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SUMMARY

Natural soils are one of the most inherently variables in the ground. Although the significance of inherent
soil variability in relation to reliable predictions of consolidation rates of soil deposits has long been realized,
there have been few studies that addressed the issue of soil variability for the problem of ground improve-
ment by prefabricated vertical drains. Despite showing valuable insights into the impact of soil spatial var-
iability on soil consolidation by prefabricated vertical drains, available stochastic works on this subject are
based on a single-drain (or unit cell) analyses. However, how the idealized unit cell solution can be a sup-
plement to the complex multi-drain systems for spatially variable soils has never been addressed in the lit-
erature. In this study, a rigorous stochastic finite elements modeling approach that allows the true nature of
soil spatial variability to be considered in a reliable and quantifiable manner, both for the single-drain and
multi-drain systems, is presented. The feasibility of performing an analysis based on the unit cell concept
as compared with the multi-drain analysis is assessed in a probabilistic context. It is shown that with proper
input statistics representative of a particular domain of interest, both the single-drain and multi-drain analy-
ses yield almost identical results. Copyright © 2016 John Wiley & Sons, Ltd.
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INTRODUCTION

The use of prefabricated vertical drains (PVDs) in combination with pre-loading is becoming one of
the most commonly used methods for promoting radial drainage to accelerate the time rates of soil
consolidation. Natural soils, however, are highly variable in the ground because of the uneven soil
micro fabric, geological deposition, and stress history, and soil consolidation by PVDs is strongly
dependent on spatially variable soil properties, most significantly is the coefficient of consolidation.
The review of relevant literature has indicated that although the significance of inherent soil
variability in relation to reliable predictions of soil consolidation rates has long been realized [1],
only few studies (e.g., [2–5]) have investigated the problem of ground improvement by PVDs for
spatially variable soils, using stochastic analyses. Despite showing valuable insights into the impact
of soil spatial variability on soil consolidation, available stochastic studies for PVD-improved
ground have been based on an idealized single-drain (or unit cell) system rather than the actual full
multi-drain situation. A design procedure for PVD-ground improvement incorporating soil spatial
variability for the single-drain concept was previously developed by Bari and Shahin [6], and in the
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current study, the multi-drain system will be considered, and its results will be compared with those of the
single-drain system. More importantly, a methodology will be developed for the unit cell analysis to
achieve an equivalent solution to that of the multi-drain system with a much reduced computational cost.

Indeed, soil improvement via PVDs typically consists of hundreds of drains installed in the form of
square or triangular patterns, with spacing varied between 1 and 3m. This means that the consolidating
area (including all the drains) can be significantly large and computationally too expensive for any
numerical deterministic analysis. This computational cost becomes prohibitive when conducting a
probabilistic analysis because each soil configuration requires a significant number of calls of the
deterministic model in the order of several hundreds, when searching the first two statistical moments
(i.e., mean and standard deviation) of a system response. The number of calls becomes even very large
(about several thousands) when computing a small value of probability of occurrence of an undesirable
event. In order to reduce the computational effort within the deterministic context, a full three-
dimensional (3D) multi-drain system is usually simulated by considering a soil cylinder with a
single central vertical drain so that the consolidation problem can be analyzed at the unit cell level.
Each unit cell is assumed to be identical, having the same homogeneous soil, and thus the single-
drain analysis is often sufficient to represent the overall soil consolidation behavior [7]. However,
for spatially variable soils, the unit cell idealization used to represent the multi-drain system may not
lead to identical solutions. Therefore, the aim of this paper is to investigate the conditions that need
to be employed into the idealized unit cell analysis so as to establish stochastic equivalence between
the unit cell and multi-drain analyses.

In order to treat soil spatial variability in most geotechnical engineering problems, stochastic
computational schemes that combine the finite elements (FE) method and Monte Carlo technique are
often used (e.g., [2, 6, 8, 9]). The same approach is adopted in the present study, which allows the
soil spatial variability to be considered in a quantifiable manner, both for the single-drain and multi-
drain analyses. The approach involves the development of advanced numerical models that merge
the local average subdivision (LAS) technique [10] of the random field theory [11] and the FE
method into a Monte Carlo framework. For the case of PVDs, the overall consolidation is governed
by the horizontal radial* flow of water rather than the vertical flow because the drainage length in
the horizontal direction is usually much less than that of the vertical direction and the horizontal
permeability is often much higher than the vertical one [12]. Under such reasoning, soil
consolidation by PVDs in the current study is considered by 2D radial drainage problem (for both
cases of idealized unit cell and multi-drain systems). The probabilistic results (i.e., the mean and
standard deviation of the degree of consolidation and probability of achieving a target degree of
consolidation) as obtained from both the idealized unit cell model and multi-drain model are
presented for different conditions imposed on the unit cell case to determine the necessary
conditions leading to equivalence between the two probabilistic analyses. In the sections that follow,
the stochastic finite elements Monte Carlo (FEMC) approach is described in some detail followed by
detailed demonstration and discussion of the obtained results.
STOCHASTIC FINITE ELEMENTS MONTE CARLO APPROACH

As indicated earlier, the equivalence between the single-drain and multi-drain systems is examined by
employing a stochastic FEMC approach, which has the following steps:

1. Create a virtual soil profile that represents a realization of designated spatially varying soil prop-
erties, allowing the correlation structure (expressed by the autocorrelation function) of the soil
properties to be realistically simulated.

2. Incorporate the generated realization of soil profile into FE modeling of soil consolidation by
PVDs.

3. Repeat Steps 1 and 2 several times using the Monte Carlo technique. Each time, a new realization
of virtual soil profile (Step 1) is created and implemented into a subsequent FE analysis (Step 2).
*Radial herein means that the flow is occurring towards the PVD and not necessary being in straight lines.
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At the end, a series of values of the degree of consolidation is obtained from which the following
two items can be estimated: (i) the first two statistical moments of the degree of consolidation and
(ii) the probability of achieving a target degree of consolidation.

The aforementioned steps, as well as the numerical procedures, are described in some detail in the
succeeding discussion.

Simulation of virtual soil profiles

In order to warrant the true influence of soil spatial variability for the problem at hand, virtual soil
profiles that allow the rational distributions of designated spatially variable soil properties across the
soil mass need to be generated (based on a predefined probability density function, PDF, and a
prescribed spatial correlation function), which can then be implemented into the FE modeling. Prior
to proceeding with this step, it is necessary to identify the soil properties that have the most
significant impact on soil consolidation by PVDs so that they can be treated as random fields when
creating the virtual soil profiles. The spatial variability of several soil properties can affect soil
consolidation by PVDs. However, as far as the 2D horizontal drainage is concerned, which is the
case considered in the current study, the coefficient of horizontal consolidation, ch, is the most
significant random soil property affecting the behavior of soil consolidation by PVDs, as indicated
by many researchers (e.g., [4, 5]). Accordingly, in the current study, ch is considered to be spatially
variable, whereas the other soil properties are held constant and treated deterministically so as to
reduce the superfluous complexity of the problem.

The spatial variability of ch is assumed to be characterized by lognormal distribution because
observation obtained from field data reported by Chang [13] suggested that the variation of ch can
be adequately modeled by a lognormal distribution. Based on the random field theory, a spatially
variable soil property with lognormal distribution and predefined autocorrelation function can be
characterized by (i) the soil property mean value, μ, the variance, σ2 (which can also be represented
by the standard deviation, σ, or coefficient of variation, υ, where υ= σ/μ); and (ii) the correlation
length, θ (also known as scale of fluctuation), which appears within the predefined autocorrelation
function. The value of θ describes the limits of spatial continuity and can simply be defined as the
distance over which a soil property shows considerable correlation between two spatial points.
Therefore, a large value of θ indicates strong correlation (i.e., uniform soil property field), whereas a
small value of θ implies weak correlation (i.e., erratic soil property field). In this paper, the
horizontal coefficient of consolidation ch is assumed to be spatially variable, in both directions of
the (x-y) horizontal plane and also be statistically isotropic, that is, the correlation lengths in the x
and y coordinates are assumed to be the same (i.e., θlnch xð Þ ¼ θlnch yð Þ ¼ θlnch ). The reason for
assuming isotropic ch is that the correlation structure is more related to the formation process (i.e.,
layer deposition) in the horizontal (x-y) plane. The correlation coefficient between ch measured at a
point A (x1, y1) and a second point B (x2, y2) is specified in this paper by an exponentially decaying
spatial correlation function, ρ(τ), as follows [10]:

ρ τð Þ ¼ exp � 2τ
θlnch

� �
(1)

where τ is the distance separating the two points A and B and θlnch is the isotropic correlation length. It
can be seen from Equation (1) that the spatial correlation length is estimated with respect to the
underlying normally distributed field, that is, ln(ch).

In the current study, the LAS method [10], which is a fast and largely accurate method of generating
realizations of Gaussian random field, is used to produce 2D random fields of ch for soil consolidation
under horizontal drainage conditions. The concept of LAS approach was first extracted from the
stochastic subdivision algorithm [14] and then incorporated the local averaging theory [15] into it.
Because ch is assumed to be 2D random filed, a brief overview of the 2D implementation of LAS is
presented herein. The 2D LAS method involves a several staged subdivision process in which a
parent cell is divided into four (2 ×2) equal sized cells at each stage. The parent cells of the previous
stage are used to obtain the best linear estimates of the mean of each new cell in such a way that the
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upward averaging is preserved and they are properly correlated with each other. The linear estimation
of the mean is accomplished by using the covariance between the local averages over each cell. At
Stage 0, an initial network of low resolution field (parent cells for Stage 1) is generated directly
using Cholesky decomposition. As shown in Figure 1, the parent cells from Stage 0 denoted as Gi

l
(where, l=1, 2, 3, …) is subdivided into four equal sized cells (child cells) at Stage 1 and are then
denoted as Giþ1

j , (where, j=1, 2, 3, …). Although each parent cell is eventually subdivided in the

LAS process, subdivision of only Gi
5 is shown in Figure 1 for simplicity.

Following the aforementioned process, correlated local averages of standard normal random field
G(x) are first generated with zero mean, unit variance, and spatial correlation function. The required
lognormally distributed random field of ch defined by μch and σch is then obtained using the following
transformation function [10]:

chi ¼ exp μlnch þ σlnchG xið Þ� �
(2)

where xi and chi are, respectively, the vectors containing the coordinates of the centers of the soil
elements and the soil property values assigned to those elements and μlnch and σlnch are, respectively,
the mean and standard deviation of the underlying normally distributed ch, that is, ln(ch). The LAS
algorithm generates realizations of ch in the form of a grid of cells that are assigned locally averaged
values of ch different from one another across the soil mass, by taking full account of the FEs size in
the local averaging process, albeit remained constant within each element of the discretised soil domain.
Finite elements modeling incorporating soil spatial variability

The 2D spatial variation of ch simulated in the previous step is mapped onto the refined FE mesh, and
the consolidation analysis is followed. A modified version of the FE computational scheme ‘Program
8.6’ as presented in the book by Smith and Griffiths [16] is used in this study to carry out all the
numerical modeling analyses. The simplest form of the governing consolidation equations with the
assumption that the laminar flow through the saturated soil (Darcy’s law) is valid can be expressed
by Equation (3), which forms the basis of this program allowing multidimensional consolidation
analysis over a general FE mesh, and is expressed as follows:
Figure 1. Local average subdivision in two dimensions (after [29]).
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cx
∂2uw
∂x2

þ cy
∂2uw
∂y2

þ cz
∂2uw
∂z2

¼ ∂uw
∂t

(3)

It can be noticed in Equation (3) that there is only a single dependent variable (i.e., pore pressure)
and the analysis is thus ‘uncoupled’ (i.e., no displacement degrees of freedom). Originally, ‘Program
8.6’ was for general 2D or 3D analyses of uncoupled consolidation equation using an implicit time
integration with the ‘theta’ method, and interested readers are referred to Smith and Griffiths [16]
for the description of such method. The authors have modified the source code of ‘Program 8.6’ to
allow repetitive stochastic Monte Carlo analyses. Although the modified version of ‘Program 8.6’
can also be used for 3D analysis, 2D FEMC analyses are conducted in the current study as the
drainage of water is assumed to take place in the horizontal direction only, as discussed previously.

The multi-drain influence area is assumed to be equal to a square of 3.8 × 3.8m containing 16
drains (4× 4), which is equivalent to the sum of each influence area (0.95 ×0.95m) of all
individual drains (Figure 2). The spacing, S, between the drains is assumed to be equal to 0.95m
(Figure 2a). On the other hand, the drain spacing, S, in the multi-drain analysis represents the side
length, S, of the square influence area in the single-drain ‘unit cell’ analysis (Figure 2b). It should
be noted that the band-shaped PVD is transformed into a square shaped of a side length, Sw ¼ πrw

2
(where the equivalent radius of the drain, rw, is assumed equal to 0.032m). This is because the
LAS method requires square (or rectangular) elements to be able to accurately compute locally
averaged values of ch for each element across the grid. Notice also that, for simplicity, the well
resistance, which may affect the rate of consolidation, is not considered in the current study. This is
because the discharge capacities of most PVDs available in the market are relatively high; hence,
the impact of well resistance can be ignored in most practical cases, as suggested by many researchers
(e.g., [17]).

Generally speaking, the more FEs in the mesh used to discretize the domain of the problem, the
greater the accuracy of the FE solution. However, a trade-off between accuracy and run-time
efficiency is necessary. Previous literature reported some recommendations regarding the optimum
ratio of the correlation length to the size of the FEs. For example, Ching and Phoon [18] stated that
this ratio should be ≥20, whereas Harada and Shinozuka [19] pointed out that it should be ≥2. In the
current study, a sensitivity analysis on two different FE meshes with element sizes of 0.05 and
0.025m is considered, for the purpose of obtaining the optimum mesh discretization. For a certain
correlation length, two random fields of two selected meshes are generated using the same seed
Figure 2. Realizations of prefabricated vertical drain (PVD)-improved ground: (a) 16 drains in a square grid
pattern and (b) single-drain in a square geometry.
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value, and FE analyses are conducted. The results obtained from the two meshes are then compared to
see if they are identical; otherwise, finer meshes are generated, and the previous process is repeated.
Several different random seeds and correlation lengths are tested for the highest coefficient of
variation of ch considered in this study. It is found that 0.05 and 0.025m meshes gave nearly
identical solutions, as long as the ratio of the correlation length to FE size ≥2, which complies with
the recommendation given by Harada and Shinozuka [19] albeit disagrees with the ratio
recommended by Ching and Phoon [18]. This is because the ratio of 20 recommended by Ching and
Phoon (2013) was for a shear strength problem, which is different from the consolidation problem
as the spatial average shear strength is computed along the most critical slip surface rather than over
the entire domain that is usually used for the consolidation problems. Based on the aforementioned
discussion, a mesh with elements size of 0.05× 0.05m, which is more than two times smaller than
the minimum correlation length, is adopted in the current study.

The initial condition for the uncoupled consolidation approach (i.e., no displacement degrees of
freedom and only pore pressure degrees of freedom) is such that the excess pore pressure at all
nodes (except at the nodes of the drain boundary) is set to be equal to 100 kPa, while the excess
pore pressure at each node of the drain boundary is set to be zero. After generating a given
realization and subsequent FE consolidation analysis of that realization, the corresponding degree of
consolidation, U(t), at any consolidation time, t, is calculated based on the excess pore pressure
concept with the help of the following expression:

U tð Þ ¼ 1� u tð Þ
u0

(4)

where u0 is the initial uniform excess pore water pressure and ū(t) is the average excess pore water
pressure. It has to be emphasized that the average excess pore pressure ū(t) at any time during the
consolidation process is calculated by numerically integrating the excess pore water pressures across
the entire area of the mesh and dividing it by the total mesh area.

Repetition of process based on Monte Carlo technique

By applying the Monte Carlo technique (on either the unit cell system or the multi-drain approach), the
process of generating a realization of ch and the subsequent FE consolidation analysis are repeated
numerous times until convergence of the estimated statistical outputs (i.e., mean μU and standard
deviation σU of U(t) and probability P of achieving a target value of U(t)) is obtained. Convergence is
deemed to be achieved if there is stabilization in the first two statistical moments (mean and standard
deviation) as the number of simulations increases. It should be emphasized that the three quantities μU
(t), σU(t), and P(t) are all functions of the time t; however, the symbol t is omitted later for simplicity.
A total number of simulations of 2000 are used for all probabilistic computations throughout the paper.
This number is much beyond the one required to achieve convergence for the first two statistical
moments of the degree of consolidation (i.e., mean, μU, and standard deviation, σU). It can be seen from
Figure 3a and b that 400 simulations are sufficient to achieve the required convergence (as far as the
convergence are concerned, the single-drain analysis with coefficient of variation of ch=100% and
θlnch =4.0m shows the worst result). Notice however that (Figure 3c) the number of 2000 simulations
was necessary to arrive to an acceptable maximal value (of about 5%) of the coefficient of variation of
P at its value equal to 90%. It should be noted that the probabilistic analysis of a single configuration
(corresponding to prescribed μch , σch , and θlnch ) with 2000 Monte Carlo simulations typically takes
around 1h for the single-drain analysis and it takes about 30h for the multi-drain analysis on an Intel
core i5 CPU at 3.4GHz computer. Notice also that although each simulation of the Monte Carlo
process involves the same μch , σch , and θlnch , the spatial distribution of ch varies from one simulation
to the next while preserving the correlation structure of the random field.

The obtained U(t) from the suite of 2000 realizations of the Monte Carlo process are collated, and
μU and σU of the degree of consolidation over the 2000 simulations are estimated as a function of t
using the method of moments, while the probability of achieving a target degree of consolidation, Us

(i.e., P[U≥Us]), at specified consolidation time, ts, is simply estimated by counting the number of
simulations in which U≥Us (i.e., NU ≥Us) and dividing it by the total number of simulations, Nsim. As
Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2016; 40:2398–2420
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Figure 3. Effect of Nsim on (a) μU, (b) σU, and (c) COV(P) at P= 90% for υch = 100% and θlnch = 4.0m.
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90% consolidation, U90, is usually acceptable for the purpose of design of most soil improvement
projects [20], U90 is thus assumed to be the target degree of consolidation (i.e., Us=90%) in this
study. On the other hand, the probability of achieving 90% target degree of consolidation, P
[U≥U90], is estimated from the sampled values of U and expressed as a function of t.
PARAMETRIC STUDIES

Following the stochastic FEMC procedure set out in the previous section, parametric studies are
performed to investigate the equivalence between the single-drain and multi-drain analyses in terms
of μU, σU, and P[U≥U90] of the degree of consolidation. For this purpose, two groups of FEMC
Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2016; 40:2398–2420
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analyses are performed. In the first group, the point mean and standard deviation and the correlation
length are assumed to be the same for both the single-drain and multi-drain cases, whereas in the
second group, the associated point statistics of each soil domain are derived in such a way that their
underlying local average statistics remain the same.

Results considering same point statistics for both single-drain and multi-drain cases

The results obtained from the single-drain and multi-drain FEMC analyses employing the same point
random field parameters are compared in this section for different combinations of σch and θlnch, while
μch is kept at a fixed value equal to 15m2/year. It should be noted that σch is presented herein by a non-
dimensional parameter called the coefficient of variation, υch, where υch ¼ σch=μch. The values of υch and
θlnch used in the analyses are as follows:

• υch =25, 50, and 100 (%); and
• θlnch =0.5, 1.0, 4.0, 16, and 100 (m)

The aforementioned selected range of υch is typical to that reported in the literature (e.g., [21]).
Unlike the coefficient of variation of soil properties, the correlation length (or θlnch ) is less well
documented, particularly in the horizontal direction. However, Phoon and Kulhway [22] reported
suggested guidelines for the range of correlation length of soil properties based on a comprehensive
review of various test measurements and found that the horizontal correlation length typically ranges
between 3 and 80m, while the typical range of vertical correlation length is 0.8 to 6.2m, as
observed in real soils [18]. On the other hand, Popescu et al. [23] reported that the correlation
length is dependent on the sampling intervals but that closely spaced data are rarely available in the
horizontal direction. Accordingly, a wide range of correlation length is selected in this study where
its minimum and maximum values are specified to be equal to 0.5 and 100m, respectively.
Figure 4. Comparison between μU computed from the same point statistics for (a) various υch at θlnch = 0.5m
and (b) various θlnch at υch = 50%.
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Figure 5. Comparison between σU computed from the same point statistics for (a) various υch at θlnch = 0.5m
and (b) various θlnch at υch = 50%.
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The sensitivity of μU and σU on the statistically defined input data (i.e., υch and θlnch) is examined in
Figures 4 and 5 in which μU and σU are expressed as functions of the consolidation time t. The
comparison between μU derived from the single-drain and multi-drain FEMC simulations is
examined in Figure 4. The effect of increasing υch on μU at a fixed value of θlnch =0.5m is
illustrated in Figure 4a, which indicates that μU obtained from the single-drain case agrees very well
with that obtained from the multi-drain counterpart, for all cases of υch . For both domains of
analysis, μU decreases with the increase of υch . On the other hand, Figure 4b shows the variation of
μU as estimated by the single-drain and multi-drain FEMC analyses, for various values of θlnch and
at a fixed value of υch =50%. In general, it can be observed that the results for various θlnch are
embodied into a single curve (Figure 4b), implying that the obtained results at different θlnch are
very close and cannot be distinguished. The virtually identical curves for all θlnch demonstrate that
μU obtained from the single-drain and multi-drain cases are almost identical.

The possible stochastic equivalence between the single-drain and multi-drain analyses is further
examined via matching the estimated σU at different values of υch and θlnch , as shown in Figure 5. It
can be seen that σU obtained from the single-drain case is significantly higher than that obtained from
the multi-drain case and the difference in σU between the two solutions increases as υch increases
(Figure 5a). For υch =100%, the difference in σU between the two solutions at time corresponding to
the maximum value of σU is as high as 215%. This can be explained as follows: because the averaging
domain is significantly smaller for the single-drain case compared with the multi-drain case, there is
less variance reduction (for a certain θ, the variance reduction increases with the increase in the domain
size and vice versa), resulting in higher σU in the single-drain case than the multi-drain solution. The
influence of θlnch on the compliance between the single-drain and multi-drain solutions in terms of σU
at a fixed value of υch =50% is emphasized in Figure 5b. It can be seen that considerable differences in
σU (as obtained from the two solutions) are found particularly when θlnch is as low as 0.5m. The
Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2016; 40:2398–2420
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difference in σU between the two solutions at time corresponding to the maximum value of σU is about
210% for θlnch =0.5m. On the other hand, little or no difference in σU is found for very high θlnch (e.g.,
100.0m). This is because when θlnch >>D (where D is the size of the problem), the variance reduction
factor γ(D)→1.0, implying no variance reduction (the details about γ(D) will be explained later in the
following section). It can also be seen from Figure 5 that the maximum σU occurs at an intermediate t,
while σU is zero at t=0 and at large t. This can be explained by noting that U(t) approaches 0 and 1 as t
approaches 0 and ∞, regardless of the variability of ch.

From the aforementioned results, it is clear that by employing the same point statistics for both the
single-drain and multi-drain cases, the stochastic response of soil consolidation by PVDs is different
except for extremely large correlation length in comparison with the size of the problem domain.
This means that the point statistics of soil property, which is representative of one domain, may not
be considered as representative of another domain of different size unless the correlation length is
very large in both domain sizes. Therefore, the logical question that should be asked is that how the
spatially variable soil property statistics of one domain (e.g., multi-drain) can be used in another
domain of different dimension (e.g., single drain) to achieve identical probabilistic consolidation
solutions. This question can be answered by employing the concept of local averaging, which is
discussed in the succeeding discussion.

Results considering same local average statistics for both single-drain and multi-drain cases

In the random field context, the input parameters in relation to the random soil properties (i.e., μch, σch,
and θlnch of ch) are usually defined at the point level. Detailed description of the methods used for
evaluating spatial variation of soil properties at the point level is beyond the scope of the present
paper and can be found in many publications (e.g., [24, 25]). Although the random field is
characterized by their point statistics, Vanmarcke [26] pointed out that it is not the point scale
characteristics of random soil properties that govern the performance of geotechnical structures but
rather the local average soil properties. Thereby, the stochastic equivalence between the idealized
single-drain and multi-drain analyses may therefore be achieved if the local average statistics for
both resolutions are the same. The suitability of using the concept of the local average statistics for
problems involving large spatial mechanisms (e.g., bearing capacity, settlement of foundations, and
slope stability) has been examined by many researchers (e.g., [27, 28]). However, for problems with
preferential flow path (e.g., soil consolidation by PVDs), the local variability may be significant
because some worse case combination of the random filed parameters may cause blockage to the
flow because of lack of flow option in the system, particularly for one 1D and 2D geometries.
Therefore, the effectiveness of the local average statistics to establish stochastic equivalence between
the single-drain and multi-drain systems needs a thorough investigation, as follows.

It should be noted that the local average statistics associated with the input point statistics depend on
several factors, namely [29], (i) the size of the averaging domain, D; (ii) the correlation function, ρ; and
(iii) the type of averaging that governs the behavior of geotechnical structures. By assuming that the
local average statistics for which the overall behavior of a PVD system is affected can be
represented by the geometric average of the actual spatially variable soil (note that the geometric
average represents the ‘natural’ average of the lognormal distribution), the relationships between the
local average statistics, and ideal point mean, μch , and standard deviation, σch , can be expressed as
follows [29]:

μch ¼ μDexp ln 1þ υ2D
� � 1� γ Dð Þ

2γ Dð Þ
� 	
 �

(5)

σch ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2
ch exp

ln 1þ υ2Dð Þ
γ Dð Þ

� 	
� 1


 �� �s
(6)

where μD and υD (υD= σD/μD in which σD is the local average standard deviation of ch) are,
respectively, the local average mean and coefficient of variation of ch and γ(D) is the variance
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reduction factor corresponding to the underlying normal random field ln(ch), which is a function of the
size of the averaging domain and correlation structure of the soil. (Note that by providing appropriate
geometric dimensions for the single-drain and multi-drain problems, γ(D) for both resolutions can be
computed numerically for various θlnch from the algorithm presented in Appendix A.)

As the local average statistics depend on the variance reduction factor (i.e., a function of the size of the
averaging domainD and correlation length θ or merely a function of the normalized correlation lengthΘ,
which is the ratio of the correlation length to the size of the averaging domain, i.e., Θ=θ/D), it is possible
(Equations (5) and (6)) that the same underlying local average statistics for any two soil domains of
different dimensions may be achieved through two approaches, as follows: (i) by employing different
correlation lengths, θlnch , while μch and σch are kept the same through providing the same γ(D) and (ii)
by employing different μch and σch , while θlnch is kept the same through providing different γ(D). The
first approach is denoted herein as Approach 1 (or A1), while the second approach is denoted as
Approach 2 (or A2), and they will be presented in the next sections in more detail. In the following
sections, the results of the parametric studies performed to investigate the possible stochastic
equivalence of the degree of consolidation between the single-drain and multi-drain analyses for both
approaches are compared and discussed in some detail in the succeeding discussion.

Approach 1

The use of different θlnch while considering μch and σch as constant parameters is a possible way of
obtaining the same underlying local average statistics for soil domains with different dimensions.
For the purpose of generalization, a particular domain is often expressed with respect to the
normalized form of θ, over the influence zone, D, as utilized by many researchers (e.g., [9, 28, 30–32]).
This means that the domain D1, employing certain θ1, can be considered to be representative of another
domain D2 (D2≠D1) with different θ2 provided that μch and σch remain the same irrespective of the
domain size. The value of θ2 that needs to be assigned for D2 can be obtained from the following
proposed expression:

θ1
D1

¼ θ2
D2

¼ Θ (7)

whereΘ is the normalized correlation length, as defined earlier. Following Equation (7), the effect of using
θ1 and θ2 for D1 and D2 (i.e., the same Θ), respectively, will yield the same underlying local average
statistics μD and σD for both domains, subsequently may lead to identical probabilistic results. In other
words, if θ1 and θ2 follow Equation (7), the point variance will be reduced by the same amount for
averaging over D1 and D2 (i.e., γ(D1) = γ(D2)). For convenience of presentation in the current study, the
domain size of single-drain and 16-drain systems are denoted as D1d and D16d, respectively.

Approach 2

Assigning different μch and σch for the single-drain system while keeping θlnch as a constant parameter is
another way of obtaining the same underlying local average statistics to those of the multi-drain
system. Under this approach, μch and σch related to the single-drain system are computed using
Equations (5) and (6), by substituting the local average statistics (i.e., μD and σD) with those
obtained from the specified random field parameters of the multi-drain system and γ(D)
corresponding to the single-drain system (i.e., γ(D1d)). It should be noted that although θlnch is the
same for both resolutions under this approach, γ(D1d)≠ γ(D16d) as D1d≠D16d. In the sections that
follow, Approach 1 and Approach 2 of the single-drain analyses are denoted as SD-A1 and SD-A2,
respectively, for convenience of presentation.

In order to investigate the stochastic equivalence between the single-drain and multi-drain solutions
under both approaches of obtaining the same underlying local average statistics, a series of FEMC
analyses is performed for both the single-drain and multi-drain cases, and the results are compared.
The random field parameters for the 16 drain cases and their corresponding single-drain analyses
under both approaches are shown in Table I. The 16-drain cases under each specified θlnch with
constant μch ¼ σch =15m

2/year (i.e., υch = 100%), as shown in Table I (columns 1–3), are selected for
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the purpose of comparison. The local average statistics for the 16 drain system for each selected θlnch are
then computed using Equations (5) and (6) and are summarized in Table I (columns 5 and 6).
The normalized scale of fluctuation (SOF), Θ, for the 16-drain system is also shown in Table I
(column 4). In order to provide the same μD and σD in case SD-A1, Θ needs to be same as that of its
corresponding 16-drain analysis. Accordingly, different θlnch are assigned in case SD-A1 (column 9)
during the FEMC analysis, calculated based on its corresponding Θ, while μch and σch (columns 7
and 8) remain the same as those of the 16-drain counterpart. On the other hand, μch and σch related to
case SD-A2 for providing the same μD and σD to those of the 16-drain cases are calculated following
the procedure discussed earlier and summarized in Table I (columns 10 and 11). In case SD-A2, θlnch
(column 12) remains the same as that of its corresponding 16-drain analysis. It is clear from Table I
that the input variability for the single-drain cases is reduced from that of the 16-drain cases either by
employing smaller θlnch (in case A1) or by providing lower υch (in case A2) to obtain the same μD
and σD to those of the 16-drain system. This is expected because of the fact that the smaller
averaging domain for the unit cell analysis would lead to less variance reduction within the influence
zone than for the 16-drain domain, which is counterbalanced by assigning smaller θlnch or lower υch
for the unit cell. The results obtained from the 16-drain system and both approaches of the single-
drain FEMC analyses employing their corresponding μch , σch , and θlnch (as shown in Table I) are
compared in terms of μU, σU, and P[U≥U90], as depicted in Figures 6–8, in which μU, σU, and
Figure 6. Comparison between single (under Approaches 1 and 2) and multi-drain analyses with respect to
μU over a range of same local average statistics.
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DOI: 10.1002/nag



Figure 7. Comparison between single (under Approaches 1 and 2) and multi-drain analyses with respect to
σU over a range of the same local average statistics.
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P[U≥U90] are expressed as functions of the consolidation time t. It should be noted that the results of
case SD-A1 and the 16-drain system are compared with respect to Θ because Θ is same for these two
solutions. On the other hand, θlnch is the same for case SD-A2 and 16-drain system; therefore, their
results are compared based on θlnch .

The agreement between both approaches of the single-drain and multi-drain solutions in terms of μU
under various μD and σD is emphasized in Figure 6, which shows that for a particular correlation length
or SOF, μU obtained from the single-drain and multi-drain cases are almost identical, implying that
both approaches yield equivalent μU. The equivalence between the single-drain and multi-drain
analyses is further examined via matching the estimated σU at different values of local average
statistics, as shown in Figure 7. It can be seen that considerable differences in σU obtained from case
SD-A1 and 16-drain solution are found particularly when Θ is as low as 1.05. When Θ is as low as
0.13 and 1.05, the difference in σU between the two solutions is about 73% and 30%, respectively. On
the other hand, little or no difference in σU (less than 10%) is found when Θ≥ 4.21. This means that the
difference in σU between case SD-A1 and 16-drain solutions is the smallest for the highest value of Θ
and this difference is inversely the highest for the smallest value of Θ. Figure 7 also shows that unlike
case SD-A1, case SD-A2 yields very good agreement compared with the multi-drain analyses with
respect to σU for all cases of θlnch . It should be noted that the maximum difference in σU between case
SD-A2 and 16-drain solution at time corresponding to the maximum value of σU is 12%, and this is
found to correspond to θlnch =0.5m.
Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2016; 40:2398–2420
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Figure 8. Comparison between single (under Approaches 1 and 2) and multi-drain analyses with respect to P
[U≥U90] over a range of same local average statistics.
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Although emerges from the same theoretical background, case SD-A1 produces higher discrepancy
in σU than case SD-A2 when compared with the multi-drain solution. This discrepancy in σU may be
attributed to the fact that the decay pattern of the correlation function in the multi-drain system is
different from that of case SD-A1 as θlnch in each case is different. When θlnch ≤D, different random
field distributions between the two domains occur, leading to different excess pore water pressure
distributions. On the other hand, when θlnch ≥D, the decay pattern of the correlation function in case
SD-A1 becomes similar to that of the individual drain of the multi-drain system, and thus, the
discrepancy in σU gradually disappears.

The agreement between the single-drain and multi-drain solutions in terms of P[U≥U90] under
various μD and σD is illustrated in Figure 8. It can be seen that for any probability level >50%, that
is, P[U≥U90]> 0.5 (note that the probability of achieving a target degree of consolidation of interest
is greater than 50%), P[U≥U90] obtained from case SD-A1 is significantly lower (conservative) than
its corresponding P[U≥U90] obtained from the multi-drain system when Θ≤ 1.05. The difference
in P[U≥U90] between the two solutions is insignificant for any Θ≥ 4.21. This is because in this
range of Θ, σU from case SD-A1 is higher than its multi-drain counterpart, whereas μU is identical
for each solution strategies. On the other hand, as can be seen from Figure 8, case SD-A2 yields
very good agreement with the multi-drain analyses with respect to P[U≥U90] for all cases of θlnch .

From the aforementioned results, it is clear that Approach 1 of the single-drain analysis using the
same underlying local average statistics to the multi-drain cases does not seem to produce
Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2016; 40:2398–2420
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reasonable equivalence in terms of the standard deviation of the degree of consolidation and in turn the
probability of achieving a target degree of consolidation, except for extremely large correlation length
in comparison with the size of the problem domain. However, the good agreement between Approach
2 of the single-drain and multi-drain analyses in terms of μU, σU, and P[U≥U90] indicates that the
stochastic equivalence between the unit cell analyses and multi-drain solutions can be established by
assigning appropriate representative input statistical parameters for the idealized unit cell, which can
be computed from the statistical parameters assigned to the multi-drain system, keeping the
correlation length the same for both domains in such a way that their underlying local average
statistics remain also the same.

Due to the promising results obtained from Approach 2 in establishing the stochastic equivalence
between the single-drain and multi-drain systems, Approach 2 is further examined for (i) different
random field generation method; (ii) another domain shape of the multi-drain system; and (iii)
taking into account the smear effect. The parametric studies performed under each of the
aforementioned situations are based on the same local average statistics for both the single-drain and
multi-drain resolutions, for each specified θlnch , and the associated point statistics of the soil domain
of interest are derived using Equations (5) and (6). The mean, μD, and coefficient of variation, υD, of
the locally averaged ch are arbitrarily selected to be equal to 15m2/year and 0.2, respectively, and
the results are presented in Figures 9–11. It should be noted that the results for θlnch =16.0m are
omitted from Figures 9–11 to enhance the readership of figures. For the same reason, results for
smaller θlnch (i.e., θlnch =0.5 and 4.0m) are presented on the left-hand side, while the results of larger
θlnch (i.e., θlnch =4.0 and 100.0m) are illustrated on the right hand-side in each graph of Figures 9–11.

• Effect of random field generation method

As mentioned earlier, the LAS algorithm generates realizations of ch in the form of grid of cells that
are assigned locally averaged values of ch by taking full account of the FEs size in the local averaging
process, which is analogous to that of the large-scale averaging process shown earlier. In this section,
the sensitivity of the multi-drain response to the random field discretization method is examined by
comparing the results obtained using the LAS method with those obtained employing another
random field generation method. Apart from the LAS method, there are several other methods that
can be used such as the Karhunen–Loève (K-L) expansion method and the expansion optimal linear
estimation (EOLE) method, and in the current study, the K-L expansion method is used. The
expression of the lognormal random field of ch using the K-L expansion method is given by (e.g., [33])

ch X ;ψð Þ≈exp μlnch þ ∑
M

i¼1

ffiffiffiffi
λi

p
ϕi Xð Þξ i ψð Þ


 �
(8)

where X denotes the spatial coordinates, ψ indicates the stochastic nature of the random field, M is the
size of the series expansion, λi and ϕi are the eigenvalues and eigenfunctions of the covariance
function, and ξ i(ψ) is a vector of standard uncorrelated random variables. The choice of the number
of terms M in the K-L expansion method depends on the desired accuracy of the problem at hand.
In this paper, this number is taken to be equal to 1000, which corresponds to a maximal error
estimate of 18% for the worst situation considered (i.e., θlnch =0.5m). The same correlation function
given in Equation (1) is used in this case. Details of the K-L expansion method is beyond the scope
of this paper and can be found elsewhere (e.g., [34, 35]).

In this part of the parametric study, it is assumed that μD and υD of the locally averaged ch over the
soil domain of interest for each specified θlnch are taken to be equal to 15m2/year and 0.2, respectively.
The given local average statistics are then used to derive the associated point statistics for the square
area of the 16 drains, which is required for generating the random field of ch. By substituting the
given μD, υD, and computed values of γ(D) corresponding to each specified θlnch in Equations (5)
and (6), μch and σch are calculated for the 16 drains, and the results are summarized in Table II
(columns 2 and 3). Using the statistical parameters shown in Table II (columns 1–3), the 16 drains
square domain is discretized using both the LAS and K-L expansion methods, and the FEMC
analyses are performed. The stochastic response of the 16 drains obtained from the FEMC analyses
using both the LAS and K-L expansion random field discretization methods for various θlnch is
Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2016; 40:2398–2420
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Figure 9. Effect of random field generation method on (a) μU, (b) σU, and (c) P[U ≥U90] obtained from the
multi-drain (16 drains in square domain) analyses for various θlnch .
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compared in terms of μU, σU, and P[U≥U90], and the results are shown in Figure 9. It can be seen that
μU (Figure 9a), σU (Figure 9b), and P[U≥U90] (Figure 9c) obtained from both random field methods
(i.e., LAS and K-L expansion) are nearly identical for a particular θlnch . More specifically, the
maximum difference in μU between the two random field discretization methods is less than 2%
throughout the consolidation process for θlnch =0.5m. On the other hand, a maximal difference of
15% in σU is obtained in the case of θlnch =100m at time corresponding to the peak value of σU.
However, for any probability level >50%, the maximum difference in P[U≥U90] is found to be less
than 5% for θlnch =100m. As a conclusion, the probabilistic outputs of the degree of consolidation
are insensitive to the random field generation method. Therefore, the LAS method is adopted for
random field generation of the remaining FEMC analyses of this study.

• Effect of domain shape

So far, the stochastic equivalence between the unit cell and multi-drain solutions is examined over a
square domain of multi-drain system. However, in practice, PVD-improved ground may take different
Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2016; 40:2398–2420
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Figure 10. Effect of domain shape on the equivalence of (a) μU, (b) σU, and (c) P[U≥U90] obtained from the
single-drain and multi-drain analyses (16 drains in rectangular domain) for various θlnch .
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shapes other than square. Therefore, the effect of the rectangular domain shape for the multi-drain
system on the stochastic equivalence between the single-drain unit cell and multi-drain analyses is
examined herein. For this purpose, the 16 drains are assumed to be installed over a rectangular
area in two rows with eight drains in each row so that the width to length ratio (i.e., width
W in x-direction/length L in y-direction) of the area is 1:4. The representative point statistics (i.e., μch
and σch ) for both the single-drain and multi-drain (in a rectangular domain) cases are then computed
using the given local average statistics (i.e., μD=15m2/year and υD=0.2) and their respective values
of γ(D) in Equations (5) and (6), which are summarized in Table II (columns 4–7). The values of μch
and σch for the rectangular domain show slightly different values from those of the square domain,
and this is because γ(D) values for the square domain case are different from those of the rectangular
case. The FEMC analyses for both the single-drain and multi-drain for the rectangular domain are
performed using their respective values of μch , σch , and θlnch , and the results are shown in Figure 10.
It can be seen that, as with the square domain, μU (Figure 10a), σU (Figure 10b), and P[U≥U90] (
Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2016; 40:2398–2420
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Figure 11. Effect of smear on the equivalence of (a) μU, (b) σU, and (c) P[U≥U90] obtained from the single-
drain and multi-drain analyses for various θlnch .

Table II. Estimated point mean and standard deviation computed from the given local average statistics.

SOF
16 drains in square domain 16 drains in rectangular domain Single-drain

θlnch μch σch μch σch μch σch

0.5 34.50 73.20 36.27 81.74 16.18 7.41
1.0 19.04 15.65 19.62 17.34 15.40 4.87
4.0 15.42 4.87 15.57 5.40 15.08 3.41
16.0 15.08 3.41 15.11 3.55 15.02 3.10
100.0 15.01 3.06 15.02 3.08 15.003 3.01
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Figure 10c) obtained from the FEMC analyses for both the single-drain and multi-drain systems
considering rectangular domain are almost identical (the maximal difference in σU at time
corresponding to the maximum value of σU is found to be 19% for θlnch =0.5m), implying that the
stochastic equivalence is independent of the domain shape.
Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2016; 40:2398–2420
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• Effect of smear zone

During mandrel installation of PVDs, a disturbed zone (i.e., smear zone) of reduced permeability is
produced. However, soil spatial variability in the smear zone persists [36], albeit the fact that it is no
longer fully natural. Although the intensity and extent of smearing depends on factors such as the
mandrel size, installation procedure, and soil type [20, 37, 38], it is unavoidable in any PVD soil
improvement project. Therefore, it is important to investigate the effect of smear on the stochastic
equivalence between the single-drain and multi-drain analyses. The ratio kh/k

′
h (where kh and k ′h are

the horizontal permeability in the undisturbed and smear zones, respectively), which may vary from
2 to 6 as reported by various researchers (e.g., [12, 17]), is assumed to be equal to 3. It can be
noticed that no explicit permeability parameter is considered in this study. Accordingly, to simulate
such reduced permeability condition in the smear zone during the FE analysis, it is assumed that kh/
k ′h = ch/c

′
h (where c′h is the horizontal coefficient of consolidation in the smear zone), that is, ch/c′h is

taken to be equal to 3. The 16 drains in a square area is selected as the multi-drain problem, and it
is assumed that the equivalent radius of the smear zone rs=0.197m. However, a square shaped of a
smear zone of side length Ss=0.35m (Ss ¼

ffiffiffiffiffiffiffi
πr2s

p
) is modeled at the center of each individual drain

to avoid the unfavorable mesh shape for the LAS method.
At this point, it is worthwhile mentioning that in geotechnical engineering, the random field models

are often non-stationary in their mean; however, the variance and covariance structure are generally
assumed to be stationary because they need prohibitive volumes of data to estimate their parameters
[29]. Accordingly, the variance and covariance structure of ch are assumed to be stationary, while a
non-stationary mean is used to take into account the smear effect. This means that ch varies spatially
in such a way that its second moment structures (variance, covariance, and so on) in the undisturbed
and smear zones are identical with respect to the mean, that is, υch = υc′h , θlnch = θlnc′h (where υc′h and

θlnc′h are, respectively, the coefficient of variation and correlation length of the smear zone). Under

this argument, the mean, μ′
D, and coefficient of variation, υ′D, of the local average measurement of ch

in the smear zone are assumed to be equal to 5 and 0.2m2/year, respectively. By substituting the
given μ′

D , υ
′
D , and respective γ(D) corresponding to a particular θlnch in Equations (5) and (6), the

point mean, μc′h
, and standard deviation, σc′h , of the smear zone are computed for both the single-

drain and multi-drain analyses for various θlnch , as summarized in Table III.
In order to simulate the smear effect during the FE analysis of the multi-drain system, two

independent random fields of ch are generated. By making use of the specified μch and σch (Table II)
into the LAS method, a random field of ch is generated first for the whole soil domain and mapped
onto the corresponding grid of the FE mesh. Then another random field of ch is generated using the
same seed number of the previously generated field (for the whole soil domain of interest) with μc′h
and σc′h (Table III). However, for both random fields, the same value of θlnch is used. Now from the

second random field, only the corresponding elements to the smear zone are mapped onto the FEs
mesh. The same random field generation process is also followed for the FE analysis of the single-
drain counterpart. This process of random field generation ensures the original random nature of ch
over the soil domain and reasonably reflects the smear effect as well.
Table III. Estimated point mean and standard deviation in the smear zone computed from the given local
average statistics.

SOF
Single drain 16 drains in square domain

θlnc′h μc′h
σc′h μc′h

σc′h

0.5 5.39 2.47 11.5 24.4
1.0 5.14 1.62 6.346 5.215
4.0 5.026 1.137 5.14 1.62
16.0 5.006 1.033 5.026 1.137
100.0 5.001 1.005 5.004 1.02
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Following the aforementioned random field generation process, the FEMC analyses corresponding
to various θlnch are performed for both the single-drain and multi-drain systems, and the equivalence
between the two solutions in terms of μU, σU, and P[U≥U90] are examined, and their results are
depicted in Figure 11. It can be seen that, as with the case of no smear, μU (Figure 11a), σU
(Figure 11b), and P[U≥U90] (Figure 11c) obtained from the single-drain analysis agree well with
those obtained from the multi-drain analysis, for all cases of θlnch .

The overall results presented in this section indicate that the behavior of PVD-improved ground is
governed by the local average soil properties instead of the point soil properties. The results also
demonstrate that the geometric average, which is lying between the arithmetic and harmonic
averages, is a reasonable approach to estimating the local average soil properties for different
domain shape even if the smear effect is to be considered.
CONCLUSIONS

This paper used the random field theory and FEs modeling to investigate the stochastic equivalence
between the single-drain ‘unit cell’ and multi-drain solutions for ground improvement by PVDs. The
horizontal coefficient of consolidation, ch, was treated as the most significant random field affecting
PVD-improved ground, and an uncoupled 2D FEs soil consolidation analysis was applied.

In the first part of the paper, the point input statistical parameters were assumed to be the same for
both the single-drain and multi-drain cases. Despite the reasonable agreement obtained in terms of the
mean degree of consolidation, μU, for the single-drain and multi-drain analyses irrespective of the input
parameters, a significant difference in the standard deviation, σU, between the two solutions was found
except for extremely large correlation lengths. Therefore, it can be concluded that the point soil
properties, which are considered to be representative of a certain domain (over which they are
measured), need to be adjusted prior to applying to another domain of different size. This
conclusion demonstrates the potential pitfall of using typical statistical soil properties without
referencing to the site investigation scale.

In the second part of the paper, it was argued that the stochastic equivalence between the idealized
unit cell and multi-drain analyses can be achieved if the local average statistics for both resolutions are
the same. Under this reasoning, two groups of stochastic FEMC analyses were performed. In the first
group, the same underlying local average statistics for both domains were obtained by employing the
same point mean and standard deviation but using different correlation lengths calculated based on the
size of the domain. It was found that μU obtained from the single-drain analysis agrees very well with
that obtained from the multi-drain counterpart. However, considerable discrepancies in σU and P
[U≥U90] derived from the two solutions were found except for very high correlation lengths.
Therefore, it can be concluded that the method of obtaining the same local average statistics for soil
domains with different dimensions by altering the correlation length while keeping the point mean
and standard deviation the same is not a reasonable approach to establish stochastic equivalence
between the single-drain and multi-drain solutions of PVD-improved ground. In the second group,
the same local average statistics for both the single-drain and multi-drain domains were obtained by
employing different point mean and standard deviation, while keeping the correlation length the
same for both resolutions. Under this method, it was found that μU, σU, and P[U≥U90] obtained
from the single-drain analysis agree very well with those obtained from the multi-drain analysis, for
all selected correlation lengths using different random field generation methods and different domain
shapes and considering the smear effect. Therefore, it was concluded that it is not the point statistics
soil properties that should be the same for the unit cell but rather the local average soil properties. It
was also concluded that the geometric average is a reasonable approach for estimating the local
average soil properties for different domain of shapes including the smear effect.

Overall, it was shown that the stochastic equivalence between the unit cell and multi-drain solutions
can be established by assigning appropriate representative point statistics for the idealized unit cell,
which can be computed from the statistical parameters assigned to the multi-drain by keeping the
same correlation length for both domains and using appropriate transformation functions in such a
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way that their underlying local average statistics remain the same. The procedure of doing so can be
briefly explained as follows: one should first compute the local average statistics for the multi-drain
system based on its size and the point statistics of the random field. Then, the same local average
statistics as obtained from the multi-drain system need to be adopted for the unit cell to deduce the
corresponding point statistics of the unit cell using Equations (5) and (6) of this study.

Although inherent soil variability is essentially 3D, it is limited to 2D random field in the current
study. That is, soil is assumed to be spatially variable in the horizontal plane, while soil variability
in the vertical direction is ignored. This is because to achieve mathematical convenience as the
stochastic solution of 3D variability is very complex and computationally too intensive, particularly
for the multi-drain system. Considering 3D soil variability is beyond the scope this paper and will
be investigated in future development of the current work.
APPENDIX A. Determination of Variance Reduction Factor

The amount by which the variance is reduced from the point variance as a result of the local averaging
can be estimated from the corresponding variance function of the 2D Markov correlation function
shown in Equation (1), as follows [29]:

γ Dð Þ ¼ γ X ; Yð Þ ¼ 1

X 2Y 2 �∫
X

0 ∫
X

0 ∫
Y

0 ∫
Y

0 ρ ζ 1 � η1; ζ 2 � η2ð Þdζ 1dη1dζ 2dη2 (A:1)

where X and Y are the dimensions of the averaging domain, D, in the x-direction and y-direction, re-
spectively (i.e., D=X×Y). The fourfold integration in Equation (A.1) can be condensed to twofold in-
tegration by taking advantage of the quadrant symmetry (ρ(τ1, τ2) = ρ(�τ1, τ2) = ρ(τ1,�τ2) = ρ(�τ1,�τ2))
of the correlation function in Equation (1) and can be expressed as

γ X ; Yð Þ ¼ 4

X 2Y 2 �∫
X

0 ∫
Y

0 X � τ1ð Þ Y � τ2ð Þρ τ1; τ2ð Þdτ1dτ2 (A:2)

Equation (A.2) can be computed numerically with reasonable accuracy using the 16-point Gaussian
quadrature integration scheme, as follows:

γ X ; Yð Þ ¼ 1
4
∑
16

i¼1
ωi 1� ϑ ið Þ∑

16

j¼1
ωj 1� ϑ j
� �

ρ ζ i; ηið Þ (A:3)

ζ i ¼
X
2

1þ ϑ ið Þ; ηi ¼
Y
2

1þ ϑ j
� �

(A:4)

where ωi and ϑi are the weights and Gauss points, respectively.
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