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Abstract: The aim of this paper is to determine the face collapse pressure of a circular tunnel driven by a pressurized shield. The analysis
is performed in the framework of the kinematical approach of limit analysis theory. It is based on a translational three-dimensional
multiblock failure mechanism. The present failure mechanism has a significant advantage with respect to the existing limit analysis
mechanisms developed in the case of a frictional soil: it takes into account the entire circular tunnel face and not only an inscribed ellipse
to this circular area. This was made possible by the use of a spatial discretization technique. Hence, the three-dimensional failure surface
was generated “point by point” instead of simple use of existing standard geometric shapes such as cones or cylinders. The numerical
results have shown that a multiblock mechanism composed of three blocks is a good compromise between computation time and results
accuracy. The present method significantly improves the best available solutions of the collapse pressure given by other kinematical
approaches. Design charts are given in the case of a frictional and cohesive soil for practical use in geotechnical engineering.
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Introduction

The stability analysis and the assessment of ground surface settle-
ment of a pressurized shield tunneling are of major importance in
real shield tunneling projects. The aim of the stability analysis is
to ensure safety against soil collapse in front of the tunnel face.
This requires the determination of the minimal pressure �air,
slurry, or earth� required to prevent the collapse of the tunnel face.
On the other hand, the deformation analysis deals with the deter-
mination of the pattern of ground deformation that will result
from the construction works. These ground deformations should
be within a tolerable threshold to prevent damage to surface or
subsurface structures. This paper is limited to the first problem,
i.e., the face stability analysis of a shallow circular tunnel driven
by a pressurized shield. Tunneling under compressed air is con-
sidered in the analysis.

The study of the face stability of circular tunnels driven by
pressurized shields has been investigated by several writers in
literature. Some writers have considered a purely cohesive soil
�Broms and Bennermark 1967; Mair 1979; Davis et al. 1980;
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Kimura and Mair 1981; Ellstein 1986; Augarde et al. 2003; Klar
et al. 2007; among others�. In this case, the stability of a tunnel
face is governed by the so-called load factor N defined as N
= ��s+�H−�t� /cu where �s�surcharge loading on the ground
surface; �t�uniform pressure applied on the tunnel face;
H�depth of the tunnel axis; and cu�soil undrained cohesion.
Broms and Bennermark �1967� stated from an experimental ap-
proach that the stability is maintained as long as N�6–7. Kimura
and Mair �1981� conducted centrifuge tests and proposed a limit
value of N between 5 and 10 depending on the tunnel cover. Later
on, Ellstein �1986� gave an analytical expression of N for homo-
geneous cohesive soils based on a limit equilibrium analytical
approach. His results are in good agreement with those by Kimura
and Mair �1981�. More recently, an interesting numerical ap-
proach was proposed by Augarde et al. �2003� using a finite-
element limit analysis method based on classical plasticity theory.
This promising approach is currently limited to a two-dimen-
sional analysis. Finally, Klar et al. �2007� have suggested a new
kinematical approach in limit analysis theory for the 2D and 3D
stability analysis of circular tunnels in a purely cohesive soil.
Their method is based on an admissible continuous velocity field.
A velocity field that is proportional to a displacement field based
on elasticity theory �e.g., Verruijt and Booker 1996; Sagaseta
1987� was suggested by these writers. For the 3D face stability
analysis, their numerical results were better than the values pub-
lished by Davis et al. �1980� for great values of C /D where
C�tunnel cover and D�tunnel diameter. A somewhat similar ap-
proach has been undertaken previously by Osman et al. �2006� for
the 2D stability analysis of circular tunnels in a cohesive soil.
However, the velocity field was based on the empirical Gaussian
settlement trough near the ground surface instead of the analytical
elasticity equations. For the case of a frictional soil, some writers
have performed experimental tests �cf., Chambon and Corté 1994;
Takano et al. 2006�. Others �Horn 1961; Leca and Dormieux

1990; Eisenstein and Ezzeldine 1994; Anagnostou and Kovari
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1996; Broere 1998; Mollon et al. 2009� have performed analytical
or numerical approaches. The aim of the centrifuge tests by
Chambon and Corté �1994� was to visualize the collapse pattern
and to determine the value of the critical face pressure. Chambon
and Corté �1994� showed that the failure soil mass resembles to a
chimney that does not necessarily outcrop at the ground surface.
An arch effect that takes place above the tunnel face was pointed
out by these writers to explain this phenomenon. On the other
hand, Takano et al. �2006� have performed 1g experimental tests
using X-ray computed tomography scanner in order to visualize
the three-dimensional shape of the failure mechanism. As in
Chambon and Corté �1994�, a soil failure in the form of a chim-
ney that does not necessarily attain the ground surface was
pointed out by these writers. Finally, it was suggested that the
shape of the failure zone can be simulated with logarithmic spi-
rals in the vertical cross sections and elliptical shapes in the hori-
zontal cross sections. Concerning the analytical models of a
frictional soil, Anagnostou and Kovari �1996� and Broere �1998�
have used the failure pattern proposed by Horn �1961� to deter-
mine the expression of the critical face pressure using the limit
equilibrium method. They concluded that this method is quite
simple to use but it is based on a priori assumptions concerning
the shape of the failure mechanism and the normal stress distri-
bution applied to the faces of the moving blocks. A more rigorous
model based on the kinematical method of limit analysis was
proposed by Leca and Dormieux �1990�. This model was then
improved by Mollon et al. �2009�. On the other hand, Eisenstein
and Ezzeldine �1994� have performed a numerical study for the
stability analysis of a tunnel face using two models �axisymetric
and three dimensional�. They stated that an axisymetric model is
not enough accurate and underestimates the value of the critical
collapse pressure.

As a conclusion, the kinematical limit analysis models by Leca
and Dormieux �1990� and Mollon et al. �2009� are among the
most recent and significant approaches. It should be mentioned
here that the upper-bound theorem �kinematical approach� states
that if a work calculation is performed for a kinematically admis-
sible collapse mechanism, then the loads thus deduced will be
higher than �or equal to� those for collapse. Since the tunnel col-
lapse pressure resists the collapse of soil into the tunnel, it is a
negative load in the sense discussed earlier. Thus, the kinematical
approach will provide an unsafe estimate of the tunnel pressure
required to maintain stability �i.e., smaller or equal to that actually
required�. The aim of this paper is to improve the existing solu-
tions given by Leca and Dormieux �1990� and Mollon et al.
�2009� in the framework of the kinematical approach. The soil
considered in the analysis is assumed to be frictional and/or co-
hesive. The main originality of the present work is that the failure
mechanism presented herein includes the whole circular tunnel
face while the existing mechanisms �except that developed by
Klar et al. �2007� in the case of a purely cohesive soil� only
involve an elliptical area inscribed to the circular face. This im-
provement required numerical generation “point by point” of
complex shapes of failure surfaces instead of simple use of exist-
ing standard geometric shapes �such as cones or cylinders� as it
was made in Davis et al. �1980�, Leca and Dormieux �1990�, and
Mollon et al. �2009�. After a short overview of the existing limit
analysis failure mechanisms by Leca and Dormieux �1990� and
Mollon et al. �2009�, the proposed mechanism and the corre-

sponding numerical results are presented and discussed.

216 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINE

Downloaded 22 Dec 2009 to 77.201.141.50. Redistribution subject to
Overview of Previous Kinematical Limit Analysis
Approaches

The problem of computation of the tunnel face collapse pressure
�c can be idealized as shown in Fig. 1 by considering a circular
rigid tunnel of diameter D driven under a depth of cover C. Ac-
tive collapse of the tunnel is triggered by application of surcharge
�s and self-weight, with the tunnel face pressure �c providing
resistance against failure. Under passive conditions, these roles
are reversed, and blow-out of the soil mass in front of the tunnel
face is caused by the tunnel pressure with resistance being pro-
vided by the surcharge and self-weight. The assumption of a uni-
form pressure at the tunnel face may be justified in the present
paper where shield tunneling under compressed air is considered
in the analysis. In this paper, only the active collapse of the tunnel
face is considered in the analysis; the blow-out of the soil in front
of the tunnel face being likely of less practical interest. As men-
tioned before, several theoretical models have been presented in
literature for the computation of the tunnel face collapse pres-
sures. The most recent and significant approaches are the ones
presented by Leca and Dormieux �1990� and Mollon et al. �2009�
who considered three-dimensional failure mechanisms in the
framework of the kinematical method in limit analysis. The
mechanism by Mollon et al. �2009� constitutes an improvement of
the failure mechanism by Leca and Dormieux �1990� since it
allows the three-dimensional slip surface to develop more freely
in comparison with the available two-block mechanism given by
Leca and Dormieux �1990�. Both failure mechanisms are briefly
described in the following sections in order to facilitate the un-
derstanding of the new failure mechanisms developed in the
present paper.

The collapse mechanism presented by Leca and Dormieux in
1990 �cf., Fig. 1� is composed of two truncated conical blocks
with circular cross sections and with opening angles equal to 2�
in order to respect the normality condition in limit analysis. The
lower conical block has an axis inclined at an angle � with respect
to the horizontal, and it intersects the tunnel face with a vertical
ellipse tangent to the invert and to the crown of the tunnel face.
The upper conical block has a vertical axis and it intersects the
lower conical block with an elliptical area. In order to ensure the
same contact area between both blocks, the inclination of the
contact plane between the two blocks is such that the upper block
is the mirror image of the lower block with respect to the normal
to the area between both blocks �i.e., plane � shown in Fig. 1�.
This is the reason why this mechanism is entirely defined by only

Fig. 1. Two-block failure mechanism by Leca and Dormieux �1990�
one angular parameter �. Notice that the assumption of a vertical
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axis for the upper block is not adequate and leads to nonoptimal
collapse pressures.

The failure mechanism presented by Mollon et al. �2009� and
described in more detail in Oberlé �1996� is an improvement of
the two-block collapse mechanism presented by Leca and
Dormieux �1990�. This mechanism is a multiblock �cf., Fig. 2�.
It is composed of n truncated rigid cones with circular cross sec-
tions and with opening angles equal to 2�. A mechanism with
n=5 is presented in Fig. 2. The geometrical construction of this
mechanism is similar to that of Leca and Dormieux �1990�, i.e.,
each cone is the mirror image of the adjacent cone with respect to
the plane that is normal to the contact surface separating these
cones. This is a necessary condition to ensure the same elliptical
contact area between adjacent cones. In order to make clearer the
geometrical construction of the 3D failure mechanism, Fig. 3
shows how the first two truncated conical blocks adjacent to
the tunnel face are constructed. The geometrical construction of
the remaining truncated conical blocks is straightforward. As for
the mechanism by Leca and Dormieux �1990�, Block 1 is a trun-
cated circular cone adjacent to the tunnel face. The intersection of
this truncated cone with the tunnel face is an elliptical surface that
does not cover the entire circular face of the tunnel. This is a
shortcoming not only of the multiblock mechanism by Mollon
et al. �2009� but also of the two-block mechanism by Leca and
Dormieux �1990�. On the other hand, Block 1 is truncated with
Plane 1 which is inclined at an angle �1 with the vertical direction
�cf., Fig. 3�. In order to obtain the same contact area with the
adjacent truncated conical block, Block 2 is constructed in such a
manner to be the mirror image of Block 1 with respect to the
plane that is normal to the surface separating the two blocks �i.e.,
Plane 2 as shown in Fig. 3�. The mechanism by Mollon et al.

Fig. 2. Multiblock failure mechanism by Mollon et al. �2009� �after
Mollon et al. 2009�

Fig. 3. Detail of the construction of the multiblock failure mecha-
nism by Mollon et al. �2009� �after Mollon et al. 2009�
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�2009� is completely defined by n angular parameters � and �i

�i=1, . . . ,n−1� where n is the number of the truncated conical
blocks �cf., Fig. 2�.

Notice finally that the upper rigid cone in the mechanisms by
Leca and Dormieux �1990� and Mollon et al. �2009� will or will
not intersect the ground surface depending on the � and C /D
values. This phenomenon of no outcropping at the ground surface
was also pointed out by Chambon and Corté �1994� and Takano et
al. �2006� while they performed experimental tests: As mentioned
before, a failure soil mass which has the shape of a chimney that
does not necessarily outcrop at the ground surface was observed
by these writers.

Both mechanisms by Leca and Dormieux �1990� and Mollon
et al. �2009� are translational kinematically admissible failure
mechanisms. The different truncated conical blocks of these
mechanisms move as rigid bodies. These truncated rigid cones
translate with velocities of different directions, which are collin-
ear with the cones axes and make an angle � with the conical
discontinuity surfaces in order to respect the normality condition
required by the limit analysis theory. The velocity of each cone is
determined by the condition that the relative velocity between the
cones in contact has the direction that makes an angle � with the
contact surface.

The numerical results obtained by Mollon et al. �2009� have
shown that a five-block �i.e., n=5� mechanism was found suffi-
cient since the increase in the number of blocks above five blocks
increases �i.e., improves� the solutions by less than 1%. The im-
provement of the solution by Mollon et al. �2009� with respect to
the one by Leca and Dormieux �1990� is due to the increase in the
degree of freedom of the failure mechanism by Mollon et al.
�2009�. Notice however that the solutions by Mollon et al. �2009�
and those by Leca and Dormieux �1990� suffer from the fact that
only an inscribed elliptical area to the entire circular tunnel face is
involved by failure due to the conical shape of the rigid blocks;
the remaining area of the tunnel face being at rest. This is striking
and is contrary to what was observed in numerical simulations.
This shortcoming will be removed in the following failure mecha-
nisms developed in this paper.

Kinematical Approach for the Computation
of the Tunnel Face Collapse Pressure

The aim of this paper is to compute the tunnel face collapse
pressure of a shallow circular tunnel driven by a pressurized
shield in a frictional and/or cohesive soil. The theoretical model is
based on a three-dimensional multiblock failure mechanism in the
framework of the kinematical approach of the limit analysis
theory. In order to render clearer the theoretical formulation of the
multiblock mechanism, the geometrical construction of a mecha-
nism composed of a single rigid block is first presented. It is then
followed by the presentation of the multiblock mechanism. The
one- and multiblock mechanisms developed in this paper will be
referred to as improved mechanisms since they allow �1� to con-
sider the entire circular area of the tunnel face and not only an
inscribed ellipse inside this area; �2� to improve the solutions
presented by Leca and Dormieux �1990� and Mollon et al. �2009�
in the framework of the kinematical approach of limit analysis.

Improved One-Block Mechanism M1

M1 is a rigid translational one-block mechanism. It is defined by

a single angular parameter 	 �cf., Fig. 4�. This angle corresponds
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to the inclination of the velocity of this block with respect to the
longitudinal axis of the tunnel. Since a failure mechanism involv-
ing the whole circular area of the tunnel face is explored here, no
simple geometrical shape �such as a cone� can be considered. It is
necessary to generate the three-dimensional failure surface point
by point using a spatial discretization technique.

Method of Generation of the Improved One-Block
Mechanism
It is assumed �cf., Fig. 4� that the cross section of the improved
one-block mechanism in the vertical plane �y ,z� containing the
longitudinal axis of the tunnel is the same as that of the one-block
mechanism composed of a single conical block with an opening
angle equal to 2�. This is to be expected because the conical
one-block mechanism involves the entire diameter of the tunnel
face only along the vertical diameter of the tunnel face. Referring
to the �y ,z� coordinate system shown in Fig. 4, the z-coordinate
of the apex of the mechanism �i.e., Point A� is denoted zmax. In
case of no outcrop of the failure mechanism at the ground surface
�cf., Fig. 4�a��, zmax is given by

zmax = D/�tan�	 + �� − tan�	 − ��� �1�

Otherwise, the failure mechanism outcrops at the ground surface
�cf., Fig. 4�b�� and zmax becomes equal to

zmax = �C + D�/tan�	 + �� �2�

The three-dimensional failure surface of the improved one-block
mechanism is determined here by defining the contours of this
surface at several vertical planes parallel to the tunnel face �cf.,
Fig. 5�. Notice that the contour of a given plane is defined from
that of the preceding plane. The first vertical plane to be consid-
ered is that of the tunnel face for which the contour of the failure
surface is circular as required. The different vertical planes are
equidistant; the horizontal distance separating two successive
planes being 
z=zmax /nz where nz�number of slices considered in
the spatial discretization of the 3D failure surface along the z-axis
�cf., Fig. 4�. The vertical planes are denoted by index j where
j=0, . . . ,nz; j=0 being that of the tunnel face �cf., Fig. 5�. In the
following, the generation of only the first contour �i.e., that cor-
responding to j=1� of the failure surface located at a distance 
z

from the tunnel face and using the contour of the tunnel face
�which is circular of diameter D� will be presented. The genera-
tion of the subsequent contours is straightforward.

(a) (b)

Fig. 4. Cross section of the improved one-block mechanism in the
�y ,z� plane in two cases: �a� no outcrop of the mechanism at the
ground surface; �b� outcrop at the ground surface
The contour of the tunnel face is discretized by a number n� of
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points Pi,0 uniformly distributed along this contour. Point Pi,0 is
defined by the parameters �R ,�i� in the polar coordinate system
and by the following coordinates in the �x ,y� plane corresponding
to the tunnel face �cf., Fig. 5�:

� xi,0 = R · sin��i�
yi,0 = R · cos��i�

� �3�

Thus, each point of the failure surface is defined by two indices i
�index indicating the position of the point in a given vertical
plane� and j �index of the vertical plane�. The generation of point
Pi,1 in the first contour makes use of three points Pi,0, Pi−1,0, and
Pi+1,0 belonging to the tunnel face �cf., Fig. 5�. The position of
point Pi,1 must satisfy the three following conditions �cf., Fig. 6�:
• Pi,1 belongs to plane j=1, i.e.

zi,1 = zi,0 + 
z = 
z �4�

• The triangular surface formed by points Pi,0, Pi−1,0, and Pi,1

should respect the normality condition in limit analysis, i.e.,
the normal to the plane of this triangle should make an angle
� /2+� with the velocity vector V. This normality condition is
necessary for the failure mechanism to be kinematically ad-
missible and for the limit analysis theory to be applicable.

• The triangular surface formed by points Pi,0, Pi+1,0, and Pi,1

should also respect the normality condition.

Fig. 5. Principle of generation of the 3D failure surface by using
several contours parallel to the tunnel face and several points on each
contour

Fig. 6. Principle of generation of point Pi,1 from point Pi,0 located on
the contour of the tunnel face
ERING © ASCE / JANUARY 2010
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The procedure described earlier allows one to create for each
point Pi,j a corresponding point Pi,j+1 in the following plane by
respecting the normality condition in the neighborhood of Pi,j.
The mathematical formulation of this problem can thus be briefly
described as follows.

The three points Pi,1, Pi,0, and Pi−1,0 define a plane named
��1�, with a normal vector N1 �which is as yet unspecified�. Also,

vector A1 belonging to the plane j=0 is defined as: A1

D1 = sin���/cos�	�

the same procedure is again applied to generate the points of the
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=Pi−1,0Pi,0 where the coordinates of points Pi,0, and Pi−1,0 are
given, respectively, by �xi,0 ,yi,0 ,zi,0� and �xi−1,0 ,yi−1,0 ,zi−1,0�. Vec-
tors N1 and A1 are given as follows:

N1�xn1

yn1

zn1

; A1�xa1 = xi,0 − xi−1,0

ya1 = yi,0 − yi−1,0

za1 = zi,0 − zi−1,0
�� �5�
The normal vector N1 must satisfy the three following conditions:
�N1 is a unit vector ⇒ 	N1	 = 1

N1 is orthogonal to ��1�, and consequently to A1 ⇒ N1 · A1 = 0

��1� should respect the normality condition ⇒ N1 · V = cos��/2 + �� = − sin���
� �6�
From the three conditions, one can deduce the following system
of equations:

�xn1
2 + yn1

2 + zn1
2 = 1

xn1 · xa1 + yn1 · ya1 + zn1 · za1 = 0

yn1 · sin�	� + zn1 · cos�	� = sin���
� �7�

The following intermediate variables are defined:

A1 = �tan�	� · za1 − ya1�/xa1

B1 = �sin��� · za1�/�xa1 · cos�	��

C1 = − tan�	�
1 = �2 · A1 · B1 + 2 · C1 · D1�2 − 4 · �A1
2 + C1

2 + 1� · �B1
2 + D1

2 − 1�

�8�

Then, the coordinates of N1 can be expressed as follows:

�xn1 = A1 · yn1 − B1

yn1 = �2 · A1 · B1 + 2 · C1 · D1 � 
1�/�2 · A1
2 + 2 · C1

2 + 2�
zn1 = C1 · yn1 − D1

�
�9�

Thus, the normal to plane ��1� containing point Pi,1 has been
defined. By proceeding in the same manner, one can also define
the coordinates �xn2 ,yn2 ,zn2� of vector N2 normal to plane ��2�
which contains the points Pi,1, Pi,0, and Pi+1,0. Notice that point
Pi,1 is located at the intersection between the two planes ��1� and
��2�, and the vertical plane corresponding to j=1 �cf., Fig. 6�.

Thus, its coordinates should verify the following system:
�xn1 · xi,1 + yn1 · yi,1 + zn1 · zi,1 − �xn1 · xi,0 + yn1 · yi,0 + zn1 · zi,0� = 0 ��1�
xn2 · xi,1 + yn2 · yi,1 + zn2 · zi,1 − �xn2 · xi,0 + yn2 · yi,0 + zn2 · zi,0� = 0 ��2�
zi,1 = zi,0 + 
z �j = 1�

� �10�
The following intermediate variables are defined:

E1 = zn1 · �zi,0 + 
z� − �xn1 · xi,0 + yn1 · yi,0 + zn1 · zi,0�

E2 = zn2 · �zi,0 + 
z� − �xn2 · xi,0 + yn2 · yi,0 + zn2 · zi,0� �11�

Finally, the coordinates of point Pi,1 are given by

�xi,1 = − �yn1/xn1� · yi,1 − E1/xn1

yi,1 = �xn2 · E1/xn1 − E2�/�− xn2 · yn1/xn1 − yn2�
zi,1 = zi,0 + 
z = 
z

� �12�

The procedure described earlier should be repeated for all the n�

points of the tunnel face to generate the corresponding n� points
in the plane j=1 �cf., Fig. 5�. Once the first contour is generated,
plane j=2 from those of plane j=1, and so on up to the plane
j=nz.

Since a collapse �i.e., an active state of stress� of the soil mass
in front of the tunnel face is considered in this paper, the failure
mechanism must “close to itself” as is the case of the failure
mechanisms by Leca and Dormieux �1990� and Mollon et al.
�2009�. When this mechanism closes, some erroneous Pi,j points
systematically appear out of the intuitive collapse mechanism in
the case of nonoutcropping mechanisms. Those points, which
were generated by the numerical algorithm, can not be avoided
with the use of the method of generation proposed in this paper.
They should be removed to conserve only the points correspond-
ing to the failure surface.

Notice finally that similar to the mechanisms by Leca and

Dormieux �1990� and Mollon et al. �2009�, the rigid block will or
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will not intersect the ground surface depending on the � and C /D
values. In case of outcrop of the failure mechanism at the ground
surface, the points generated by the present algorithm and located
above the ground surface have also to be removed. The exact
intersection points between the failure mechanism and the ground
surface are computed here by linear interpolation between the
points located directly above and below the ground surface. Fig. 7
shows the layout of the 3D generated one-block mechanism when
�=15°, C /D=0.2, and 	=50°.

Improved Multiblock Mechanism Mn

The improved one-block mechanism described before does not
offer a great degree of freedom since it is characterized by only a
single angular parameter. In order to get better solutions of
the collapse pressure, efforts were concentrated in this section
on the improvement of the preceding one-block mechanism M1
by increasing the number of blocks. Thus, a multiblock failure
mechanism Mn is suggested hereafter. Notice that the idea
of a multiblock failure mechanism was first introduced by
Michalowski �1997� and Soubra �1999� when dealing with the
two-dimensional analysis of the bearing capacity of strip founda-
tions and then by Soubra and Regenass �2000�, Michalowski
�2001�, and Mollon et al. �2009� for the analysis of some stability
problems in three dimensions. It was shown by these writers that
a multiblock mechanism significantly improves the solutions
given by the traditional two-block and logsandwich mechanisms
in the case of a ponderable soil. This is due to the great freedom
offered by this mechanism to move more freely with respect to
the traditional mechanisms. The three-dimensional multiblock
failure mechanism presented in this paper makes use of the idea
of a multiblock mechanism suggested by Mollon et al. �2009� in
order to obtain greater �i.e., better� solutions. A detailed descrip-
tion of this mechanism is as follows.

As mentioned before, the failure surface of the improved one-
block mechanism was generated from the circular tunnel face, but
it can also be generated from any arbitrarily section since the
surface is generated from the discretized contour of the tunnel
face and not from its analytical expression. Consequently, it is
possible to add a second block above the first block �cf., Fig. 8�.
Thus, the first block called “Block 1” adjacent to the tunnel face

(a)

Fig. 7. Layout of the 3D generated one-block mechanism in case of
is truncated with a plane named “Plane 1” inclined at an angle �2
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with the vertical direction. The area resulting from this intersec-
tion �which has a nonstandard shape� is used to generate the sec-
ond block called “Block 2” whose axis is inclined at 	2 with the
horizontal direction. Thus, Block 2 is defined by two angular
parameters �2 and 	2. Notice also that Block 1 is defined by only
one angular parameter 	1 which is the inclination of the axis of
Block 1. One can see from Fig. 8 that Block 2 moves as a rigid
body with velocity V2 inclined at 	2 with the horizontal. The
velocity of the first block is now denoted V1 and it is inclined at
	1 with the horizontal.

The numerical implementation of the geometrical construction
of Block 2 consists in determining the intersection points of
the lateral surface of the first block with Plane 1 defined by �2.
The process is similar to that of the ground surface, i.e., the points
located above Plane 1 are deleted, and the exact intersection
points are calculated by linear interpolation. These intersection
points �cf., Fig. 9� located on the contact area between adjacent
blocks are used for the generation of the second block, using
exactly the same equations as those for the first block except the
fact that these equations are now used in the local axes related
to the contact plane separating both blocks. Notice that the tenta-
tive �i.e., nonoptimal� failure surface shown in Fig. 9 corresponds
to the case where �=17°, C /D�0.8, 	1=40°, 	2=75°, and
�2=60°.

Notice finally that the geometrical procedure of construction

(b)

p at the ground surface: �a� view in the �x ,y ,z� space; �b� plan view

Fig. 8. Cross section of a two-block mechanism in the �y ,z� plane
outcro
ERING © ASCE / JANUARY 2010

 ASCE license or copyright; see http://pubs.asce.org/copyright



of an additional block described earlier is successively applied to
generate the multiblock mechanism. This mechanism is entirely
defined by the 2n−1 as yet unspecified angular parameters �k

�k=2, . . . ,n� and 	l �l=1 , . . . ,n� where n is the number of blocks
of the failure mechanism.

Work Equation

The work equation is written here for the general case of a multi-
block failure mechanism and for a frictional and cohesive �� ,c�
soil. This mechanism is a translational kinematically admissible
failure mechanism. The different truncated rigid blocks involved
in this mechanism move as rigid bodies. These blocks translate
with velocities of different directions, which are collinear with the
blocks axes and make an angle � with the lateral discontinuity
surfaces in order to respect the normality condition required by
the limit analysis theory. The velocity of each block is determined
by the condition that the relative velocity between the blocks in
contact has the direction that makes an angle � with the contact
surface. The velocity hodograph is given in Fig. 10. The velocity
vi+1 of block i+1 and the interblock velocity vi,i+1 between blocks
i and i+1 are determined from the velocity hodograph as follows:

vi+1 =
cos�� + �i+1 − 	i�

cos�� + �i+1 − 	i+1�
· vi

vi,i+1 = � cos�	i�
sin��i+1 + ��

−
cos�	i+1�

sin��i+1 + ��
·

cos�� + �i+1 − 	i�
cos�� + �i+1 − 	i+1�� · vi

�13�

It can be easily shown that vi and vi,i+1 are given by

vi = 
k=1

i−1 � cos�� + �k+1 − 	k�
cos�� + �k+1 − 	k+1�� · v1

Fig. 9. Principle of generation of the second upper block

Fig. 10. Velocity hodograph between two successive blocks
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vi,i+1 = 
k=1

i−1 � cos�	k�
sin��k+1 + ��

−
cos�	k+1�

sin��k+1 + ��
·

cos�� + �k+1 − 	k�
cos�� + �k+1 − 	k+1�� · v1 �14�

Notice that the external forces involved in the present mechanism
are the weights of the different truncated rigid blocks, the sur-
charge loading acting on the ground surface, and the collapse
pressure of the tunnel face. The rate of external work of the sur-
charge loading should be calculated only in case of outcrop of the
mechanism at the ground surface. The computation of the rate of
external work of the different external forces is straightforward as
follows:
• Rate of work of the weight of the different truncated blocks

Ẇ� =� �
V
� � · v dV = �

i=1

n

�i · vi Vi = ��
i=1

n

vi sin�	i�Vi

�15�

• Rate of work of a possible uniform surcharge loading on the
ground surface

Ẇ�s
=� �

An

�s · v dA� = �sAn� sin�	n�vn �16�

• Rate of work of the collapse pressure of the tunnel face

Ẇ�c
=� �

A0

�c · v dA = − �cA0 cos�	1�v1 �17�

where Vi=volume of block i; An�=possible area of intersection of
the last upper block with the ground surface �if the mechanism
outcrops�; and A0=surface of the tunnel face.

Since no general plastic deformation of the truncated blocks is
permitted to occur, the rate of internal energy dissipation takes
place only along the different velocity discontinuity surfaces.
These are �1� the radial surfaces which are the contact areas be-
tween adjacent truncated blocks; �2� the lateral surfaces of the
different truncated blocks. Notice that the rate of internal energy
dissipation along a unit velocity discontinuity surface is equal to
c ·
u �Chen 1975� where 
u is the tangential component of the
velocity along the velocity discontinuity surface. Calculation of
the rate of internal energy dissipation along the different velocity
discontinuity surfaces is straightforward. It is given by

ḊAi,Si
=� �

S

c · v · cos���dS +� �
A

c · v · cos���dA

= c · cos��� · ��
i=1

n

viSi + �
i=1

n−1

vi,i+1Ai,i+1� �18�

where Si=lateral surface of block i and Ai,i+1=contact area be-
tween blocks i and i+1. Details on the computation of the vol-
umes and surfaces are given in Appendix. The work equation
consists in equating the rate of work of external forces to the rate

of internal energy dissipation. It is given as follows:
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c · cos��� · ��
i=1

n

viSi + �
i=1

n−1

vi,i+1Ai,i+1� = ��
i=1

n

vi sin�	i�Vi

+ �sAn� sin�	n�vn − �cA0 cos�	1�v1 �19�

After some simplifications, it is found that the tunnel collapse
pressure is given by

�c = �DN� − cNc + �sNs �20�

where N�, Nc, and Ns are nondimensional coefficients. They rep-
resent, respectively, the effect of soil weight, cohesion, and sur-
charge loading. The expressions of the different coefficients N�,
Nc, and Ns are given as follows:

N� = �
i=1

n � Vi

A0D
·

vi

v1
·

sin�	i�
cos�	1�� �21�

Nc = �
i=1

n � Si

A0
·

vi

v1
·

cos���
cos�	1�� + �

i=1

n−1 �Ai,i+1

A0
·

vi,i+1

v1
·

cos���
cos�	1��

�22�

Ns =
An�

A0
·

vn

v1
·

sin�	n�
cos�	1�

�23�

In Eq. �20�, �c depends not only on the physical, mechanical

Table 1. Influence of the Number of Blocks on the Critical Collapse Pre
Cohesive Soils

�a� Purely

Number
of blocks

c=20 kPa, �=0°

Collapse pressure
�kPa�

Impro
�

1 67.35

2 105.84 5

3 107.86

4 108.32

5 108.43

�b� Coh

Number
of blocks

c=0 kPa, �=20°

Collapse pressure
�kPa�

Impro
�

1 41.39

2 44.64

3 45.27

4 45.31

5 45.34

�c� Frictional

Number
of blocks

c=7 kPa, �=17°

Collapse pressure
�kPa�

Impro
�

1 28.01

2 33.38 1

3 34.26

4 34.42

5 34.48
and geometrical characteristics �, c, �, and C /D, but also on the
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2n−1 angular parameters �k �k=2, . . . ,n� and 	l �l=1, . . . ,n�. In
the following sections, the critical tunnel collapse pressure is ob-
tained by maximization of �c given by Eq. �20� with respect to
the �k �k=2, . . . ,n� and 	l �l=1, . . . ,n� angles.

Numerical Results

A computer program has been written in Matlab language to de-
fine the different coefficients N�, Nc, and Ns and the tunnel face
collapse pressure �c using Eqs. �20�–�23�. The maximization of
the collapse pressure �c with respect to the angular parameters of
the failure mechanism was performed using the optimization tool
implemented in Matlab. The number of subdivisions used for the
generation of the collapse mechanism were n�=180 and nz=200.
These values are optimal and represent a good compromise be-
tween results accuracy and computation time. The increase in the
number of subdivisions with respect to the aforementioned values
slightly improves the obtained results, the difference being
smaller than 0.1%. The CPU time necessary for the computation
of the critical collapse pressure was about 5–10 min on a 2.4 GHz
quad-core CPU.

Influence of the Number of Blocks

Table 1 gives the values of the critical collapse pressure �c ob-
tained from the maximization of the tunnel pressure with respect

�a� Purely Cohesive Soils; �b� Cohesionless soils; and �c� Frictional and

ive soils

c=30 kPa , �=0°

t Collapse pressure
�kPa�

Improvement
�%�

stable

23.92

26.93 12.6

27.59 2.5

27.80 0.8

ss soils

c=0 kPa, �=40°

t Collapse pressure
�kPa�

Improvement
�%�

13.15

13.45 2.3

13.48 0.2

13.49 0.0

13.50 0.1

hesive soils

c=10 kPa, �=25°

t Collapse pressure
�kPa�

Improvement
�%�

8.90

10.51 18.1

10.76 2.4

10.87 1.0

10.88 0.1
ssure:

cohes

vemen
%�

7.1

1.9

0.4

0.1

esionle

vemen
%�

7.9

1.4

0.1

0.1

and co

vemen
%�

9.2

2.6

0.5

0.2
to the angular parameters of the failure mechanism for three dif-
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ferent types of soil: �1� a purely cohesive soil with cu=20 and 30
kPa; �2� a cohesionless soil with �=20° and 40° �i.e., a loose and
a dense sand, respectively�; and �3� a frictional and cohesive soil
with c=7 kPa and �=17° �i.e., a soft clay� and with c=10 kPa
and �=25° �i.e., a stiff clay�. The computation is made in the case
where �=18 kN /m3 and C /D=1. The results are given for differ-
ent numbers of the rigid blocks varying from one to five. This
table also gives the percent increase �i.e., improvement� in the
collapse pressure with the increase in the number of blocks. The
percent improvement corresponding to a given number n of
blocks is computed with reference to the mechanism with n−1
blocks. From Table 1, it can be seen that the increase �i.e., im-
provement� in the collapse pressure decreases with the number of
blocks increase and is smaller than 2.5% for n=4. Therefore, in
the following, the three-block mechanism will be used to obtain
the collapse pressure for the different types of soil considered in
the paper. This mechanism is defined by five angular parameters
��2, �3, 	1, 	2, and 	3�. Finally, it should be noticed that the
one-block mechanism would be adequate only in the case of a
cohesionless soil and for great values of the friction angle �for
example �=40°�. This is because the increase in the number of
blocks slightly improves the solution in that case. Notice however
that the improvement obtained by the use of a multiblock mecha-
nism is significant for all the other cases; it is maximal in the case
of a purely cohesive soil. For instance, when using two rigid
blocks instead of one, an improvement of 57% was obtained in
the case of a purely cohesive soil when cu=20 kPa.

Analysis of the Face Stability by the Superposition
Method

Table 2 provides the critical values of N�, Nc, and Ns for different

Table 2. Numerical Results for the Nondimensional Coefficients N�, Nc

�
�degrees� 0.4 0.6 0.8

�a� V

15 0.346 0.365 0.374

20 0.247 0.251 0.252

25 0.179 0.179 0.179

30 0.132 0.132 0.132

35 0.099 0.099 0.099

40 0.075 0.075 0.075

�b� V

15 3.172 3.399 3.558

20 2.601 2.704 2.744

25 2.141 2.141 2.141

30 1.732 1.732 1.732

35 1.428 1.428 1.428

40 1.191 1.191 1.191

�c� V

15 0.150 0.089 0.047

20 0.053 0.016 0

25 0 0 0

30 0 0 0

35 0 0 0

40 0 0 0
values of C /D and � as given by individual maximization of each
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coefficient with respect to the five angular parameters of the fail-
ure mechanism. The critical values of N�, Nc, and Ns allow a
quick calculation of the critical collapse pressure for practical
purposes. This can be performed by simple application of Eq. �20�
using the superposition principle. Notice that while the values of
the critical coefficients N�, Nc, and Ns and the critical collapse
pressure �c obtained by maximization are rigorous solutions in
limit analysis, the collapse pressure �c computed using the super-
position method is not a rigorous solution since it is approxi-
mately calculated and it includes an error due to the superposition
effect. In order to evaluate this error, Table 3 gives the values of
the collapse pressures as obtained �1� by direct maximization of
this pressure; �2� by application of Eq. �20� using the critical N�,
Nc, and Ns coefficients presented in Table 2, for the two cases of
soft and stiff clays given before when C /D=1, and �
=18 kN /m3. One can observe that the error is quite small �smaller
than 0.5%� and is always conservative. From Table 2, one can
observe that the values of Nc and Ns found by numerical optimi-
zation verify the following equation:

Nc =
1 − Ns

tan �
�24�

s: �a� Values of N�; �b� Values of Nc; and �c� Values of Ns

C /D

1 1.3 1.6 2

f N�

0.378 0.378 0.378 0.378

0.252 0.252 0.252 0.252

0.179 0.179 0.179 0.179

0.132 0.132 0.132 0.132

0.099 0.099 0.099 0.099

0.075 0.075 0.075 0.075

f Nc

3.708 3.731 3.731 3.731

2.744 2.744 2.744 2.744

2.141 2.141 2.141 2.141

1.732 1.732 1.732 1.732

1.428 1.428 1.428 1.428

1.191 1.191 1.191 1.191

f Ns

0.006 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Table 3. Comparison of the Collapse Pressures as Given by the Super-
position Method and by Direct Optimization

Collapse pressure
Soft clay

�c=7 kPa,�=17°�
Stiff clay

�c=10 kPa,�=25°�

�c �superposition� �kPa� 34.38 10.81

�c �optimization� �kPa� 34.26 10.76
, and N

alues o

alues o

alues o
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This may be explained by the theorem of corresponding states
�Caquot 1934�. Notice that this theorem allows one to compute
the coefficient Nc using the coefficient Ns as can be easily seen
from Eq. �24�.

Collapse Pressures of a Purely Cohesive Soil

As mentioned in the introduction of this paper, the stability analy-
sis of a tunnel face in the case of a purely cohesive soil is gov-
erned by the load factor N. It should be remembered here that the
load factor N at failure is N= ��s+�H−�t� /cu where �t=�c.
Therefore, unlike the collapse pressure parameter �c for which a
greater value is searched to improve the best existing solutions,
one should obtain a smaller value of the parameter N to improve
the best solutions of this parameter. From the computed values of
the critical collapse pressures �c, the present critical load factors
corresponding to the failure state �i.e., �t=�c� were plotted versus
C /D in Fig. 11. The N values may also be obtained by an alter-
native and equivalent method by minimizing the N parameter
given earlier with respect to the angular parameters of the failure
mechanism. The critical values of N calculated based on the
model by Mollon et al. �2009� and those given by Broms and
Bennermark �1967�, Davis et al. �1980�, Kimura and Mair �1981�,
and Ellstein �1986� are also given in this figure. Notice that Fig.
11 may be used to check the stability of the tunnel face in a purely
cohesive soil in two different ways. Stability is ensured as long as
N computed using the applied tunnel pressure �t is smaller than
the critical value of N deduced from Fig. 11. This check may also
be performed by computing the collapse pressure �c from the
critical N value of Fig. 11 and comparing this pressure to the
applied one �i.e., �t�.

From Fig. 11, it appears that the present critical values of N are
smaller �i.e., better� than the available solutions by Mollon et al.
�2009� and Davis et al. �1980� using a kinematical approach. The
improvement is equal to 8% with respect to the results by Mollon

Fig. 11. Comparison of present load factor N of a purely cohesive
soil with that of other writers
et al. �2009� and to 3.5% with respect to the results by Davis et al.
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�1980� in the case where C /D=2.5. Finally, it appears that a
significant scatter exists between the solutions given by the kine-
matic and static approaches by Davis et al. �1980�. This may be
explained by the simplified stress field used in the static approach
of limit analysis. The centrifuge results by Kimura and Mair
�1981� and the results by Ellstein �1986� show significant differ-
ences with the present solutions. The scatter attains 40% when
C /D=2. This means that the case of a purely cohesive soil re-
quires further investigations.

Collapse Pressures of a Cohesionless Soil

The solutions of the critical tunnel face pressure as determined by
Leca and Dormieux �1990�, Mollon et al. �2009�, and by the
present approach are given in Fig. 12 for two cases of a cohesion-
less soil: �=20° and 40°. It should be remembered here that all
these results are based on the kinematical approach of limit analy-
sis. One can see that the improvement �i.e., increase of the col-
lapse pressure� of the present solution attains 12% with respect to
the one by Mollon et al. �2009� and 19% with respect to that by
Leca and Dormieux �1990� when �=20° and C /D�0.5. This
figure also shows that in the common range of variation of �
��=20–40°�, the parameter C /D has no influence on the collapse
pressures when C /D is higher than 0.5 �this geometrical condition
is always true in practice�. This is because the critical failure
mechanism obtained from the maximization process is a nonout-
cropping mechanism for these cases and it does not change with
the increase of C /D.

Fig. 13 presents a comparison between the collapse pressures
given by the proposed mechanism and those given by Anagnostou
and Kovari �1996� using a limit equilibrium method, Eisenstein
and Ezzeldine �1994� using a numerical approach, and Leca and
Dormieux �1990� using kinematic and static approaches in limit
analysis. Again, one can observe that the solutions obtained by
Leca and Dormieux �1990� using the static approach in limit
analysis are quite far from the results given by the other methods.
This is because of the simplified stress field used by Leca and

Fig. 12. Comparison of present solutions of �c with those of other
kinematical approaches for two cases of a cohesionless soil
Dormieux �1990�. The present results improve the solutions given
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by Leca and Dormieux �1990� using a kinematic approach and are
between the results given by Eisenstein and Ezzeldine �1994� and
Anagnostou and Kovari �1996�.

Table 4 presents the collapse pressures obtained by Chambon
and Corté �1994� from centrifuge tests in Nantes LCPC using
sand. The ranges of shear strength characteristics given by
Chambon and Corté �1994� are as follows: �=38–42°, and
c=0–5 kPa. As can be seen, these values of the shear strength
parameters show that the soil exhibits a small nonnull cohesion
for the sand. Chambon and Corté �1994� explained this phenom-
enon by some uncertainty in the measurements of internal friction
angle and cohesion obtained from the shear box. Notice that the

Fig. 13. Comparison of present solutions of �c with those of other
writers in the case of a cohesionless soil

Table 4. Comparison between Experimental and Computed Collapse Pre

c
�kPa�

�
�degrees�

�
�kN /m3�

D
�m� C/D

�c as given b
Chambon and C

�kPa�

0–5 38–42 16.1 5 0.5 3.6

0.5 3.5

1 3.5

1 3.0

1 3.3

2 4.0

0–5 38–42 15.3 5 0.5 4.2

1 5.5

2 4.2

0–5 38–42 16.0 10 1 7.4

2 8.0

4 8.2

0–5 38–42 16.2 13 4 13.0
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centrifuge tests were realized for several values of D, C /D, and �.
Table 4 also presents the corresponding collapse pressures as
given by the proposed three-block mechanism, for the four com-
binations of extreme values of c and � suggested by Chambon
and Corté �1994�. In this table, a unique value of the calculated
pressure is given for several values of C /D because of the high
values of � proposed by Chambon and Corté �the mechanism
never outcrops in these cases�. As one can see, the results ob-
tained by centrifuge tests are within the large range of values of
the tunnel pressures computed based on the three-block mecha-
nism using the different values of the soil shear strength param-
eters. The wide range of values of the shear strength parameters
given by Chambon and Corté �1989� does not allow a fair and
accurate comparison with the experimental collapse pressures.

Collapse Pressures of a Frictional and Cohesive Soil

Fig. 14 presents the solutions of the collapse pressure as given
by Leca and Dormieux �1990�, Mollon et al. �2009�, and by

�c as given by the proposed three-block mechanism �kPa�

c=0 kPa,
�=38°

c=5 kPa,
�=38°

c=0 kPa,
�=42°

c=5 kPa,
�=42°

6.8 0.4 5.3 Stable

6.5 0.1 5.0 Stable

13.6 7.1 10.5 5.0

17.9 11.4 13.8 8.3

Fig. 14. Comparison of present solutions of �c with those of other
kinematical approaches for two cases of a frictional and cohesive soil
ssures

y
orté
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the present approach for two soil configurations: c=7 kPa and
�=17° �soft clay�, and c=10 kPa and �=25° �stiff clay�. All
these results are based on the kinematical approach of limit analy-
sis. For C /D�0.8, the improvement of the present solution with
respect to the one by Leca and Dormieux �1990� and Mollon et al.
�2009� is about 44% and 20%, respectively, for the soft clay, and
attains 89% and 40%, respectively, for the stiff clay. For the C /D
values higher than 0.8 �which is almost always true in practice�,
the values of the collapse pressures remain constant. Again, this
phenomenon may be explained by the fact that the critical failure
mechanism obtained from optimization does not outcrop at the
ground surface for these cases.

Critical Collapse Mechanisms

Fig. 15 shows a comparison between the critical failure mecha-
nisms given by Mollon et al. �2009� and by the present approach
in three different cases: �1� a purely cohesive soil with cu

=20 kPa and C /D=1; �2� a cohesionless soil with �=30° and
C /D�0.5 �case of a nonoutcropping mechanism�; and �3� a soft
clay with �=17°, c=7 kPa, and C /D�1. For both approaches,
the failure mechanism outcrops in the case of a purely cohesive
soil as expected. It means that for this type of soil, the parameter
C /D is of major importance. This is not true for a cohesionless or
a frictional and cohesive soil with high to moderate friction angle
��=20–40°� since the critical tunnel pressure is independent of
the tunnel cover in these cases. From Fig. 15, one can also see
that the critical failure mechanisms given by both approaches are
quite similar. Notice however that the prior mechanism by Mollon
et al. �2009� does not intersect the whole tunnel face; the grey part
of the tunnel face being at rest in the mechanism by Mollon et al.
�2009� �cf., Fig. 15�. This incompatibility of the mechanism with
the tunnel cross section was removed in the method proposed
herein. Notice also that the upper block of the present mechanism
does not exhibit a unique apex as would appear from Fig. 15.
Instead, a curved line was obtained at the top of this block as may
be easily seen from Fig. 16. It should be emphasized here that for
a small value of the friction angle, the curved line developed at
the top of the upper block has a very limited length �not shown in
this paper�. Thus, the upper block approaches �but is not� a regu-
lar cone in this case; the lines developed along the j index �for a
given i� are approximately close to �but are not� straight lines. In
this case, the last upper block terminates with a somewhat unique
apex. Notice however that for greater values of the friction angle,
the upper block is far from a regular cone as was shown in Fig. 16
for �=30°.

Design Chart

Fig. 17 depicts a design chart that may be used in practice
to determine the critical collapse pressure of a circular tunnel
face in the case of a frictional and cohesive soil. This chart allows
one to evaluate the nondimensional collapse pressure �c /�D for
different values of c /�D and for various values of � �running
from 15° to 40°� when C /D�0.8 �the condition C /D�0.8 is
almost always true in practice�. Notice that the range C /D�0.8
was chosen because the critical failure mechanism would be
a nonoutcropping mechanism in this case for all the range of
values of the soil parameters considered in the paper and this
renders the chart independent of C /D. Notice finally that this
chart may also be used for the computation of the required tunnel
face pressure for which a prescribed safety factor Fs defined with

respect to the soil shear strength parameters c and tan � is de-
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sired. This may be achieved if one uses the chart with �d and cd in
lieu of � and c where �d and cd are based on the following
equations:

cd =
c

Fs
�25�

�d = arctan� tan �� �26�

(a)

(b)

(c)

Fig. 15. Comparison of the failure mechanisms as given by the
present approach �left� and by Mollon et al. �2009� �after Mollon
et al. 2009� �right�: �a� �=0° and cu=20 kPa; �b� �=30° and
c=0 kPa; and �c� �=17° and c=7 kPa
Fs
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Conclusions

A new multiblock translational failure mechanism based on the
kinematical approach of limit analysis theory was presented in
this paper in the aim to improve the existing solutions of the
critical collapse pressure of a shallow circular tunnel driven by a
pressurized shield. The present failure mechanism has a signifi-
cant advantage with respect to the existing limit analysis mecha-
nisms by Leca and Dormieux �1990� and Mollon et al. �2009�
since it takes into account the entire circular tunnel face and not
only an inscribed ellipse to this circular area. This was made
possible by the use of a spatial discretization technique allowing
one to generate the three-dimensional failure surface point by
point. The three-dimensional failure surface was determined by
defining the contours of this surface at several vertical planes
parallel to the tunnel face. This failure mechanism respects the
normality condition required by limit analysis since the three-
dimensional failure surface so generated is constructed in such a
manner that the velocity vector makes an angle � with the veloc-
ity discontinuity surfaces anywhere along these surfaces. Al-
though the three-dimensional geometrical construction presented
in this paper is applied to a circular tunnel face, it may be easily
applied to any form of the tunnel face for the stability analysis of
a tunnel driven by the classical methods. The numerical results
have shown that:

Fig. 16. Shape of the curved line at the top of t

Fig. 17. Design chart of the critical collapse pressure for a frictional
and cohesive soil
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• A one-block mechanism would be adequate only in the case
of a cohesionless soil and for great values of the friction angle
�for example �=40°�. This is because the increase in the num-
ber of blocks slightly improves the solution in that case. No-
tice however that the improvement obtained by the use of a
multiblock mechanism is significant for all the other cases; it
is maximal in the case of a purely cohesive soil. Finally, it was
found that the use of a three-block mechanism gives accurate
results for all the types of soils studied in the paper �frictional
and/or cohesive� with a reasonable computation time of about
5–10 min.

• The critical values of N�, Nc, and Ns are given in the paper for
the computation of the tunnel collapse pressure using the su-
perposition method. It was shown that the error induced by the
superposition principle is quite small �smaller than 0.5%� and
is always conservative. Notice however that the collapse pres-
sures computed based on the superposition principle can not
be considered as rigorous solutions in the framework of limit
analysis theory.

• The proposed failure mechanism improves the available solu-
tions of the load factor N and the collapse pressure �c. In the
case of purely cohesive soils, the improvement �i.e., decrease�
of the critical value of N with respect to the one by Mollon et
al. �2009� is equal to 8% for C /D=2.5. For cohesionless soils,
the improvement �i.e., increase� of the critical collapse pres-
sure �c with respect to the one given by Mollon et al. �2009� is
equal to 12% when �=20°. This improvement can attain more
than 40% for stiff clays. The comparison with other theoretical
and experimental approaches has shown that a good agreement
with other writers’ results was obtained in the case of a cohe-
sionless soil. However, significant differences exist with cen-
trifuge tests in the case of a purely cohesive soil. These
differences require further investigation.

• The failure mechanism always outcrops in the case of a purely
cohesive soil as expected. It means that in this case the param-
eter C /D is of major importance. This is not the case for a
cohesionless or a frictional and cohesive soil with high to
moderate friction angle �=20–40° since the critical tunnel
pressure is independent of the tunnel cover in these cases.

• A design chart was proposed, allowing one to evaluate the
critical collapse pressure for a frictional and cohesive soil.
This chart may also be used for the computation of the re-
quired tunnel face pressure for which a prescribed safety factor
Fs defined with respect to the soil shear strength parameters c
and tan � is desired.

er block of the failure mechanism when �=30°
he upp
Finally, it should be mentioned that the failure mechanism
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presented in this paper may be extended to the blow-out case of
failure corresponding to the passive state in the soil in front of the
tunnel face. This mechanism permits to compute the blow-out
face pressures. In this case, the velocities are acting upwards and
the failure mechanism always outcrops on the ground surface.
Although this state of failure is not realistic in the case of a
frictional and cohesive soil, it would be of some interest in the
case of a soft clay.

Appendix. Volumes and Surfaces Calculation

The calculation of the volume and lateral surface of a given block
is performed by a simple summation of elementary volumes and
lateral surfaces Vi,j and Si,j associated with the different element
areas of the failure surface of this block. This may be explained as
follows. For a given element area of the failure surface bounded
by four points �Pi,j, Pi+1,j, Pi,j+1, and Pi+1,j+1�, let �Pi,j� , Pi+1,j� ,
Pi,j+1� , and Pi+1,j+1� � be the projections of these four points on the
plane x=0 as shown in Fig. 18. This quadrilateral element area
may be subdivided into two triangular facets by two different
ways: ��Pi,j; Pi+1,j; Pi,j+1� and �Pi+1,j; Pi,j+1; Pi+1,j+1�� or ��Pi,j;
Pi,j+1; Pi+1,j+1� and �Pi,j; Pi+1,j; Pi+1,j+1��. Those four triangular
facets are denoted a, b, c, and d as shown in Fig. 18. In the same
manner, the volume bounded by the four points �Pi,j, Pi+1,j, Pi,j+1,
Pi+1,j+1� and their projection on the plane x=0, may be computed
by defining four volumes Va, Vb, Vc, and Vd, each one being
bounded by the corresponding triangular facet �a, b, c, or d� and
its projection on the plane x=0. For example, the volume Va is
bounded by the six points �Pi,j; Pi+1,j; Pi,j+1; Pi,j� ; Pi+1,j� ; Pi,j+1� � as
shown in Fig. 18. For each one of the triangular facets, it is very
easy to determine the surface and the corresponding volume
�which is equal to the projected surface of this triangle on the
plane x=0 multiplied by the distance from the barycenter of the
triangular facet to the projection plane x=0� using the coordinates
of the three points of the triangle. The surface �respectively vol-
ume� of the four-points element is approximated here as the mean
value between the surfaces �respectively, volumes� obtained from
the two ways of subdividing the quadrilateral surface into two
triangles, i.e.

Si,j =
�Sa + Sb� + �Sc + Sd�

2

Vi,j =
�Va + Vb� + �Vc + Vd�

2
�27�

Concerning the calculation of the interblock surfaces and of
the outcropping surface, this was performed using the classical

Fig. 18. Principle of the volum
trapezoidal method.
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