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A B S T R A C T

In this paper, a probabilistic analysis of an offshore monopile foundation embedded in a spatially varying clayey
soil was performed. An efficient Kriging-based probabilistic approach using a multipoint enrichment was
adopted for the analysis. The aim is to compute the failure probability Pf against exceeding a threshold value on
the monopile head rotation. The soil undrained cohesion was considered as a random field with a mean value
that linearly varies with depth. The proposed probabilistic approach was shown to significantly reduce the
computation time with respect to the so-called AK-MCS classical Active learning method combining Kriging and
Monte Carlo Simulation (MCS) methodology. Some probabilistic numerical results are presented and discussed.

1. Introduction

The probabilistic analysis of geotechnical structures taking into
account the spatial variability of the soil properties has been performed
for several years using Monte Carlo Simulation (MCS) methodology
(e.g. [1–5]). More recently, various reduction techniques such as Subset
Simulation (SS) or Asymptotic Sampling (AS) were used for the prob-
abilistic analysis (e.g. [6–9]). These methods aim to reduce the number
of calls to the mechanical model especially when dealing with the small
practical values of the failure probability.

In order to reduce once again the computation time induced by the
use of a time-consuming mechanical model, several authors have re-
sorted to the combination of a simulation method [e.g. Subset
Simulation (SS), Importance Sampling (IS) or Monte Carlo Simulation
(MCS)] with a metamodeling technique. For instance, [10] proposed a
method combining the subset simulation and the support vector ma-
chines, [11] proposed a combination between Kriging and Monte Carlo
Simulation, [12] proposed a methodology incorporating neural net-
work and subset simulation and [13] developed a Kriging-based
adaptive importance sampling approach. The Active learning method
combining Kriging with Monte Carlo Simulation methodology (called
AK-MCS) (see [11]) has gained a significant popularity in the littera-
ture. This approach consists in replacing the time-consuming mechan-
ical model by a simple Kriging meta-model calibrated by a limited
number of mechanical model evaluations. The aim is to apply MCS
methodology on the calibrated metamodel (called also surrogate
model) with a quasi negligible computational time.

AK-MCS approach was used by [14] for the probabilistic analysis

against soil punching of a strip footing resting on a spatially varying
soil. Within AK-MCS approach, a preliminary surrogate model is con-
structed by Kriging metamodeling using a small Design of Experiments
DoE (i.e. a small set of samples). The obtained approximate meta-model
is then successively improved through an enrichment process in which
a powerful learning function is used for the selection of the ‘best’
samples to be evaluated by the computationally expensive mechanical
model. Notice that in AK-MCS method, a single sample is selected per
iteration of the enrichment process. Indeed, AK-MCS is unable to par-
allelize different mechanical computations. This is a drawback in the
case where distributed (or parallel) computing facilities are to be used
in the aim to reduce the computation time.

In this paper, a multipoint enrichment technique called AK-MCSm
(where m stands for multi-enrichment) is presented. The aim is to allow
several evaluations of the performance function to be carried out si-
multaneously. A relevant clustering technique (see [15]) was adopted
in this paper. This technique allows one to consider a set of learning
samples that ensure a suitable coverage of the limit state surface.
Concerning the stopping condition of the enrichment process, this
paper employs the stopping criterion that was recently proposed by
[16]. This criterion is more relevant than the one used in AK-MCS be-
cause it is based on the convergence of the quantity of interest (i.e. the
failure probability).

This paper focuses on the probabilistic analysis of an offshore
monopile foundation embedded in a spatially varying clayey soil and
subjected to vertical and lateral loadings. The aim is to compute the
failure probability Pf against exceeding a threshold value on the
monopile head rotation. Previous work by the authors of this paper has
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considered this problem by making use of a Global Sensitivity-enhanced
Surrogate (GSAS) modelling (see [17]). This method is a kind of variant
of the AK-MCS method in which the global sensitivity analysis was used
to help a better selection of the training sample to be computed by the
original mechanical model. As is the case of AK-MCS approach, GSAS
technique suffers from the fact that a unique sample is used in each
iteration of the enrichment process.

In this paper, one performs a probabilistic analysis at the ultimate
limit state (ULS) of a monopile foundation embedded in a spatially
varying soil making use of the relevant multi-enrichment approach AK-
MCSm. A clayey soil for which the soil undrained cohesion varies with
depth is considered in the analysis. Compared to AK-MCS approach, AK-
MCSm allows not only to consider several computations of the me-
chanical model during each step of the enrichment process, but also a
better choice of the training samples (or points) by making use of the
information provided by the learning function. This results in a sig-
nificant reduction in the computation time with respect to the classical
AK-MCS approach.

The paper is organized as follows: The next section presents the
mechanical model. This is followed by an overview on the soil spatial
variability and the discretization of random fields. Then, the probabil-
istic model is described. Finally, some probabilistic numerical results
are presented and discussed. The paper ends by a conclusion of the
main findings.

2. Mechanical model

Generally, offshore monopile foundations are subjected to high
horizontal loadings (in addition to the vertical loading due to the
structure weight) which will result in significant horizontal and mo-
ment loadings applied at the mudline. The horizontal and moment
loadings may lead to large horizontal displacement and rotation of the
monopile at this level. DNV code [18] recommended to prescribe a
practical criterion on the lateral deflection or on the rotation of the pile
at mudline. This is because excessive lateral displacement and rotation
may occur at the pile head before attaining the ultimate lateral soil
resistance. Indeed, the lateral soil resistance cannot be locally mobilized
in the zones near the pile rotation point, regardless of how much the
pile head deflects laterally. In this regards, focus is put in this paper on
the monopile rotation at the mudline.

Both the ultimate rotation (i.e. the rotation corresponding to the
ultimate load) and the rotation induced by the applied loadings are
sought in this section. The mechanical model has been carried out based
on numerical simulations using the commercial finite element software
Abaqus/Standard [19].

An open-ended steel monopile of diameter =D m4 was studied in
this paper. The monopile of 0.05 m thickness and an embedment depth
L of 24 m was extended of 1.0 m above the seabed to prevent the soil
from going over the monopile which would generate unrealistic results
[20]. The steel monopile has a density of 7840 kg m3. It was assumed to
behave as a linear elastic material with Young’s modulus Ep of 210 GPa
and Poisson’s ratio p of 0.3.

The soil consists of an undrained normally consolidated clay. It was
supposed to follow an elastic-perfectly plastic model based on Tresca
criterion. This model is defined by the undrained cohesion cu, the un-
drained Young’s modulus (Eu) and the Poisson’s ratio ( u). In this paper,
the soil has a submerged unit weight of 7 kN m3 and a Poisson’s ratio of
0.495. The undrained cohesion was supposed to linearly vary with
depth as follows:

= +c c k .u u m cu v, 0
' (1)

where cu m, is the value of the undrained cohesion at mudline, kcu is a
material constant for the clay [21] and v0

' is the effective vertical
overburden stress. [22] proposed a relationship between kcu and the soil
plasticity index PI as follows:

= +k PI0.11 0.0037cu (2)

where PI is the value of the plasticity index given in percentage. Using
the relationship given by Eq. (2) and assuming a plasticity index of
35%, a value of =k 0.24cu is obtained. This represents an increase in cu
from its initial value at mudline (taken here equal to 2 kPa) at a rate of
about 1.68 kPa m. These adopted values are typical for a normally
consolidated offshore clay [23]. Similar values were observed for the
Gulf of Mexico normally consolidated clays [24,25]. Finally, notice that
the soil undrained Young modulus was assumed to be linearly related to
the soil undrained cohesion via the relationship = ×E K cu c u where Kc
is a correlation factor that is dependent on the clay plasticity index PI
and the over-consolidation ratio OCR [26]. Thus, the soil Young mod-
ulus was also supposed to linearly vary with depth. For a plasticity
index =PI 35% and an over-consolidation ratio of 1, a value of =K 500c
is adopted in this work [26].

A wished-in-place assumption was adopted in the analysis. Such an
assumption consists in considering the initial geostatic stresses in the
soil around the monopile (i.e. K0 stress state) without taking into ac-
count the change in the stress state in the disturbed soil induced by the
monopile installation process. As may be seen from Fig. 1, the numer-
ical model has a length of 12D, a width of 6D and a height of 1.6 L. It
was verified that with these model dimensions, the behavior of the
monopile was not influenced by the artificial boundary effects. Details
on the numerical modeling of the soil-monopile system are not pro-
vided herein. The reader may refer to [17].

In this paper, the monopile was considered to be subjected to a
horizontal load =H MN1.6 acting at a height =h m38.6 above the
seabed level. This results in an additional moment at mudline of

=M MN m61.7 . . A vertical load V of 2 MN that represents the
structure weight was also considered in the analysis. The applied
loadings adopted in this study induced a head rotation at mudline (as
computed by the mechanical model) of nearly °0. 55 .

Concerning the determination of the ultimate rotation at the
monopile head, a load-controlled procedure was used. The corre-
sponding moment-rotation curve is shown in Fig. 2. As it may be seen
from this figure, the ultimate rotation was determined by the tangent
intersection method (point A) leading to a limit rotation of = °1. 5ULS
and a corresponding ultimate moment capacity at mudline of

Fig. 1. Three-dimensional numerical model.
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=M MN m75.5 .ULS . This corresponds to an ultimate horizontal force
of MN1.95 . The obtained ultimate value of the monopile head rotation
will be used afterwards in this paper as a threshold value when hand-
ling the probabilistic analysis (see Eq. (6)).

Fig. 3 shows the displacement field corresponding to the ultimate
rotation where =M MN m75.5 .ULS and = °1. 5ULS . From Fig. 3, one
may observe that the monopile exhibits a rigid body rotation around a
rotation point. Above the rotation point, the pile was shown to kick
forward and move against the soil on the front side of the loading di-
rection. Below the rotation point, the pile was shown to kick backward
and move against the soil on the rear side of the loading direction. The
soil displacement field may be divided into two zones: In the upper part
of the model, the soil was shown to fail within a conical wedge me-
chanism that extends to the soil surface. A passive wedge is mobilised
on the front side of the pile (in the direction of loading) with a gap
opening up on the rear side of the pile. At a deeper depth level, soil was
shown to fail according to a rotational mechanism.

3. Soil spatial variability

The soil undrained cohesion cu was considered as a log-normal
random field with a constant coefficient of variation of 25%. The mean
values of the soil undrained cohesion are those of the deterministic
analysis provided in the preceding section. Concerning the auto-
correlation function, a square exponential function X X( , )Z

LN ' was used

in this paper. This function provides the values of the correlation be-
tween two arbitrary points X x y z( , , ) and X x y z( , , )' ' ' ' as follows:

=X X x x
a

y y
a

z z
a

( , ) exp | | | | | |
Z
LN

x y z

'
' 2 ' 2 ' 2

(3)

where ax and ay are the horizontal autocorrelation distances in the x
and y directions (y being the loading direction) and az is the vertical
autocorrelation distance. Notice that the soil undrained Young modulus
was implicitly considered as a random field having the same distribu-
tion as the soil undrained cohesion since it was assumed to be linearly
related to the soil cohesion.

The discretization of the cohesion random field was performed in
this paper using EOLE method proposed by [27]. The step-by-step
procedure of this method in the present case of a lognormal random
field can be briefly described as follows:

- Define a stochastic grid composed of s grid points. A uniform grid is
adopted with five grid elements within each autocorrelation dis-
tance as recommended by [27].

- Determine the log-normal autocorrelation matrix LN making use of
the autocorrelation function given by Eq. (3). This matrix provides
the correlation between each grid point of the stochastic mesh and
all the grid points of this mesh.

- Transform this log-normal autocorrelation matrix to the Gaussian
space using the Nataf transformation (cf. [28]).

- Obtain the eigenvalues and eigenvectors j and j =j s( 1, 2, .., ) of
the Gaussian autocorrelation matrix. The dicretisation of the
Gaussian random field Z is given as follows:

+
=

Z x y z µ( , , ) ( )Z Z
j

s
j

j
j

T
ln ln

1 (4)

where µ Zln and Zln are respectively the mean and standard deviation
values of the underlying normal distribution [i.e. Zln( )], j =j s( 1, 2, .., )
is a set of independent standard normal random variables, is the
correlation vector between the value of the random field at an arbitrary
point (x, y, z) and its values at the different grid points of the stochastic
grid and ( )j

T is the transpose of the eigenvector j. Notice finally that j
and are two vectors of dimension s.

It should be mentioned here that the series given by Eq. (4) should
be truncated for a number of terms M (expansion order) smaller than
the number of grid points s. This is done after sorting the s eigenvalues

Fig. 2. Moment-rotation curve of the monopile at mud-line level.

Fig. 3. Displacement field at the ultimate rotation.
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=j s( 1, 2, .., )j in a descending order. The adopted number of terms
should assure that the variance of the error is smaller than a prescribed
tolerance. The variance of the error corresponding to a truncation with
M terms is given by the following equation [29]:

=
=

Var Z x y z Z x y z[ ( , , ) ( , , )] 1 1 [( ) ]Z
j

M

j
j

T
ln
2

1

2

(5)

where Z x y z( , , ) and Z x y z( , , ) are respectively the exact and the ap-
proximate values of the random field at a given point (x, y, z).

It should be emphasized here that the number of terms M represents
the number of eigenmodes (or the number of random variables in the
vector j). For a prescribed value of the variance of the error, the re-
quired number of eigenmodes is significant for the small values of the
autocorrelation distances (i.e. for the case of a very heterogeneous soil)
and it decreases with the increase of these distances. This may be ex-
plained by the fact that a greater number of eigenmodes is necessary to
simulate the tight fluctuations that may occur when dealing with a very
heterogeneous soil medium. The required number M of eigenmodes
will be determined later in this paper.

- Once the Gaussian random field is obtained, transform it to the
lognormal space by exponentiating the approximated Gaussian
random field Z x y z( , , ) given by Eq. (4).

Fig. 4 (a, b and c) present the distribution of the soil undrained
cohesion for three typical random field realizations as generated by
EOLE method for a one-dimensional vertical random field where
az = 2 m. Notice that the realizations of the soil Young modulus
random field can be easily obtained from the realizations of the soil
cohesion random field by multiplying the values of the soil cohesion by
500.

4. Probabilistic analysis at the ultimate limit state (ULS)

The probabilistic analysis at ULS aims at computing the failure
probability Pf against exceeding a threshold value on the ultimate ro-
tation of the monopile head. The performance function is given by:

=G 1ULS
(6)

where ULS is the ultimate rotation of the monopile head ( = °1. 5ULS )
as was determined before using the mean values of Eu and cu and is
the monopile head rotation under the applied loading for typical rea-
lizations of cu and Eu. The computation time of for each simulation via
Abaqus software was equal to about one hour.

4.1. Probabilistic method

The probabilistic method adopted in this paper makes use of the
Kriging metamodeling theory (see [30]). The Kriging metamodeling
consists in constructing a meta-model (i.e. a substitute of the original
mechanical model) based on a few number of samples computed using
the original mechanical model. The predicted response at an unknown
sample (based on the constructed Kriging meta-model) is a Gaussian
random variate characterized by a mean prediction value and a corre-
sponding prediction variance. Thus, a major advantage of Kriging is
that it provides not only a predicted value at an unknown sample but
also an estimate of the prediction variance for this sample (which gives
an uncertainty indication on the predicted sample response). Notice
that contrary to many types of meta-models, the Kriging meta-modeling
technique does not present the potential deficit of not capturing local
extrema since the interpolation of the sampled data is carried out using
a Maximum Likelihood Estimation (MLE) procedure. Notice also that a
considerable number of samples must be considered within the
exploited area. It should be emphasized that only a particular zone of
the variable space, namely the zone of the Limit State Surface LSS with
a high probability density (i.e. the zone of LSS that is the most close to
the origin of the standard space of random variables) is required to be
well exploited in this work in order to accurately estimate the failure
probability.

The classical AK-MCS Kriging-based approach consists of two main
stages. First, a preliminary approximate Kriging meta-model is con-
structed based on a small number of samples. Second, the obtained
approximate Kriging meta-model is successively improved via an en-
richment process (by adding each time a new training sample) until
reaching a sufficiently accurate meta-model for the computation of the
failure probability. The AK-MCSm probabilistic method used in this
paper is based on the traditional AK-MCS approach but employing a
multipoint enrichment strategy and a relevant clustering technique.
Thus, the major advantage of the present AK-MCSm approach with

Fig. 4. Typical realizations of the cohesion random field generated by EOLE method.
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respect to the classical AK-MCS is that it can consider simultaneous
mechanical computations of different samples at each iteration of the
enrichment process. Furthermore, the selected samples are better
chosen due to the use of the information provided by the learning
function as it will be shown later in this paper.

AK-MCSm approach consists of two stages. These stages are de-
scribed in some details in the two following subsections in the present
case of a spatially varying soil.

4.1.1. Construction of a preliminary Kriging metamodel
In this stage, one first generates a MCS population of ×5 105 sam-

ples = ×x i( 1, 2, , 5 10 )i( ) 5 . Each sample x i( ) is a vector of M standard
Gaussian random variables where M is the number of random variables
required by EOLE methodology to accurately discretize the random
field. Secondly, a small design of experiment DoE (taken equal to 15
samples) is randomly selected from the generated population. Each
sample of the DoE is transformed (using EOLE) into a realization of cu
and a corresponding realization of Eu using = ×E c500u u. These rea-
lizations are used as inputs for the mechanical model while computing
the sample system response (i.e. monopile head rotation ) and the
corresponding performance function value.

By using the DACE toolbox (cf. [31]), an approximate Kriging meta-
model may be constructed in the standard space of random variables on
the basis of the DoE and the corresponding performance function va-
lues. This meta-model may be used to compute the MCS failure prob-
ability Pf given by:

=
=

P I G x N( ( ))f
i

N

p
i

MCS
1

( )
MCS

(7)

The meta-model random responses G x( )p
i( ) in this equation are re-

placed by the mean prediction values g x( )i( ) of the Kriging meta-model
g(x )(i) . Notice also that NMCS in Eq. (7) is the number of MCS samples
(i.e. ×5 105 samples) and =I G x( ( )) 1p

i( ) if G x( ) 0p
i( ) ; otherwise,

=I G x( ( )) 0p
i( ) . The coefficient of variation of the failure probability

COV P( )f is given by the following equation:

=COV P
P

P N
( )

1
.f

f

f MCS (8)

It should be noted that the value of Pf and the corresponding value
of COV P( )f computed so far are not sufficiently accurate. This is be-
cause of the very small number of samples (DoE) used to construct the
present preliminary Kriging metamodel. Thus, an enrichment process is
needed.

4.1.2. Enrichment process
The enrichment process is done via an active learning technique.

The learning phase stops once the metamodel becomes sufficiently ac-
curate for the computation of the failure probability, which is indicated
by a stopping criterion. The aim of the next two subsections is to pre-
sent the way of selection of the new training samples during the en-
richment process and the adopted stopping criterion.

4.1.2.1. Selection of new training samples. The enrichment process of the
AK-MCS method is performed using a learning function U defined by
the following equation (see [11]):

=U x g x
x

( ) | ( )|
( )

i
i

G
i

( )
( )

( )
p (9)

where Gp is the square root of the Kriging prediction variance. The
sample that has the minimum value of U is selected for the enrichment
since it is considered to have the highest probability of being
misclassified (i.e. the highest probability to have a wrong
performance function sign) as was stated by [11]. It should be
remembered that AK-MCS method involves a single sample per
iteration of the enrichment process. In order to overcome this

shortcoming, a multipoint enrichment procedure is adopted in this
paper. A simple approach would be to randomly select the set of
samples having high probabilities of misclassification (i.e. the samples
having the minimal values of U ) to be evaluated simultaneously.
However, a better solution could be obtained by using a clustering
technique that ensures a better coverage of the samples along the limit
state surface.

The conventional K-means clustering technique aims at finding the
geometric centroid of each cluster using its arithmetic mean [32].
However, this technique does not consider the information provided by
the learning function and thus, the obtained centroids are not the op-
timal ones for the enrichment. In order to account for the relative im-
portance of the samples in a cluster, a weighted K-means clustering
algorithm may be used [33]. In this algorithm, larger weights are
dedicated to the samples with high information values according to the
learning function.

Lelièvre et al. [15] proposed a clustering technique, named K-
weighted-means clustering algorithm (K-w-means), that takes benefit of
the information provided by the AK-MCS learning function. The K-w-
means technique consists in replacing the mean of each cluster by a
weighted one making use of the learning function U. In this way, each
sample will be weighted by the corresponding uncertainty of being
misclassified (i.e. the uncertainty to have a wrong sign of its perfor-
mance function) and thus, the obtained centroids of the different
clusters will be the optimal ones for the enrichment. In other words, the
selected samples will be situated in the highly uncertain zone (i.e. the
zone corresponding to a high uncertainty on the sign of the perfor-
mance function) all along the limit state surface leading to an efficient
multipoint enrichment of the Kriging meta-model. This approach is
used in this paper.

The step-by-step procedure of the K-w-means clustering algorithm
can be described as follows:

1. Let K be the number of clusters used in the analysis. Select among
the whole MCS population a number of ×n Kc samples (nc is taken
equal to 5 in this paper) that have the minimal values of U. The
selected samples are those that will be used in the clustering pro-
cedure.

2. Among the selected samples in the previous step, randomly select K
samples and consider these samples as initial centroids for the K
clusters. These centroids are denoted [c c c, , , K1

(1)
2
(1) (1)].

3. Split the ×n Kc samples into K sets according to Voronoi diagram
[34] depending on the nearest centroid (i.e. each sample is attrib-
uted to the centroid with which it forms the smallest Euclidian
distance).

4. Determine the new centroid ck of each cluster =k k K( 1, 2, , ) by
computing the corresponding weighted mean as follows:

= =+ =

=

( )
( )

c
x

k K1, 2, ,k
i j

n
U j

j
n

U

( 1) 1
1 2

1
1 2

k
j

k
j (10)

where the index i stands for the considered iteration, ck is a vector
composed of M components (where M is the number of random
variables), nk is the number of samples in the kth cluster,
[x x x, , , n1 2 k] is the set of samples corresponding to this cluster
(where each sample consists of a vector of M components) and
U U U[ , , , ]nk1 2 is a set containing the learning function values of the
different samples of the kth cluster. It should be noted that the
number of samples nk within a given iteration i may be different
from one cluster to another one.
From Eq. (10), one may observe that the sample xj having a highU
value (i.e. the sample xj having a small uncertainty in the sign of its
performance function value) is affected with a small weight and vice
versa.
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5. Calculate the error expressing the sum of the squared distances
between each couple of successive centroids (i.e. those corre-
sponding to iterations and +i 1), as follows:

=

+c c( )
k

K

k
i

k
i

1

( ) ( 1) 2

(11)

If this error is below a prescribed threshold (taken here as 5%), the
algorithm stops. Otherwise, the algorithm goes to step 3 to split the
samples according to the new centroids.

It should be noted that the obtained centroids do not generally
belong to the initially selected samples. Hence, the nearest sample to
each centroid is chosen for the enrichment.

4.1.2.2. Stopping condition. In AK-MCS method, the enrichment process
stops when the learning function U is sufficiently large for all the MCS
samples. Echard et al. [11] suggested a minimum value of =U 2 on
these samples. This corresponds to a probability of a wrong sign of the
performance function that is lower than 0.0228 (see [11]). One main
issue about this criterion is that it is defined from the perspective of
individual responses (not the quantity of interest Pf ), which may lead to
some unnecessary extra evaluations of the mechanical model. A more
relevant stopping condition that is based on the convergence of the
quantity of interest (i.e. Pf ) was proposed by [16]. This criterion was
used in this paper in the aim to reduce the computation time. Indeed,
the adopted criterion relies on the convergence of the failure
probability, which could be attained before reaching the stopping
condition indicated by AK-MCS.

Schöbi et al. [16] define a limit state margin characterized by upper
and lower boundaries of the limit state surface that takes into account
the prediction uncertainty in the Kriging metamodel. These authors
stated that when these boundaries become close to each other, a thin
limit state margin is obtained and thus, the estimated failure probability
can be considered as accurate. The proposed stopping criterion is given
as follows:

=
+P P

PP
f f

f
t0f

(12)

where Pf
0 is the original failure probability based on the Kriging pre-

diction values P g x( ( ) 0) and, +Pf and Pf are respectively the upper
and lower boundaries of the failure probability defined as follows:

= ++P P g x t x[( ( ) . ( )) 0]f Gp (13)

=P P g x t x[( ( ) . ( )) 0]f Gp (14)

where + =g x t x( ) . ( ) 0Gp and =g x t x( ) . ( ) 0Gp are respectively
the upper and lower boundaries of the limit state surface defined by

=g x( ) 0, t is a constant ( =t 2 in this paper) that sets the confidence
level equal to 2 = (97.7%)1 and t is a given tolerance taken as

= 10%t in this paper.

5. Probabilistic numerical results

The probabilistic numerical results begin with a simple example
involving a non-linear analytical equation of the performance function.
Only two random variables are considered in the analysis. The aim of
this example is to visualize the evolution of the limit state surface
during the enrichment process and to demonstrate the efficient com-
putation of the failure probability when using the present AK-MCSm
approach. Afterwards, AK-MCSm is applied to the case of the monopile
embedded in a spatially varying soil.

5.1. Case of a simple example involving two random variables

The example considered in this section is based on the following
non-linear analytical equation of the performance function:

= × ×G u u u0.4 ( ) 0.4 ( 5) 101 2
2

2
3 (15)

where u1 and u2 are two standard normal variables.

5.1.1. Evolution of the limit state surface during the enrichment process
In this section, only the enrichment process (i.e. training samples

selection) was investigated. The same stopping condition used in AK-
MCS method (i.e. U > 2) was adopted herein. The effect of considering
the stopping criterion by [16] will be investigated in a subsequent
section.

After the generation of 500,000 samples (where each sample con-
sists of two standard Gaussian random variables), an initial Design of
Experiment DoE of seven samples was randomly selected from the
generated samples. A preliminary Kriging meta-model was then con-
structed on the basis of this DoE. The multi-enrichment process was
performed using 4 clusters. It was shown to require three enrichment
iterations resulting in 12 added samples before attaining the U-criterion
(i.e. U > 2). A computation time of ×3.28 102 sec was needed in this
case. Fig. 5a, b and c present the evolution of the limit state surface
during the three successive iterations of the enrichment process (i.e.
from the initial DoE to DoE + 4 added samples, from DoE + 4 added
samples to DoE + 8 added samples and from DoE+ 8 added samples to
DoE + 12 added samples, respectively). For each enrichment iteration,
the candidate samples are presented in blue stars. These samples are
classified in groups separated by blue lines plotted using the Voronoi
Matlab function. For each group of samples, a corresponding centroid is
presented in a red circle. The centroids of the four different groups are
then added to the DoE of the metamodel. One can see that in each
enrichment iteration, the metamodel is successively improved in the
neighbourhood of the limit state surface by means of the four added
samples distributed along the limit state surface.

Fig. 6 presents the evolution of the limit state surface LSS at the
different stages of the Kriging meta-model construction. As may be seen
from this figure, the LSS of the preliminary Kriging meta-model based
on the DoE was very different from that of the true performance
function presented in continuous red on the same figure. Notice how-
ever that the LSS corresponding to the obtained meta-model (in con-
tinuous black) is perfectly matched with that of the true performance
function (in continuous red), especially in the zone where the prob-
ability density is not negligible (i.e. the zone that is close to the origin of
the standard normal coordinate system).

In order to investigate the efficiency of the weighted K-w-means
clustering technique with respect to the classical K-means clustering
technique, the same computation presented above was performed using
the classical technique. Notice that the conventional K-means clustering
technique computes the geometric centroid of each cluster using its
arithmetic mean determined as follows:

=+

=
c x

n
1

k
i

k j

n

j
( 1)

1

k

(16)

The calculation has resulted in 16 added samples instead of 12
added samples for the case of K-w-means clustering technique with an
increase in the calculation time by 17%. This may be explained by the
fact that the weighted K-w-means clustering technique is considered as
more relevant than the classical K-means technique since it makes use
of the information provided by the learning function U. Thus, it leads to
a better choice of the centroids used in the meta-model enrichment
process.

5.1.2. Effect of the stopping condition on the computation time
This section aims at presenting the benefits of the adopted stopping

A.-K. El Haj and A.-H. Soubra Computers and Geotechnics 121 (2020) 103451

6



criterion proposed by [16] concerning the number of added samples
and the computation time. Fig. 7 presents the evolution of the failure
probability =P Pf f

0 with the number of added samples. The upper and
lower boundaries of the failure probability ( +Pf and Pf respectively) are

Fig. 5. Evolution of the limit state surface during the three successive iterations of the enrichment process (a) from the initial DoE to DoE + 4 added samples (b) from
DoE + 4 added samples to DoE + 8 added samples (c) from DoE + 8 added samples to DoE + 12 added samples.

Fig. 6. Evolution of the limit state surface during the three iterations of the
enrichment process.

Fig. 7. Evolution of the failure probability with the number of added points.
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presented as well, together with the computed value of the error for
each enrichment stage (i.e. each four added samples). This figure shows
that the failure probability converges with an error of 0.12% (smaller
than 10%) for 8 added samples when using the Schöbi criterion,
whereas the U-criterion required 12 added samples. Thus, the use of
Schöbi et al. [16] stopping criterion was shown to reduce the number of
added samples from 12 to 8 and the computation time from ×3.28 102

sec to ×2. 38 102 sec.

5.1.3. Comparison with AK-MCS and the Crude MCS
This section aims at comparing the efficiency of the proposed AK-

MCSm method with that of the classical Kriging-based method AK-MCS.
Both methods are compared to the conventional crude Monte Carlo
simulation in order to verify the accuracy of the results.

Table 1 presents for the different methods, the obtained value of the
failure probability Pf together with the corresponding value of the
coefficient of variation COV P( )f , the error r with respect to the crude
MCS, the number of evaluations of the performance function and the
computation time. The first two rows of this table present respectively
the results obtained using the crude Monte Carlo Simulation metho-
dology and the AK-MCS method by [11]. The AK-MCS was shown to
provide the same result (i.e. the same obtained failure probability) as
the crude MCS with an important reduction in the number of evalua-
tions of the performance function. Indeed, only 7 evaluations corre-
sponding to the initial DoE and 13 evaluations corresponding to the
enrichment process were required by this method. The third row of the
table corresponds to the application of the classical K-means clustering
technique and the U-stopping criterion of the AK-MCS method. This
method has led to the same failure probability value with a higher
number of evaluations and a reduced computation time with respect to
AK-MCS method ( ×3.97 102 sec instead of ×9.37 102 sec when using

AK-MCS). The fact of obtaining a reduced computation time may be
explained by the fact that a multipoint enrichment is adopted herein
where 4 training points are added simultaneously at each step of the
enrichment process. The fourth row of the table corresponds to the
application of the weighted K-w-means clustering technique by [15]
and the same U-stopping criterion. By applying these techniques, the
same value of the failure probability was also obtained with a reduction
in the number of added points (12 added points were required) and
consequently in the computation time. Finally, the fifth row presents
the combined use of the K-w-means clustering technique and the
stopping criterion proposed by [16], which corresponds to the adopted
AK-MCSm method. The proposed method has led to an accurate value
of the failure probability with a further reduction in the number of
added points and the computation time with respect to the techniques
mentioned previously. Thus, the present AK-MCSm method can be
considered as an efficient probabilistic approach to be used for complex
geotechnical problems involving a spatially varying soil.

5.2. Case of a monopile foundation embedded in a spatially varying soil

This section considers the effect of the soil spatial variability on the
failure probability against exceeding a threshold value on the ultimate
head rotation of a monopile embedded in a spatially varying clayey soil.
Firstly, a reference case involving a vertical one-dimensional random
field with a vertical autocorrelation distance =a 2mz is considered in
the analysis. Secondly, the effect of the individual autocorrelation dis-
tance in the x, y or z direction on the failure probability is investigated.
For both cases, an undrained soil cohesion that linearly increases with
depth (as described before) is considered in the analysis.

5.2.1. Reference case
In this section, a reference case where the vertical autocorrelation

distance was taken equal to 2 m was considered, the soil being assumed
to be homogeneous in the horizontal direction. The number of random
variables required by EOLE to accurately discretize the random field
with a small variance of error (< 5%) was found equal to 20. This
number of random variables was adopted in the present paper.

Fig. 8(a) and (b) present respectively the evolution of the failure
probability Pf and the corresponding value of the coefficient of varia-
tion COV P( )f with the number of added samples (with a step of 4
samples since the computation of the failure probability was carried out
using 4 clusters). A failure probability of ×1.274 10 3 was obtained with
a corresponding coefficient of variation of 3.95% indicating a rigorous
estimation of the failure probability. It should be noted that a compu-
tation time of 7.28 days was required for this calculation.

Table 1
Failure probability Pf and the corresponding value of the coefficient of variation
COV P( )f , together with the error r with respect to the crude MCS methodology,
the required number of evaluations and the computation time.

Method ×P 10f 3 % COV
(Pf )

r (%) Nb. evaluations Time (sec)

Crude MCS 9.694 1.42 ×5 105

AK-MCS 9.694 1.42 0 7 + 13 ×9.37 102

K-means + U 9.694 1.42 0 7 + 16 ×3.97 102

K-w-means + U 9.694 1.42 0 7 + 12 ×3.28 102

K-w-means + Schöbi 9.694 1.42 0 7 + 8 ×2.38 102

Fig. 8. Evolution of (a) the failure probability Pf and (b) the corresponding value of the coefficient of variation COV P( )f , with the number of added samples.
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In order to illustrate the stopping condition used in this paper, Fig. 9
shows the evolution of the upper and lower boundaries of the failure
probability ( +Pf and Pf , respectively) and the original failure prob-
ability Pf

0 with the number of added samples. From this figure, one may
see that the enrichment process has stopped when +Pf and Pf converge
towards the original failure probability Pf

0 within an error of 9.41%
(< 10%). Notice that at this stage, the minimum value of the U function
is equal to 1.20 (i.e. smaller than the value of 2 imposed in AK-MCS
approach), thus showing the efficiency of the adopted stopping cri-
terion as compared to the U-criterion used in AK-MCS. Notice also that
even when using the proposed stopping criterion, one can see from
Fig. 9 that the probability of failure Pf

0 has already stabilized for a much
smaller number of added samples. This can be explained by the fact that
severe conditions have been adopted in this paper for the parameters

employed in the stopping criterion. Indeed, a smaller value of the
constant t (i.e. a smaller confidence level) may lead to a faster con-
vergence of the upper and lower boundaries of the failure probability
and thus, to an earlier stopping of the enrichment process. For this
purpose, the effect of the parameter t on the number of added samples
was investigated (see Table 2 and Fig. 10).

From Table 2, one can observe that when t decreases, the relative
error on the Pf value (with respect to the case of =t 2) increases. This
relative error ramains lower than 1% when reaching =t 1. Thus, a
value of =t 1 may be a reasonable choice in the present case. Such a
choice reduces the number of added samples to 360 (instead of 520 in
the case of =t 2) and the computation time to 5.01 days (instead of
7.28 days in the case of =t 2).

5.2.1.1. Comparison with AK-MCS approach. The efficiency of the
proposed approach (as applied to the problem of a monopile
foundation embedded in a spatially varying soil) was compared to
that of AK-MCS approach. For this purpose, AK-MCS approach was
applied on the same problem in order to allow the comparison. Four
clusters were considered when dealing with AK-MCSm approach.

Table 3 presents the results of AK-MCS approach and those of the
proposed AK-MCSm method. As may be seen from this table, the dif-
ferent approaches result in the same value of the failure probability.
Concerning the computation cost, the proposed method leads to a sig-
nificant reduction in the computation time as compared to AK-MCS
(5.01 days for AK-MCSm instead of 27.89 days for AK-MCS).

5.2.2. Effect of the autocorrelation distances ax , ay and az on Pf
Fig. 11 presents the evolution of the failure probability with ax , ay

and az where ax and ay are the horizontal autocorrelation distances in
the directions orthogonal and parallel to the loading plane respectively
and az is the vertical autocorrelation distance. The aim of this figure is
to identify (for the present embedded length and diameter of the
monopile) the values of the autocorrelation distances for which the soil
spatial variability has a significant effect on the computed failure
probability. For all the treated configurations, the number of random
variables was chosen in such a manner that the variance of the error of
EOLE methodology is smaller than 5%. For this threshold, a maximal
number of random variables of 24 was found necessary for the con-
figuration where =a m2 .y

For all the three curves of Fig. 11, the failure probability increases
with the different autocorrelation distances ax , ay or az. The rates of
increase of the failure probability largely decrease beyond given values
of the autocorrelation distances [i.e. beyond an autocorrelation dis-
tance of 24 m (≈L) for az, 10 m (≈2.5D) for ay and 6 m (≈1.5D) for a ]x
to attain a constant value of the failure probability corresponding to the
case of a homogeneous soil (i.e. with no spatial variability). The failure
probability corresponding to the homogeneous case was found equal to
0.12. It should be emphasized here that all the three identified distances
(i.e., L, 2.5D and 1.5D) are directly related to the soil displacement field
obtained due to the ultimate loading (i.e. they are related to the me-
chanics of the problem and not connected to the input probabilistic
data). Indeed, the deformed soil at the ultimate limit state (i.e. at the
ultimate rotation) is concentrated along the embedded length L of the
monopile in the vertical direction, and it is limited to 2.5D and 1.5D in
the y- and x- horizontal directions as it may be seen from Fig. 12a and
12b, respectively. These observations explain the reason why the in-
crease in the autocorrelation distances ax , ay and az beyond the

Fig. 9. Evolution of the original failure probability Pf
0 and its upper and lower

boundaries +Pf and Pf with the number of added samples.

Table 2
Influence of t parameter on the number of added samples and the computation
time.

t ×P 10f 3 r(%) Number of added samples Time (days)

2 1.274 – 520 7.28
1.5 1.276 0.15 440 6.04
1 1.272 0.15 360 5.01
0.5 1.290 1.26 280 4.05

Fig. 10. Evolution of the original failure probability Pf
0 and its upper and lower

boundaries +Pf and Pf with the number of added points, for various values of t .

Table 3
Results of AK-MCS and AK-MCSm approaches.

Method ×P 10f 3 Number of added samples Time (days)

AK-MCS 1.274 447 27.89
AK-MCSm (4 clusters) 1.274 360 5.01
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distances 1.5D, 2.5D and L respectively does not significantly change
the value of the failure probability. A reduction in the failure prob-
ability with respect to the case of a homogeneous soil may be obtained
if at least one of the autocorrelation distances ax , ay or az is smaller than
its corresponding limit value (i.e. 1.5D, 2.5D, L) since the monopile
head rotation will be affected by the soil spatial variability in this case,
thus inducing a change in the failure probability.

Fig. 11 shows that the rate of increase in the failure probability (for
the small and moderate values of the autocorrelation distances) is the
highest when considering the horizontal autocorrelation distance ax .
This rate of increase in the failure probability is smaller for the hor-
izontal autocorrelation length ay and it becomes the smallest one for the
vertical autocorrelation distance a .z These observations indicate that a
reduction in the failure probability with respect to the case of a
homogeneous soil (i.e. the case of no spatial variability) may be fore-
seen by mostly considering the soil spatial variability in the vertical
direction. This is because (i) the vertical limit value L is bigger than the
horizontal limit values of 1.5D and 2.5D and (ii) the vertical auto-
correlation distance is generally one order of magnitude smaller than
the horizontal one. This finding is interesting since it allows one to
simplify a complex 3D stochastic problem into a 1D vertical stochastic
problem with a much lower computational burden for the cases where
the horizontal autocorrelation distances are greater than 2.5D. Another
advantage from this simplification is that the identification of the soil

spatial variability in the vertical direction is easier and cheaper than
that in the horizontal direction (e.g. by using a CPT test).

6. Conclusions

A probabilistic analysis at the ultimate limit state (ULS) was per-
formed in this paper for an offshore monopile foundation embedded in
a spatially varying clayey soil. The soil undrained cohesion was con-
sidered as a random field following a lognormal distribution and the
soil undrained Young modulus was assumed to be linearly related to the
soil undrained cohesion.

A Kriging-based probabilistic approach using a multipoint enrich-
ment technique was adopted. An improved clustering technique pro-
posed by Lelièvre et al. [15] was used for learning. Compared to the
classical AK-MCS Kriging-based approach, the present AK-MCSm
method can consider simultaneous mechanical computations of dif-
ferent samples at each iteration of the enrichment process. Further-
more, the selected samples are better chosen due to the use of the in-
formation provided by the learning function. Notice also that this paper
makes use of a relevant stopping condition recently proposed by Schöbi
et al. [16]. The method was shown to be efficient in terms of the
computation time with respect to AK-MCS approach.

A reduction in the failure probability with respect to the case of a
homogeneous soil may be obtained if at least one of the autocorrelation

Fig. 11. Effect of the autocorrelation distances ax , ay and az on Pf .

Fig. 12. Deformed soil at the ultimate limit state (a) in the yz plane (b) in the xy plane.
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distances ax , ay or az is smaller than its corresponding limit value (i.e.
1.5D, 2.5D, L). From a practical point of view, a reduction in the failure
probability with respect to the case of a homogeneous soil (i.e. the case
of no spatial variability) may be foreseen by mostly considering the soil
spatial variability in the vertical direction.
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