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What can be done when the sensor yields two signals proportional to
the sine and cosine of the shaft position ? J

This happens
when a resolver is used
when a magnetic position encoder is used

when injecting high frequency voltages into salient PMSM
machines for sensorless control

This paper both recalls the classical solution, with its possible
settings and performances, and two new estimators.

IREENA




The classical solution is based on a second-order state space model
with a “nearly constant speed” (the acceleration is considered as a
random noise) and a linear measurement of the position.

State space model :

X(t) = A X(t) + Gy a(t), with X=(g),

yi(t) = Cy X(t) + w(t), with Q=6
0o 1 1 0
A = (o 0),0{:(0)ande1:(1>,
Luenberger observer

X(t) = A K(t) + K e(t), with e(t) = yi () — Cr X(t) =y (1) — (1)
with KI, = (Kat Kp1) and XT:(é Q)




The resulting position and speed estimator is equivalent to :
an integrator in closed-loop with a Pl controller

Kp =kat and T; = Kat / Kbt

a common structure in automatic control
a filtering process applied to the measured position
A Kat S + Kby
o(s) = ——— Yi(s
) 82 + ka1 S + Kps 1(s)
Kbt

Q(s - s
©) 2 + Kat S + kpy

Yi(s)

©(s) results from a 2nd-order lowpass filter with a slope of only —20
dB/dec

v

IREEN

Electrotechnique et Electronique
de Nantes-Atiantique.

4/15



The classical ATO is unbiased when the speed is constant but
biased when the speed is not constant.

if Y1(s) =0©(s) =

Q€

E]

Jim yi() =0ty =0

if Yi(s) = ©(s) = g,
lim_yi(t) — 8(t) = —

t—+oo Kp1




Possible settings of the ATO

The setting of the ATO parameters should be deduced from desired performances in the time

domain rather that in the frequency domain.

For a linearly increasing speed with acceleration equal to «,

Qe —0
k = (o3 — and k = true =
R T— = Be—0
Kpt = = @ 5 and Kz = 2m/Kp1,

where nlvmiesia damping ratio. m = 1.945 provides a 5 % overshoot when the actual position
abruptly changes from 0 to 180°. A “Butterworth” setting (m = v/2/2) leads to an

overshoot of 20 % ! )
The higher the acuracy, the longer the transients )
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resolver : nonlinear measurement equation

if the sensor provides two noisy signals
Ye(t) = cos(6(1)) + we(t)
) ys(t) = sin(6(t)) + ws(t),
—_ the error term e(t) = y4(t) — A(t) should be simply replaced by
:' Il D) [ e(t) = ys(t) cos(6(1)) — ye(t) sin(4(t))
e | s = sin(6(t) — 6(t)) + ws(t) cos(A(t)) — we(t) sin(A(t))
[P | [ ~ O(t) — O(t) + ws(t) cos((t)) — we(t) sin(d(t))
source :
http ://data.bolton.ac.uk. The resulting observer remains stable [Harnefors2000]. )
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http://data.bolton.ac.uk/mind/paderborn/sensors/resolver/resolver.html

Another angle tracking observer can be derived from on a third-order
state space model with a “nearly constant acceleration” (the jerk is
considered as a random noise) and a linear position measurement.

v

State space model :

-

pay

=
Il

0
Az X(t) + Gz (1), with X= (Q)

(o34

= )
0 1 0 1 0
A= (0 0 1|,cJ=[0]andG=(0],
0 0 O 0 1

Luenberger observer

X(t) = A X(t)+Kez e(t), with e(t) = y1(t) — Ca X(t) = ya (1) — (1)
with K = (ke kie ko) and X'=(0 @ &)




The resulting position, speed and acceleration estimator is equivalent to :
an double integrator in closed-loop with a PID controller

K K
Ko=kep, Ti=-2 and Ty=-2
Ke2 Kb2

still a common structure in automatic control
a third-order filtering process applied to the measured position

kap % + Kpo S + kea

&(s) = Yi(s
®) S% + kpp $% + Kpp S + koo 1(s)
~ (kb2 8 + Kc2)
Q = Y,
(s) S3 + Kap % + Ko S + Keo s¥i(s)
K
a(s) = c2 S Yi(s)

8% + ka2 $? + Koo S + K2

©(s) results from a third-order lowpass filter with a slope of only —20
dB/dec




Properties

This estimator is unbiased when the speed is constant but also
when the speed is linearly increasing

3

if Y1(s) =0©(s) =

R|€

Jim yi() =0t =0

if Y1(s) = ©(s)

Il
QR

lim yy(t) — 4(t) =0

t—+oo

This estimator provides an improved position and speed estimation during

transients.
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Possible settings of this ATO

Placing the poles of the transfer functions at —K'/T, —1/T + 53/ T and —1/T — 72/ T to obtain a
desired settling time, a desired peak overshoot and a desired natural frequency of oscillation.

K+2 2 + 2K + 1 K (9% 41)
, ke = , K2 =
T T2 T3

ka2 =

For example, simulation results show that ¢y = 37 /2 and K = 39.04 leads to a peak overshoot of
10 % when the actual position abruptly changes from 0 to 180°.

A “Butterworth” setting (ks = 2/ T;, kpo = 2/ T2, kez = 1/ T2) would lead to an overshoot of

30.9 %!
v
The higher the acuracy, the longer the transients J
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Another angle tracking observer can be derived from on a

discrete-time third-order state space model, using a statistical

state-space estimator.

State space model : linear transition equation and
nonlinear measurement equation

Xik+1]

Yk+1] =

with X[k

GT

H(XK) =

Az Xkl + G VIK

(
(

(

Yelk+1]
Yslk+1]

_ (Y
Vs

—~

(k+1) Ts)

_~=

Xy 0(k Ts) 1
X[k |=[ TsQkTs) |, As=( 0
X3kl T2 a(k Ts) 0

/6 1/2 1), vk]=T2 B(k Ts),

cos(xi ()
sin(xi k1)

) and Wik = (

Welk]
Wslk]

)

() TS)) = H(X[k+1]) + Wik+1],

1 1/2
1 1,
0o 1
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Another angle tracking observer can be derived from on a
discrete-time third-order state space model, using a statistical
state-space estimator.

nonlinear Kalman estimator : using a third order
Taylor expansion of the measurement function #, a
simple and computationally efficient time-invariant
state estimator can be designed :

Xolk] = Az Xelk—1]

Xolkl = Xplkl + Kiin (ys[kl cos(fpK) — ek sin(ép[kl))

where Ki, is derived from the variances of the state noise g and the
measurement noise r. This is a new and very surprising result, because

“extended” Kalman filters are seldom simple.
IREENA
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Performances, setting, and digital implementation of the classical ATO

Performances, setting, and digital implementation of a new continuous-time
third-order ATO

New discrete-time estimator based on estimation theory
MATLAB/SIMULINK files available at http ://www.univ-nantes.fr/auger-f
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http://www.univ-nantes.fr/auger-f

Performances, setting, and digital implementation of the classical ATO

Performances, setting, and digital implementation of a new continuous-time
third-order ATO

New discrete-time estimator based on estimation theory
MATLAB/SIMULINK files available at http ://www.univ-nantes.fr/auger-f

Thanks for your attention

Any questions ?

NA

15/15


http://www.univ-nantes.fr/auger-f

	Titre
	Introduction
	The classical ATO
	A third-order ATO
	Discrete-time third-order estimator
	Simulations
	Conclusion

	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	0.13: 
	0.14: 
	0.15: 
	0.16: 
	0.17: 
	0.18: 
	0.19: 
	0.20: 
	0.21: 
	0.22: 
	0.23: 
	0.24: 
	0.25: 
	0.26: 
	0.27: 
	0.28: 
	0.29: 
	0.30: 
	0.31: 
	0.32: 
	0.33: 
	0.34: 
	0.35: 
	0.36: 
	0.37: 
	0.38: 
	0.39: 
	0.40: 
	0.41: 
	0.42: 
	0.43: 
	0.44: 
	0.45: 
	0.46: 
	0.47: 
	0.48: 
	0.49: 
	anm0: 


