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Introduction

.

.

. ..

.

.

What can be done when the sensor yields two signals proportional to
the sine and cosine of the shaft position ?

.

.

. ..

.

.

.

.

. ..

.

.

This happens

• when a resolver is used

• when a magnetic position encoder is used

• when injecting high frequency voltages into salient PMSM
machines for sensorless control

.

.

. ..

.

.

This paper both recalls the classical solution, with its possible
settings and performances, and two new estimators.
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The classical angle tracking observer

.

.

. ..

.

.

The classical solution is based on a second-order state space model
with a “nearly constant speed” (the acceleration is considered as a
random noise) and a linear measurement of the position.

.

.

. ..

.

.

• State space model :

Ẋ(t) = A1 X(t) + G1 α(t),with X=
(
θ
Ω

)
,

y1(t) = C1 X(t) + w(t), with Ω= θ̇

A1 =

(
0 1
0 0

)
,CT

1 =

(
1
0

)
and G1=

(
0
1

)
,

• Luenberger observer

˙̂X(t) = A1 X̂(t) + Kc1 e(t), with e(t) = y1(t) − C1 X̂(t) = y1(t) − θ̂(t)

with K T
c1 = (ka1 kb1) and X̂ T=

(
θ̂ Ω̂

)
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The classical angle tracking observer

.

.

. ..

.
.

ey1 θ̂Ω̂kb1

s−

ka1

+ 1

s

.

.

. ..

.

.

The resulting position and speed estimator is equivalent to :

• an integrator in closed-loop with a PI controller

Kp = ka1 and Ti = ka1/kb1

a common structure in automatic control

• a filtering process applied to the measured position

Θ̂(s) =
ka1 s + kb1

s2 + ka1 s + kb1
Y1(s)

Ω̂(s) =
kb1

s2 + ka1 s + kb1
s Y1(s)

Θ̂(s) results from a 2nd-order lowpass filter with a slope of only −20

dB/dec

4 / 15



Titre Introduction The classical ATO A third-order ATO Discrete-time third-order estimator Simulations Conclusion

The classical angle tracking observer

.
Properties
..

.

. ..

.

.

The classical ATO is unbiased when the speed is constant but
biased when the speed is not constant.

.

.

. ..

.

.

• if Y1(s) = Θ(s) = ω
s2 ,

lim
t→+∞

y1(t) − θ̂(t) = 0

• if Y1(s) = Θ(s) = α
s3 ,

lim
t→+∞

y1(t) − θ̂(t) =
α

kb1
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The classical angle tracking observer

.
Possible settings of the ATO
..

.

. ..

.

.

The setting of the ATO parameters should be deduced from desired performances in the time

domain rather that in the frequency domain.

.

.

. ..

.

.

For a linearly increasing speed with acceleration equal to α,

• kb1 = α
θtrue−θ̂

and ka1 = Ωtrue−Ω̂

θtrue−θ̂

• kb1 = α
θtrue−θ̂

and ka1 = 2m
√

kb1,
where m is a damping ratio. m = 1.945 provides a 5 % overshoot when the actual position
abruptly changes from 0 to 180◦. A “Butterworth” setting (m =

√
2/2) leads to an

overshoot of 20 % !

.

.

. ..
. .The higher the acuracy, the longer the transients
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The classical angle tracking observer

.
resolver :
..

.

. ..

.
.

source :

http ://data.bolton.ac.uk.

.
nonlinear measurement equation
..

.

. ..

.

.

if the sensor provides two noisy signals

yc(t) = cos(θ(t)) + wc(t)

ys(t) = sin(θ(t)) + ws(t),

the error term e(t) = y1(t) − θ̂(t) should be simply replaced by

ϵ(t) = ys(t) cos(θ̂(t)) − yc(t) sin(θ̂(t))

= sin(θ(t) − θ̂(t)) + ws(t) cos(θ̂(t)) − wc(t) sin(θ̂(t))

≈ θ(t) − θ̂(t) + ws(t) cos(θ̂(t)) − wc(t) sin(θ̂(t))

The resulting observer remains stable [Harnefors2000].
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A new continuous-time third-order ATO
.

.

. ..

.

.

Another angle tracking observer can be derived from on a third-order
state space model with a “nearly constant acceleration” (the jerk is
considered as a random noise) and a linear position measurement.

.

.

. ..

.

.

• State space model :

Ẋ(t) = A2 X(t) + G2 β(t),with X=

 θ
Ω
α


y1(t) = C2 X(t) + w(t),

A2 =

0 1 0
0 0 1
0 0 0

,CT
2 =

1
0
0

and G2=

0
0
1

,
• Luenberger observer

˙̂X(t) = A2 X̂(t)+Kc2 e(t), with e(t) = y1(t) − C2 X̂(t) = y1(t) − θ̂(t)

with K T
c2 = (ka2 kb2 kc2) and X̂ T=

(
θ̂ Ω̂ α̂

)
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A new continuous-time third-order ATO

.

.

. ..

.
.

ey1 θ̂α̂kc2

s−

kb2

+ +

ka2

Ω̂1

s

1

s

.

.

. ..

.

.

The resulting position, speed and acceleration estimator is equivalent to :

• an double integrator in closed-loop with a PID controller

Kp = kb2, Ti =
kb2

kc2
and Td =

ka2

kb2

still a common structure in automatic control

• a third-order filtering process applied to the measured position

Θ̂(s) =
ka2 s2 + kb2 s + kc2

s3 + ka2 s2 + kb2 s + kc2
Y1(s)

Ω̂(s) =
(kb2 s + kc2)

s3 + ka2 s2 + kb2 s + kc2
s Y1(s)

α̂(s) =
kc2

s3 + ka2 s2 + kb2 s + kc2
s2 Y1(s)

Θ̂(s) results from a third-order lowpass filter with a slope of only −20

dB/dec
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A new continuous-time third-order ATO

.
Properties
..

.

. ..

.

.

This estimator is unbiased when the speed is constant but also
when the speed is linearly increasing

.

.

. ..

.

.

• if Y1(s) = Θ(s) = ω
s2 ,

lim
t→+∞

y1(t) − θ̂(t) = 0

• if Y1(s) = Θ(s) = α
s3 ,

lim
t→+∞

y1(t) − θ̂(t) = 0

.

.

. ..

.

.

This estimator provides an improved position and speed estimation during
transients.
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A new continuous-time third-order ATO

.
Possible settings of this ATO
..

.

. ..

.

.

Placing the poles of the transfer functions at −K/T , −1/T + ȷψ/T and −1/T − ȷψ/T to obtain a
desired settling time, a desired peak overshoot and a desired natural frequency of oscillation.

ka2 =
K + 2

T
, kb2 =

ψ2 + 2K + 1
T 2

, kc2 =
K (ψ2 + 1)

T 3

For example, simulation results show that ψ = 3π/2 and K = 39.04 leads to a peak overshoot of
10 % when the actual position abruptly changes from 0 to 180◦.

A “Butterworth” setting (ka2 = 2/Tc , kb2 = 2/T 2
c , kc2 = 1/T 3

c ) would lead to an overshoot of

30.9 % !

.

.

. ..
. .The higher the acuracy, the longer the transients
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A new discrete-time third-order ATO
.

.

. ..

.

.

Another angle tracking observer can be derived from on a
discrete-time third-order state space model, using a statistical
state-space estimator.

.

.

. ..

.

.

State space model : linear transition equation and
nonlinear measurement equation

X [k+1] = A3 X [k ] + G v [k ]

Y [k+1] =

(
yc [k+1]

ys [k+1]

)
=

(
yc((k+1) Ts)
ys((k+1) Ts)

)
= H(X [k+1]) + W [k+1],

with X [k ] =

x1 [k ]

x2 [k ]

x3 [k ]

=

 θ(k Ts)
Ts Ω(k Ts)

T 2
s α(k Ts)

, A3 =

1 1 1/2
0 1 1
0 0 1

,
GT = (1/6 1/2 1) , v [k ]=T 3

s β(k Ts),

H(X [k ]) =

(
cos(x1 [k ])
sin(x1 [k ])

)
and W [k ] =

(
wc [k ]

ws [k ]

)
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A new discrete-time third-order ATO
.

.

. ..

.

.

Another angle tracking observer can be derived from on a
discrete-time third-order state space model, using a statistical
state-space estimator.

.

.

. ..

.

.

nonlinear Kalman estimator : using a third order
Taylor expansion of the measurement function H, a
simple and computationally efficient time-invariant
state estimator can be designed :

Xp [k ] = A3 Xe [k−1]

Xe [k ] = Xp [k ] + Klin

(
ys [k ] cos(θ̂p [k ]) − yc [k ] sin(θ̂p [k ])

)
where Klin is derived from the variances of the state noise q and the

measurement noise r . This is a new and very surprising result, because

“extended” Kalman filters are seldom simple.
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Simulation Results

.

.

. ..

.

.
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Conclusion

.

.

. ..

.

.

• Performances, setting, and digital implementation of the classical ATO

• Performances, setting, and digital implementation of a new continuous-time
third-order ATO

• New discrete-time estimator based on estimation theory

• MATLAB/SIMULINK files available at http ://www.univ-nantes.fr/auger-f

.

.

. ..

.

.

• Thanks for your attention

• Any questions ?
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