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ABSTRACT

The upper-bound method in limit analysis is applied to the log-spiral rotational
mechanism for calculating the passive earth presure coefficients in seismic areas.
Numerical results are discussed and compared with other authors' results.

INTRODUCTION

Earthquake can endanger the stability of a soil-wall system by either increasing
(or reducing) the active (passive) earth pressures acting on the wall. Thus, the
dimensioning of deep sheet piling stuctures in seismic areas requires the
determination of active and passive earth pressures acting on these structures
taking into account the earthquake forces. So, a rational analysis of these
pressures is of great interest in geotechnical engineering.

Traditionally, the determination of active earth pressures acting on a retaining
wall and taking into account the earthquake forces, is made using the classical
method introduced by Mononobe-Okabe [4]. In his method, this author used an
extension of the Coulomb's sliding wedge theory [3] in which earthquake
effects are taken into account by the addition of horizontal and vertical inertia
terms.

In this paper, we present a more rational and simple method which makes it
possible to calculate the earth pressure taking into consideration the earthquake
forces. The approach presented is a rigorous one in regard to the limit
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equilibrium method since it makes no assumptions concerning the shape of the
slip surface and the normal stress distribution along this surface.

It was shown by Soubra [15], that the variational limit equilibrium method is
equivalent to the upper-bound method in limit analysis for a rotational
mechanism. Hence, the solution obtained is an upper bound one for a rigid
perfectly plastic material obeying Hill's maximal work principle.

VARIATIONAL LIMIT EQUILIBRIUM METHOD

The classical method introduced by Mononobe-Okabe [4] is a limit equilibrium
method giving unsafe solutions since it is based on Coulomb's approach [3]
which highly overestimates the passive earth pressure coefficients: This fact is
due to the a priori hypothesis concerning the shape of the slip surface. In this
paper, we look for the shape of the mechanism giving the minimum value of the
passive earth force Pp and for which the three limiting equilibrium equations are
satisfied. This problem is formalized mathematically using a variational
approach.

Mathematical formulation of the problem

It is well known that a rigorous limit equilibrium method is one for which the
following conditions are satisfied:
a. The shape of the slip surface y(x) and the normal stress distribution 6(x) will

give the minimum value of the passive earth force Pp.
b. The three equations of the static equilibrium are satisfied for the soil mass

ABC (fig. 1).
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Figure 1. Slip surface and normal stress Figure 2. Free body diagram.
distribution for passive earth
pressure analysis.

Notice that a mass is in a state of limit equilibrium when the Mohr-Coulomb
criterion is satisfied along the slip surface AB. Writing the three equations of the
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static equilibrium for the soil mass (fig. 2), and combining these equations with
the Mohr-Coulomb criterion; one obtains the three limiting equilibrium equations
as follows

X1 .
Pp.cosd = [[o(tgo+y’)-Kny(f-y)ldx (12)
X0
X1 .
Py.sind = [[o(1-tgd.y)+¥(E-y)(Ky-1dx (1b)
X0
X1
Py.cosd.f/3 = _[[c(1-tg¢.y’)x+'y.x(f-y)(Kv-1)-Kh.Y(f-Y)Y
X0
+o(tgd+y')yldx (1c)

where all parameters of these equations are defined in figure (2). From these
equations, it is easy to see that the passive earth force Pp, is a functional of two
functions y(x) and o(x). Thus, the rigourous passive limit equilibrium problem
is a variational one of the isoperimetric type as follows

X1
Min P, = JF(x, y, y',0)dx
X0
subject to
X1
_[Gi(xa Y, yl’ G)dx = 3 (l=1,2)
X0

where F(x, y, y', ) is simply obtained through one of the equations (1). Gi(x,
¥,y ©) and aj can be obtained from the two remaining equilibrium equations.
It was shown (Petrov [8]) that the solution of such a problem is obtained using
the Euler equations as follows

0H d oH

—_— = (23.
s X35 )
oH doJH

W:ﬁa—y, (2b)

Where H is an intermediate functional given by
H=F + Ai.Gj (i= 1,2)

Notice that H can be written as
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H=o0.1(x,y, y)+gx, y,y) 3)

Hence, equation (2a) is equivalent to : f(x, y, y')=0. Solving this equation,
one obtains the equation of the slip surface which is a log-spiral in the case of a
constant ¢. Replacing this equation into equation (3), one can see that H
becomes independent of the normal stress distribution. This result is a direct
consequence of the shape of the slip surface. It was shown (Soubra [15]) that
any equation of the normal stress distribution having at least two degrees of
freedom will satisfy the three equations of static equilibrium and that, only the
equation of moments around the centre of the log-spiral is sufficient to calculate
the passive earth force Pp. It is easy to see that the moment equation of the
rotational log-spiral mechanism around the centre is identical to the work
equation for the same mechanism in the upper-bound method in limit analysis.
Thus, solving the passive earth pressure problem by the upper-bound method in
limit analysis for a rotational mechanism will give a rigorous solution in regard
to the limit equilibrium method. This method is detailed in the following section.

UPPER-BOUND METHOD
The equation of the rotational log-spiral mechanism (fig. 3) is given as

r=r0.¢(6-00)tg¢ (4)

X

>

Figure3. Log-spiral mechanism for passive earth pressure analysis.
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For a rigid body rotation, this mechanism is kinematically admissible since
the velocity V along the plastically deformed surface AB (fig. 3) makes an angle
¢ with the transition layer according to the normality condition for an associated
flow rule material.

According to the upper-bound theorem in limit analysis, for a kinematically
admissible mechanism, the rate of external work exceeds the internal rate of
dissipation of energy along the plastically deformed region. Thus, equating the
external rate of work of all external forces to the internal rate of dissipation of
energy gives an upper-bound of the exact solution for an associated flow rule
material.

Rate of external work

The external forces acting on the soil mass are shown on the free body diagram

shown in figure (3). These forces consist of:

a.The weight of the soil mass between the log-spiral surface and the ground
surface.

b.The passive earth force which is inclined at § to the normal of the sheet piling

wall.
c.The force K.W which simulates the inertial force due to the earthquake effect.

Notice that the seismic vector K has two components: The horizontal seismic
coefficient Kh whose value is dominating and the vertical seismic coefficient Kv
which is often disregarded. The currently used values of Kn ly between 0.05
and 0.15 in the United States and between 0.15 and 0.25 in Japan. Notice that
the choice of the seismic coefficient is completely empirical (Seed [11, 12, 13]).
Seed [13] showed that a value of Ky, which lies between 0.1 and 0.17 describes
very well the failure of the Sheffield dam in California: This dam was subjected
to a maximal base acceleration of 0.15g. This author has also shown that for
higher accelerations (0.4-0.5g) which describe the Californian earthquakes, a
minimum value of 0.3 is necessary for the horizontal seismic coefficient.

When studying the stability of slopes, Taniguchi and Sasaki [16] have
analysed the failure which occured for a slope subjected to the Naganokon Seibu
earthquake in 1984 in Japan. These authors have shown that the seismic
coefficient can be described by either the following formulas

amax 1 amax
Kn = 0.65.g Kn=7.(g)!?

Finally, it is interesting to notice that the real value of the seismic coefficient
requires the analysis of actual failure cases.
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The weight of the soil mass ABC is given as

X1
W= [yyyx )
X0

where f is the penetration depth and y represents the equation of the slip surface
in the coordinate system (ox, oy). Based on equation (4), one can easily show
that

y = r.8in6-10.5in60

dx = r(tgd.cosb—sin0)do

Replacing these equations into equation (5), it can be shown that
W = v.r02.f1(80, 01)

where f1(00, 81) is given elsewhere (Soubra [15]). Having established the
weight of the soil mass, one can calculate the rate of external work done by the
weight of the soil mass as the product of the weight by the vertical component of
the velocity of the soil mass. The vertical component of the velocity is given as

V = Q(10.cos80+X)

where X represents the distance between the y axis and the line of action of the
weight force, and Q being the angular velocity of the soil mass. X is simply
calculated as follows '

X1
o1
X=g [x{E-y)dx=ro.£280, 61)
X0

where £2(00, 01) is given elsewhere (Soubra [15]).
The rate of external work done by the passive earth force is given as

Pp[-ro.cosﬁo.sin8+cos§(-ro.sineo-%)]g

The rate of external work done by the horizontal inertial force Knh.W is the
product of this force by the horizontal velocity of the soil mass ABC as follows

Knh.W.Q(-10.5in00-Y)
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where Y=r0.£3(60, 61) and f3(0, 61) is given by Soubra [15]

Rate of internal digsipation
The internal dissipation of energy along the log-spiral surface is simply
calculated by first calculating the differential energy dissipation along AB which
is the product of the surface element r.d8/cos¢ by the cohesion ¢ by the
tangential velocity Vcos¢ and then by integrating over the surface AB as follows
01
rd0

D= jc @Vcosﬂ)

60
Replacing V by Q.r and integrating, one obtains
D = ¢.192.Q.£4(60,61)

where f4(89, ;) is also given by Soubra [15]. For a cohesionless soil, this
dissipation is vanishing.

Work equation
Equating the total external work done by the weight, the inertial force and the

passive force P, to the internal rate of dissipation of energy, one gets

_ W[-(X+r9.cos80)+Kp(-1p.5in0p-Y)] ©

P, —
ro.cosGo.sin8-cos8(-ro.sm90-§)

Notice here that the passive earth force P, is assumed to act at the bottom
third of the penetration depth. This hypothesis depends on problem kinematics
and it will be discussed later. Due to this hypothesis, one can write
Pp=K}..f2/2. The most critical Kp-value can be obtained by minimizing with
respect to 6p and 6; angles shown in figure (3). The 8y and 6; at which the
Kp-value is minimum determine the most critical sliding surface. A FORTRAN
computer program for assessing seismic passive earth pressures has been
developed with equation (6) as a basis.

NUMERICAL RESULTS

Effect of the point of action of the passive earth force on the passive earth

pressure coefficients
In fact, the point of action of the passive earth force depends greatly on problem

kinematics. This point was the subject of great controversy in literature. Prakash
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and Basavanna [9] showed that the point of action of the active earth force lies
between 0.4f and 0.5f when the seismic coefficient varies between 0.1 and 0.3.
Wood [17] was based on the elastic soil hypothesis and suggested a force acting
at the middle of wall height. Aubry and Chouvet [1] made a finite element
analysis and suggested a point of action lying slightly higher than the bottom
third of the wall height. The present analysis have shown that the passive earth
pressure coefficient is increased when the passive force goes up. Thus, a
conservative approach concerning the K-value is to adopt the bottom third

distance.

Seismic effect on the passive earth pressure coefficients

It is known that earthquakes have the unfavorable effect of increasing active and
decreasing passive lateral earth pressures. An earthquake can also reduce the
shearing resistance of a soil. The reduction in the shearing resistance of a soil
during an earthquake is only effective when the magnitude of the earthquake
exceeds a certain limit and the ground conditions are favorable for such a
reduction. The evaluation of such a reduction requires considerable knowledge
in earthquake engineering and soil dynamics. Research conducted by Okamoto
[7] indicated that when the average ground acceleration is larger than 0.3g, there
is a considerable reduction in strength for most soils. However, he claimed that
in many cases, the ground acceleration is less than 0.3g and the mechanical
properties of most soils do not change significantly in these cases. In this paper,
the shear strength of the soil is assumed to remain unaffected as the result of the
seismic loading.

To investigate how the passive earth pressures are affected, numerical results
based on the above mentioned upper-bound method in limit analysis for a
rotational mechanism are presented in dimensionless form (figure 4). As
mentioned previously, the present limit analysis solutions are valid when there is
no reduction in soil strength due to an earthquake. Due to figure (4), it is easy to
see that for ¢=40 ; 8/¢=-2/3; the reduction in the passive earth pressure
coefficient is about 16.5% when the horizontal seismic coefficient increases
from zero to 0.3. Thus, the calculation of the coefficients of passive earth
pressure taking into account the earthquake forces is of great interest in areas of
high earthquake risks.

Comparison with authors' results
The best upper-bound solution in limit analysis is given by Chang and Chen[2]

for the translational log-sandwich mechanism. His results have shown that the
Mononobe-Okabe approach seriously overestimates the Kp-value. This is
especially the case when the wall is rough.
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The results obtained by the present upper-bound method in limit analysis for
a rotational log-spiral mechanism are compared with the above mentioned upper-
bound solutions (figure 4). It is interesting to remember here that the log-
sandwich translational mechanism is the best mechanism available in literature
since it gives the smallest upper-bound solution. Our approach gives better
solutions than the Chang and Chen log-sandwich ones since our passive earth
pressure coefficients are smaller than those of Chang and Chen [2] for §>0.
However, when 8=0; we obtain a planar surface and our passive earth pressure
coefficients are the same as those of Chang and Chen since both the log-spiral
and the log-sandwich mechanisms degenerate to a planar surface when 8=0.
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Figure 4. Some Kp-value by the present analysis and the Chang-Chen's one.

For 6>0 (¢=40, 8/9=-2/3 for example); the passive earth pressure
coefficient as calculated by the present approach is 3.7% smaller than the Chang
and Chen's one when K;=0.This difference decreases with the increasing of the
Ky-value. This difference is about 0.9% when Kj,=0.3.

In order to braket the collapse load, our solution is compared with the lower-
bound solution for (¢=40, 8/¢=-1/2) available in literature.This comparison
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shows that our upper-bound solution (K,=9.81) is 2.8% greater than the
Lysmer [5] lower bound solution (Kp=9.54) which indicates that the upper-
bound solution in limit analysis for a rotational log-spiral mechanism is very
close to the exact solution for an associated flow rule material.

Seismic effect on the critical slip surface

The seismic acceleration generated by earthquakes not only imposes extra
loading to a soil mass but also shifts the sliding surface to less favorable
positions. Consequently, in addition to the change in the passive earth
pressures, the most critical sliding surface is also altered. The numerical results
given by the Fortran computer program have shown that the slip surface
approaches a planar surface due to the increase in the Ky-value in the case ofa
rough wall (8>0). Whereas, in the case of a smooth wall (8=0); when the K-
value is equal to zero, the slip surface is planar making an angle equal to (/4 —
¢/2) with the horizontal direction: This is in accordance with the Rankine
solution. For higher values of Ky, the slip surface remains planar, but it is
inclined at smaller angles than the Kp=0 case. Figure (5) shows some typical
changes in the critical sliding surface as the result of an earthquake.

¢$=30°
Kp=0.0
0=0° Kp=0.1
Kp=0.2
Kh =0.3
m/4-Pf2

Figure 5. Effect of seismic forces on failure mechanism.
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Finally, it is interesting to notice that the critical sliding surface becomes more
extended when earthquakes occur. This conforms with the experimental results
of Murphy [6]. The change in the critical sliding surface as the result of
earthquake has also been noted by Sabzevari and Ghahramani [14].

CONCLUSION

The upper-bound technique of limit analysis for a rotational log-spiral
mechanism is used for determining the seismic passive earth pressure
coefficients in a quasi-static manner. The approach presented is interesting since
the passive earth pressure coefficients so obtained are smaller than the ones
given by the best upper-bound solution available in literature concerning the
translational log-sandwich mechanism (Chang and Chen [2]) and the difference
with the lower-bound solution (available only when Ky, =0) is less than 3% in

the (¢=40°;6=20°) case.
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