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Résumé : Les travaux présentés dans cette
habilitation a diriger les recherches (HDR) ont
pour objet la vérification du noyau logique de
l'assistant de preuve Rocq ainsi que de son
mécanisme original de compilation vers des
langages fonctionnels usuels. L’objectif de ces
travaux est d’obtenir des garanties formelles de
sOreté sur la théorie sous-jacente du prouveur
Rocq, sur limplémentation du vérificateur de
preuves pour cette théorie et sur la procédure
d’extraction de  programmes  permettant
I'exécution de code vérifié par Rocq.

Nous présentons MetaRocq, un développement
formel de spécifications et programmes vérifiés,
représentant un large fragment de Rocq dans

Rocg méme, combinant des techniques de méta-

programmation et de preuve de métathéorie des
langages a grande échelle ainsi que des
techniques de compilation certifiée.

Nous développons formellement dans Rocq une
spécification formelle de la théorie des types de
Rocq et sa variante algorithmique équivalente, un
algorithme de typage correct et complet vis-a-vis
de ces spécifications, un algorithme d’effacemen
des preuves correct et une chaine de compilation
de Rocq vers OCaml préservant la sémantique
du langage source.

Les résultats obtenus nous permettent de
changer de paradigme quand a la s(reté des
résultats obtenus dans l'assistant de preuve et
produits par I'extraction, passant d’'une notion de
base de code fiable - le noyau non vérifié actuel -
a une notion de base de théorie fiable - la
spécification formelle de la théorie de Rocqg en
Rocqg que nous avons introduit.

Nous discutons I'impact et les limites de nos
travaux pour I'obtention de garanties maximales
sur les développements réalisés dans Rocq.

Title : Mechanized metatheory and certified compilation for The Rocq Prover
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Abstract : The work presented in this habilitation
thesis focuses on the verification of the logical
core of the Rocq Prover, as well as its original
mechanism for compiling to usual functional
programming languages. The objective of this
work is to obtain formal safety guarantees for the
underlying theory of the Rocq prover, for the
implementation of the proof verifier for this
theory, and for the procedure of program
extraction that enables the efficient execution of
code verified by Rocq. This work lies at the
intersection of the meta-theory of type theory and
the formal verification of type inference and
compilation algorithms.

We present MetaRocq, a formal development of
specifications and verified programs,
representing a large fragment of Rocq within
Rocq itself. This combines techniques for meta-
programming and large-scale language meta-
theory proofs, as well as certified compilation
techniques.

We formally develop in Rocq a formal
specification of Rocq's type theory and its
equivalent algorithmic variant, a typing algorithm
that is correct and complete with respect to
these specifications, a correct proof erasure
algorithm, and a compilation chain from Rocq to
OCaml that preserves the semantics of the
source language.

The results obtained here allow us to shift the
paradigm regarding the safety of the results
obtained in the proof assistant and produced by
extraction, moving from a notion of a trusted
code base — the current unverified kernel —to a
notion of trusted theory base — the formal
specification of Rocq's theory in Rocq that we
have introduced.

We discuss the impact and limitations of our
work to obtain maximal correctness guarantees
for the formal developments carried out in the
proof assistant.
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