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ABSTRACT

The overall stability analysis of anchored sheet pile structure is investigated by a theoretical
model using the upper-bound method of the limit analysis theory. A translational failure
mechanism is considered for the calculation scheme. This mechanism is composed of two
rigid blocks in the active zone and the so-called log-sandwich mechanism in the passive zone.

The numerical results show good agreement with experimental results obtained from
laboratory model tests.

INTRODUCTION
Early anchored sheet pile structures comprised a sheet pile wall, an anchor rod and an anchor
wall or plate parallel to the sheet pile wall. In the past, the necessary length of the rod was

determined by searching not intersecting slip surfaces of the active wedge behind the retaining
wall and the passive wedge in front of the anchor plate.

Since the preceding design procedure proved not to be adequate, Kranz (1940) proposed a
method that took into account a failure surface that extends from the base of the retaining wall
to the base of the anchor plate. This method has been extended to cement grout injection
anchors and pile tie-backs even though the load transfer is completely different. In this paper a
modified approach of the Kranz method is proposed where the failure of the whole soil in
front and behind the retaining structure is taken into consideration.

The approach presented in this paper is based on the upper-bound theorem of the limit
analysis theory. The solution so obtained is a rigorous upper-bound solution to the exact
solution for an associated flow rule Coulomb material obeying Hill’s maximal work principle.

THEORETICAL ANALYSIS

As it is well known, the upper-bound theorem states-that the soil mass will collapse if there is
any compatible pattern of plastic defotmation for which the rate of work of the external loads
exceeds the part of internal dissipation. Thus, for a kinematically admissible velocity field, an
upper bound of the exact solution can be obtained by equating the power dissipated internally
to the power expended by the external loads. A kinematically admissible velocity field is one
that satisfies the flow rule, the velocity boundary conditions, and compatibility. During
plastic flow, power is assumed to be dissipated by plastic yielding of the soil mass, as well as

by sliding along velocity discontinuities where jumps in the normal and tangential velocities
may occur.

Ground anchorages and anchored structures. Thomas Telford, London, 1997.

SOUBRA AND REGENASS 101

Note that the velocity field at collapse is often modelled by a mechanism of rigid blocks that
move with constant velocities. Since no general plastic deformation of the soil mass is
permitted to occur, the power is dissipated solely at the interfaces between adjacent blocks,
which constitute velocity discontinuities. This kind of velocity field will be used herein.
Finally, note that the analysis of the overall stability of an anchored sheet pile structure by the
upper-bound theorem gives an unsafe estimate of the safety factor.

In this paper, a translational failure mechanism is considered for the calculation of the safety
factor. This mechanism is based on the experimental observations on laboratory model tests
with Shneebeli rollers (Masrouri 1986, Masrouri & Kastner 1991) and it will be presented in
some details in the following sections.

Hypotheses

The following assumptions have been made in the analysis:

o The soil is homogeneous and isotropic. It is an associated flow rule Coulomb material
obeying Hill’s maximal work principle. It is characterised by its angle of internal friction ¢
and its cohesion c.

o The friction at the soil-wall interface is characterised by a constant angle of friction &
(6 <¢). This is in conformity with the kinematics proposed in this paper.

o The sheet pile wall and the anchor are assumed to be rigid.

s No pore water pressures are considered in the present analysis.

e The overall stability analysis of the anchored sheet pile is investigated as a two-
dimensional plane strain problem.

o The safety factor considered in the present analysis is defined as the ratio of the resisting

work to the work of the driving external forces.

Failure Mechanism

As it has been shown by Masrouri (1986), the sheet pile wall moves horizontally. Hence, the
soil behind the sheet pile will be in an active state and the soil in front of the wall will be in a
passive state. The stereophotogrammetric image of failure given by Masrouri has shown that
there are three different zones around the sheet pile wall: i) Two zones in the active state
behind the wall, ii) one zone in the passive state in front of the wall. Hence, the failure
mechanism adopted in this paper (cf. figure 1) consists of:

e A triangular active wedge EFG. This block is rigid and it is completely described by two
angular parameters 6, and 6,.

» A quadrilateral rigid block GFAD. This block passes through the toe of the sheet pile wall.

e A zone CDHIJ in front of the sheet pile wall. This zone is in a passive state. The failure
mechanism considered in this zone is a log-sandwich. It is composed of a radial shear zone
CHI bounded by a log-spiral curve of angle ¢. This radial shear zone is sandwiched
between two triangular rigid blocks CDH and CIJ. The log sandwich mechanism is
completely defined by two angular parameters 6; and 0,. The choice of this failure
mechanism in the passive zone is not arbitrary. Chen (1975) have considered six
translational mechanisms to calculate the passive earth pressures. The numerical results
obtained have shown that the log sandwich is the best mechanism since it gives the
smallest upper-bound solutions in most cases.
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Figure 1 : Theoretical failure mechanism

Kinematics of the Failure Mechanism

As it has been mentioned before, the upper-bound method in limit analysis requires a
kinematically admissible failure mechanism which satisfies the velocity boundary conditions.
In the case of a Coulomb (¢, c¢) material, the velocity along a velocity discontinuity must be
inclined at an angle ¢ with this surface. For the present analysis, this condition is satisfied on
all the velocity discontinuities except along the sheet pile wall, where we have made the
assumption of sliding by friction (cf. figure 2). Thus, the velocities along the sheet pile wall
are assumed tangent to this wall. In the active zone, the blocks EFG and GFAD move as rigid
bodies with velocities V; and V, respectively. The sheet pile wall moves horizontally with
velocity V. On the other hand, the velocity field in the passive zone consists of the two
triangular rigid blocks CDH and CIJ which move with velocities V5 and V, respectively. This
zone includes also the radial shear zone bounded by the log spiral slip surface HI. The
velocity field in the shear zone is of the translational type and the velocity distribution along
the surface HI is given by the following relationship (cf. Chen 1975):

V(©)=V, exp[(0 -0, )tan¢] e}

The velocity hodographs of the active and the passive zones are shown in figure (3). The
velocity field is now completely defined. The work equation of the upper-bound theorem in
limit analysis is given in the following section.

Work Equation of the Failure Mechanism

The work equation consists in equatingrthe rate of external work done by the external forces
to the rate of internal energy dissipation along the plastically deformed surfaces.

The incremental external work due to an external force is the external force multiplied by the
corresponding incremental displacement or velocity. The external forces contributing in the
external work consist of the weight of the different blocks EFG, GFAD, CDH, CHI and CIJ.
The incremental external work due to self weight in a region is the vertical component of the
velocity in that region multiplied by the weight of the region. The incremental external work
for the different external forces can be easily obtained. They are not presented herein.

SOUBRA AND REGENASS 103

Figure 2 : Velocity field

The incremental energy dissipation per length unit along a velocity discontinuity or a narrow
transition zone can be expressed as follows:

@)
AD, = c.AV .cosd

(@) ®
Figure 3 : Velocity hodograph ) in the active zone b) in the passive zone

where AV is the incremental displacement or velocity which makes an .E._m—o o) iﬁw ”Wm
velocity discontinuity according to the associated mos.\ EF of perfect Emmam:v\. and ¢ wm ﬁ. e
cohesion parameter. The incremental energy dissipation w_.oam the different velocity
discontinuities EG, GF, GD, DH, HI, IJ and r;(®) can be easily om.__oEBom. They are not
presented herein. Finally, it is to be noted that along the wo.:-m.\ﬁcmgnw Eﬁ.onwmom where swo have
adopted the assumption of sliding by friction, the energy dissipation is given as follows:

3
AD, = P.tan8.V ©))

where P is the normal force acting on the discontinuity surface and V is the tangential velocity
along this surface.

Along the sheet pile wall, the energy dissipation is given by:
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where P; and P, are the normal forces acting on the surfaces AD and CD respectively. These
forces (i.e. P; and P,) are determined by considering the work equation in both the active and
the passive zones separately.

CALCULATION PROCEDURE

The different steps of the calculation procedure are as follows:

¢ One considers separately the active and the passive zones and considers the work equation
for each zone in order to determine the forces P, and P, for given values of the angular
parameters 0, 6,, 6; and 6,.

e One calculates the different terms of the work equation contributing in the energy
dissipation and the ones contributing in the positive external work due to the driving
forces.

e One then calculates the safety factor defined above as the ratio of the energy dissipation to
the positive external work for given angular parameters 6, 6,, 6; and 0.

e Finally, one minimises the safety factor with respect to the four angular parameters to
obtain the minimal safety factor and the corresponding critical failure mechanism.

NUMERICAL RESULTS

In this section, we will present the numerical results showing the influence of the different
parameters of the anchored sheet pile (i.e. the excavation level, the anchor’s length and
inclination) on the safety factor and the corresponding critical failure mechanism. This study
is accompanied by a comparison of the present results with those obtained from the laboratory
model tests with Shneebeli rollers (Masrouri 1986). The data which concern the laboratory
model are as follows: Hy+f=80.5cm ; h=5cm ; $=21° ; $=8° ; y=65kN/m’ (cf. figure 1 for the
notations).

Influence of the Excavation Level

Figure (4) shows the variation of the safety factor F, with Hy where H represents the distance
between the excavation level and the top of the sheet pile. It is clear that F decreases with H,.
To show the influence of the excavation level on the critical failure surface, one presents in
figure (5) the critical surfaces for two values of Hy (Hy=40cm and 53cm).
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Figure 4 : Variation of the safety factor F with the excavation depth H,
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Figure 5 : Influence of the excavation level on the critical failure surface

For the case Hy=40cm, there is stability (F=2.18). However, the minimal excavation _w<&.m9.
which the failure occurs (Fs=1) corresponds to Hg=53cm. It is to be noted that the critical
failure surface in the active zone is independent of the excavation level. The angular
parameters 6; and 8, obtained from the numerical minimisation are both equal to n/4+¢/2. On

the other hand, the angles ICJ and 1JC are both equal to n/4-¢/2 and the wedge ClJ is in a
Rankine limit equilibrium state.

Influence of the Anchor Length

Figure (6) shows the variation of the safety factor Fg with the anchor Fc.mﬁ 1 when
H=50.5cm and a=22°. This factor increases with the anchor length increase. Notice _.,o<<m.<9.
that due to economical and practical reasons, very long anchors are not used in geotechnical
engineering. .

To show the influence of the anchor length on the critical failure surface, we present in figure
(7) the two failure surfaces corresponding to two values of the anchor length Qudoi.wsa
100cm). It is obvious that for 1=100cm, there is stability (F;=2.07). However, the minimal
anchor length for which the failure occurs (F=1) corresponds to 1=75cm.
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Figure 6 : Variation of the safety factor F with the anchor length 1
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Figure 7 : Influence of the anchor length | on the critical failure surface

It is obvious that the angles 8, and 6, obtained from the numerical minimisation are both
equal to n/4+¢/2 independently of the anchor length. On the other hand, the wedge CIJ in the
passive zone is in a Rankine limit equilibrium state.

Influence of the Anchor Inclination

Figure (8) shows the variation of the safety factor F; with the anchor inclination a. when
Hy=49cm and 1=75cm. This factor increases with the anchor inclination increase. Notice
however that the practical engineer is limited by a maximal value of o, for practical purposes.

To show the influence of the anchor inclination on the critical failure surface, we present in
figure (9) the two failure surfaces corresponding to two values of the anchor inclination
(a=12° and 35°). The failure case (F=1) occurs for a=12°, However, for a=35°, F=1.25.
Finally, it is to be noted here that the same conclusions mentioned above and concerning the
evolution of the angular parameters, are also valid in the present case.
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Figure 8 : Variation of the safety factor F, with the anchor inclination &
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Figure 9 : Influence of the anchor inclination on the critical failure surface
omparison with the Experimental Data o
Table (1) presents the values of the excavation depth H, corresponding to the limit state
(Fs=1) obtained from the laboratory model tests with Schneebeli rollers (Masrouri 1986) and
those obtained from the present theoretical model.

Anchor lenght Anchor Critical excavation depth H, (cm) Percent
I(cm) inclination o® Masrouri (1986) | Present solution difference

85 22 50.5 53 4.9
75 22 49 50 2

65 22 47 48 2.1
55 22 42,5 47 10
55 31 45 47.5 5.5
75 31 51 52 2

Table 1 : Critical values of the excavation depth H, corresponding to failure (F&=1)
It is obvious that there is good agreement between the experimental and the theoretical values.

CONCLUSIONS

The theoretical analysis of the overall stability of an anchored sheet pile wall has shown that
the stability increases with the anchor’s length and inclination and that the excavation depth
corresponding to overall failure (Fs=1) of the soil-structure system is in good agreement with
the experimental observations on laboratory model tests.
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Limit Loads of Strip Anchors
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ABSTRACT .

The limit loads of strip anchor plate are calculated using the upper-bound method of the limit
analysis theory. Several translational failure mechanisms are considered for the calculation
schemes. The numerical results obtained are presented and compared with other authors
results.

INTRODUCTION

Anchors are structural elements used in civil engineering practice and designed primarily to
resist pullout (tensile) loads. They are used extensively for structures subjected to overturning
moments or pullout forces. Electrical transmission towers and retaining walls are typical
examples for such structures. Anchors are manufactured in a variety of configurations such as
anchor plates, pile anchors, grouted anchors, prestressed concrete anchors, and single-and
multiple screw helical anchors. This paper is concerned with the limit loads of anchor plate
subjected to axial uplift forces.

Depending upon the depth of embedment of the plate in the soil, the anchor is classified as : i)
Shallow anchor; or ii) deep anchor. In the former, the anchor is installed close to the surface
of the soil, and the failure surface in the soil extends from the tip of the anchor to the ground
surface with significant surface movements. A slight increase in depth results in a
considerable increase in the breakout load. However, for the deep anchor condition, the failure
surface in soil at ultimate load does not extend to the ground surface (i.e. local shear failure in
soil located around the anchor takes place). Most authors assume that the shallow anchor
condition exists for H/h<5. In this paper, only the shallow anchor condition will be
considered in the analysis.

A literature survey indicates that numerous methods have been proposed by many
investigators to design anchors subjected to uplift uniaxial forces (Ovesen & Stroman, 1972;
Neely, Stuart & Graham, 1973; Das & Seely, 1975; Rowe & Davis, 1982; Dickin & Leung,
1983; Vermeer & Sutjiadi, 1985; Murray & Geddes, 1987). Most of these have dealt with
horizontal or/and vertical anchors and have been based on the results of tests on small-scale
models in the laboratory, which may be subject to considerable scale effects.

The previous theoretical research into anchor behaviour has focused on elastic response (Fox,
1948; Douglas & Davis, 1964; Rowe & Booker, 1979) and ultimate capacity. Many
investigators have proposed approximate techniques for determining the collapse load of
anchor plates. Approaches involve the use of either limit equilibrium concepts or the method

Ground anchorages and anchored structures. Thomas Telford, London, 1997.



