


132


	Introduction (en Français)
	Une histoire personnelle
	Motivation
	Même les assistants de preuve ont des bugs.
	Certifier les assistants de preuve en utilisant des assistants de preuve.
	D'une base de code de confiance à une base de théorie de confiance.
	De la spécification à l'implémentation.
	Un algorithme de vérification de types paramétré avec des procédures de décision.
	Extraction certifiée

	Formalisation Rocq
	Notations et couleurs


	Introduction
	A Personal History
	Motivation
	Even Proof Assistants Have Bugs.
	Certifying Proof Assistants using Proof Assistants.
	From a Trusted Code Base to a Trusted Theory Base Paradigm.
	From Specification to Implementation.
	A type-checking algorithm parametrized with decision procedures.
	Certified Extraction

	Outline of this Manuscript
	Rocq Formalization
	Notations and colors



	An overview of Rocq’s type theory
	Datatypes
	Inductive types
	Positivity
	Pattern matching and fixed points
	Record types and primitive projections
	Coinductive types


	Sorts and universes
	Monomorphic universes
	Cumulativity
	Propositions
	Polymorphic universes
	Template and sort polymorphism

	Other Features of Rocq Present in PCUIC
	Let bindings

	Other Features of Rocq Absent from PCUIC
	η-conversion
	Primitive types
	Modules and functors


	PCUIC: Rocq’s core calculus specification
	Definition of the Syntax and Environments
	Universes
	Constraints and Valuations
	Cumulativity on universes

	Cumulativity
	Ordering Rules
	Cumulativity Rules
	Computation Rules
	Congruence Rules
	Dealing with the Guard Condition
	Definition of Typing
	Well-Formed Environments
	Positivity criterion
	Cumulative Inductive Types
	Variance
	Inductive types
	Constructor types

	Allowed Eliminations


	Equivalent Algorithmic Specification of PCUIC
	Universes: Valuation vs Acyclicity
	Conversion: Algorithmic presentation with equality and reduction
	Reduction and Syntactic Equality up to Universes
	Algorithmic cumulativity and its properties

	Bidirectional Typing
	The Bidirectional Typing Judgement
	Correctness: Bidirectional Typing Implies Undirected Typing
	Completeness: Undirected Typing Implies Bidirectional Typing
	Reaping the Benefits of the Equivalence

	Fixing Cumulativity for Pattern Matching on Cumulative Inductive Types
	Representing pattern matching
	The completeness issue
	Example of Subject Reduction Failure in Rocq 8.14
	The change in Rocq


	Metatheory of PCUIC
	Accessibility and Well-Founded Induction
	Substitution and Weakening
	The σ-calculus
	Correctness of the Guard Checker

	Confluence
	Well-Scoped Terms
	Dealing with Dependent Let-Bindings
	The Triangle Method
	Context Conversion and Cumulativity

	Subject Reduction
	Positive Coinductive Types
	Negative Coinductive Types

	Strong Normalization
	Weak Call-by-Value Standardization
	Canonicity
	Consistency

	A Sound and Complete Checker for PCUIC
	Technical Insight
	Enforcing computational irrelevance
	Equations
	Views
	Open Recursion
	Monadic-Style Code

	Abstract Computational Environment
	Interface
	Properties
	Reference Implementation
	More efficient implementations

	Conversion and Cumulativity Without Fuel
	Term positions
	Weak-Head Normalization Using a Stack Machine
	Safe Conversion

	A Type-checking Algorithm for PCUIC
	Performance of our Type Checker


	Conclusion of Part I
	Type and Proof Erasure for PCUIC
	From erasure to extraction
	The Target Calculus λ□
	Definition of an Erasure Function
	Correctness of Erasure
	Elimination of subsingleton cases and dependencies
	The Erasure Pipeline
	Verified Transformations
	Eta-expand
	Translation from TemplateRocq to PCUIC
	Lets in constructor types
	Type and proof erasure
	Typed extraction
	Reordering of constructors
	Unary fixpoint translation
	Parameter stripping
	Remove match on □
	Inline projections
	Constructors as blocks
	Implement □
	Global environments

	Summary
	Uses of the erasure pipeline


	Certified Extraction to OCaml
	Scope and Limitations of Extraction to OCaml
	What Guarantees Can We Expect From Extracted Code?
	Malfunction vs. Other Target Languages in the OCaml compiler
	The Correctness Theorems
	Malfunction and Rocq
	Operational Semantics of Malfunction in Rocq

	The Malfunction Pipeline
	Linearize case
	Named variables and environment semantics
	Enforce extractability
	Compilation from λ□ to Malfunction

	Extraction Theorem For First-Order Data Types
	Extraction Theorem For First-Order Functions
	Applications
	Verified Extraction as a Drop-In Replacement
	Bootstrapping a Self-Hosting Compiler
	Using verified extraction to implement conversion
	Benchmarks


	Related and Future Work
	Mechanized meta-theory and certified type-checkers
	Compilation of dependently-typed languages
	Verified extraction from Rocq
	CakeML
	Other compilation from proof assistants

	Conclusion and Future Work
	Tackling our awkward squad
	Extensionality rules
	Modules
	The guard

	Extending erasure


	Bibliography

