INl Nantes
W Université

HABILITATION A DIRIGER DES RECHERCHES
HDR

Rapporteurs avant soutenance :

Sylvain BOULME Maitre de Conférences, Université Grenoble Alpes
Frangois POTTIER Directeur de Recherche, Centre Inria de Paris
Alan SCHMITT Directeur de Recherche, Centre Inria de I'Université de Rennes

Composition du Jury :

Président :
Examinateurs : Assia MAHBOUBI Directrice de Recherche, Inria & Université de Nantes
David MONNIAUX Directeur de Recherche, CNRS, Université Grenoble Alpes

INI Nantes

W Université

Titre : Mécanisation de la Métathéorie et Compilation Certifiée pour le prouveur Rocq

Mots clés : théorie des types, métathéorie, vérification

Résumé : Les travaux présentés dans cette
habilitation a diriger les recherches (HDR) ont
pour objet la vérification du noyau logique de
l'assistant de preuve Rocq ainsi que de son
mécanisme original de compilation vers des
langages fonctionnels usuels. L’objectif de ces
travaux est d’obtenir des garanties formelles de
sOreté sur la théorie sous-jacente du prouveur
Rocq, sur limplémentation du vérificateur de
preuves pour cette théorie et sur la procédure
d’extraction de programmes permettant
I'exécution de code vérifié par Rocq.

Nous présentons MetaRocq, un développement
formel de spécifications et programmes vérifiés,
représentant un large fragment de Rocq dans

Rocg méme, combinant des techniques de méta-

programmation et de preuve de métathéorie des
langages a grande échelle ainsi que des
techniques de compilation certifiée.

Nous développons formellement dans Rocq une
spécification formelle de la théorie des types de
Rocq et sa variante algorithmique équivalente, un
algorithme de typage correct et complet vis-a-vis
de ces spécifications, un algorithme d’effacemen
des preuves correct et une chaine de compilation
de Rocq vers OCaml préservant la sémantique
du langage source.

Les résultats obtenus nous permettent de
changer de paradigme quand a la s(reté des
résultats obtenus dans l'assistant de preuve et
produits par I'extraction, passant d’'une notion de
base de code fiable - le noyau non vérifié actuel -
a une notion de base de théorie fiable - la
spécification formelle de la théorie de Rocqg en
Rocqg que nous avons introduit.

Nous discutons I'impact et les limites de nos
travaux pour I'obtention de garanties maximales
sur les développements réalisés dans Rocq.

Title : Mechanized metatheory and certified compilation for The Rocq Prover

Keywords : type theory, metatheory, verification

Abstract : The work presented in this habilitation
thesis focuses on the verification of the logical
core of the Rocq Prover, as well as its original
mechanism for compiling to usual functional
programming languages. The objective of this
work is to obtain formal safety guarantees for the
underlying theory of the Rocq prover, for the
implementation of the proof verifier for this
theory, and for the procedure of program
extraction that enables the efficient execution of
code verified by Rocq. This work lies at the
intersection of the meta-theory of type theory and
the formal verification of type inference and
compilation algorithms.

We present MetaRocq, a formal development of
specifications and verified programs,
representing a large fragment of Rocq within
Rocq itself. This combines techniques for meta-
programming and large-scale language meta-
theory proofs, as well as certified compilation
techniques.

We formally develop in Rocq a formal
specification of Rocq's type theory and its
equivalent algorithmic variant, a typing algorithm
that is correct and complete with respect to
these specifications, a correct proof erasure
algorithm, and a compilation chain from Rocq to
OCaml that preserves the semantics of the
source language.

The results obtained here allow us to shift the
paradigm regarding the safety of the results
obtained in the proof assistant and produced by
extraction, moving from a notion of a trusted
code base — the current unverified kernel —to a
notion of trusted theory base — the formal
specification of Rocq's theory in Rocq that we
have introduced.

We discuss the impact and limitations of our
work to obtain maximal correctness guarantees
for the formal developments carried out in the
proof assistant.

AN
IR
et

TR RN by

PR A iy
RN
,,,,,,,,,,,,,,, R,
............ o \\\\\\\\\\\\
RSN,

S

	Introduction (en Français)
	Une histoire personnelle
	Motivation
	Même les assistants de preuve ont des bugs.
	Certifier les assistants de preuve en utilisant des assistants de preuve.
	D'une base de code de confiance à une base de théorie de confiance.
	De la spécification à l'implémentation.
	Un algorithme de vérification de types paramétré avec des procédures de décision.
	Extraction certifiée

	Formalisation Rocq
	Notations et couleurs

	Introduction
	A Personal History
	Motivation
	Even Proof Assistants Have Bugs.
	Certifying Proof Assistants using Proof Assistants.
	From a Trusted Code Base to a Trusted Theory Base Paradigm.
	From Specification to Implementation.
	A type-checking algorithm parametrized with decision procedures.
	Certified Extraction

	Outline of this Manuscript
	Rocq Formalization
	Notations and colors

	An overview of Rocq’s type theory
	Datatypes
	Inductive types
	Positivity
	Pattern matching and fixed points
	Record types and primitive projections
	Coinductive types

	Sorts and universes
	Monomorphic universes
	Cumulativity
	Propositions
	Polymorphic universes
	Template and sort polymorphism

	Other Features of Rocq Present in PCUIC
	Let bindings

	Other Features of Rocq Absent from PCUIC
	η-conversion
	Primitive types
	Modules and functors

	PCUIC: Rocq’s core calculus specification
	Definition of the Syntax and Environments
	Universes
	Constraints and Valuations
	Cumulativity on universes

	Cumulativity
	Ordering Rules
	Cumulativity Rules
	Computation Rules
	Congruence Rules
	Dealing with the Guard Condition
	Definition of Typing
	Well-Formed Environments
	Positivity criterion
	Cumulative Inductive Types
	Variance
	Inductive types
	Constructor types

	Allowed Eliminations

	Equivalent Algorithmic Specification of PCUIC
	Universes: Valuation vs Acyclicity
	Conversion: Algorithmic presentation with equality and reduction
	Reduction and Syntactic Equality up to Universes
	Algorithmic cumulativity and its properties

	Bidirectional Typing
	The Bidirectional Typing Judgement
	Correctness: Bidirectional Typing Implies Undirected Typing
	Completeness: Undirected Typing Implies Bidirectional Typing
	Reaping the Benefits of the Equivalence

	Fixing Cumulativity for Pattern Matching on Cumulative Inductive Types
	Representing pattern matching
	The completeness issue
	Example of Subject Reduction Failure in Rocq 8.14
	The change in Rocq

	Metatheory of PCUIC
	Accessibility and Well-Founded Induction
	Substitution and Weakening
	The σ-calculus
	Correctness of the Guard Checker

	Confluence
	Well-Scoped Terms
	Dealing with Dependent Let-Bindings
	The Triangle Method
	Context Conversion and Cumulativity

	Subject Reduction
	Positive Coinductive Types
	Negative Coinductive Types

	Strong Normalization
	Weak Call-by-Value Standardization
	Canonicity
	Consistency

	A Sound and Complete Checker for PCUIC
	Technical Insight
	Enforcing computational irrelevance
	Equations
	Views
	Open Recursion
	Monadic-Style Code

	Abstract Computational Environment
	Interface
	Properties
	Reference Implementation
	More efficient implementations

	Conversion and Cumulativity Without Fuel
	Term positions
	Weak-Head Normalization Using a Stack Machine
	Safe Conversion

	A Type-checking Algorithm for PCUIC
	Performance of our Type Checker

	Conclusion of Part I
	Type and Proof Erasure for PCUIC
	From erasure to extraction
	The Target Calculus λ□
	Definition of an Erasure Function
	Correctness of Erasure
	Elimination of subsingleton cases and dependencies
	The Erasure Pipeline
	Verified Transformations
	Eta-expand
	Translation from TemplateRocq to PCUIC
	Lets in constructor types
	Type and proof erasure
	Typed extraction
	Reordering of constructors
	Unary fixpoint translation
	Parameter stripping
	Remove match on □
	Inline projections
	Constructors as blocks
	Implement □
	Global environments

	Summary
	Uses of the erasure pipeline

	Certified Extraction to OCaml
	Scope and Limitations of Extraction to OCaml
	What Guarantees Can We Expect From Extracted Code?
	Malfunction vs. Other Target Languages in the OCaml compiler
	The Correctness Theorems
	Malfunction and Rocq
	Operational Semantics of Malfunction in Rocq

	The Malfunction Pipeline
	Linearize case
	Named variables and environment semantics
	Enforce extractability
	Compilation from λ□ to Malfunction

	Extraction Theorem For First-Order Data Types
	Extraction Theorem For First-Order Functions
	Applications
	Verified Extraction as a Drop-In Replacement
	Bootstrapping a Self-Hosting Compiler
	Using verified extraction to implement conversion
	Benchmarks

	Related and Future Work
	Mechanized meta-theory and certified type-checkers
	Compilation of dependently-typed languages
	Verified extraction from Rocq
	CakeML
	Other compilation from proof assistants

	Conclusion and Future Work
	Tackling our awkward squad
	Extensionality rules
	Modules
	The guard

	Extending erasure

	Bibliography

