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Summary

Two advanced Kriging metamodeling techniques were used to compute the

failure probability of geotechnical structures involving spatially varying soil

properties. These methods are based on a Kriging metamodel combined with

a global sensitivity analysis that is called in literature Global Sensitivity

Analysis‐enhanced Surrogate (GSAS) modeling for reliability analysis. The

GSAS methodology may be used in combination with either the Monte Carlo

simulation (MCS) or importance sampling (IS) method. The resulting Kriging

metamodeling techniques are called GSAS‐MCS or GSAS‐IS. The objective of

these techniques is to reduce the number of calls of the mechanical model as

compared with the classical Kriging‐based metamodeling techniques (called

AK‐MCS and AK‐IS) combining Kriging with MCS or IS. The soil uncertain

parameters were assumed as non‐Gaussian random fields. EOLE methodology

was used to discretize these random fields. The mechanical models were based

on numerical simulations. Some probabilistic numerical results are presented

and discussed.
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1 | INTRODUCTION

This paper focuses on the computation of the failure probability of geotechnical structures involving spatially varying
soil properties. When performing a probabilistic analysis of these structures, the system response is generally related
to the system inputs by finite element/finite difference simulations that may be computationally‐expensive. This
impedes the computation of the small practical values of the failure probability by Monte Carlo Simulation (MCS) meth-
odology. Indeed, the computation of a small value of the failure probability by MCS requires a huge number of simu-
lations. For instance, 10n + 2 simulations are required to compute a failure probability of 10−n for a coefficient of
variation on the failure probability of 10%. In order to overcome the shortcoming of a large number of simulations, some
authors have resorted to more efficient probabilistic methods called “variance reduction techniques” (eg, Ahmed and
Soubra,1 Yuan et al,2 Li et al,3 Jiang and Huang,4 Li et al,5 Xiao et al,6 Huang et al,7 Jiang et al,8 and Van Den Eijnden
and Hicks9). Although the variance reduction techniques are powerful probabilistic approaches, they remain insuffi-
cient when dealing with a small value of the failure probability and a small desired value of the coefficient of variation
on this failure probability. Consequently, more advanced probabilistic approaches requiring a smaller number of simu-
lations (ie, a smaller number of calls to the mechanical model) were needed.
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During the last few decades, some metamodeling techniques were developed in literature such as the polynomial
chaos expansion (PCE), the Kriging method, the support vector machine (SVM), the artificial neural networks (ANN),
and the response surface method (RSM). The basic idea of a metamodeling technique is to replace the response of the
mechanical model (which may be computationally‐expensive) by a metamodel (ie, a simple analytical equation) using
a small number of evaluations of the system response. More recently, various advanced probabilistic approaches combin-
ing a metamodeling technique with a simulation method (eg, MCS, IS, or subset simulation [SS]) have been reported in
literature. For instance, Bourinet et al10 proposed a method combining subset simulation and support vector machines,
Dubourg et al11 suggested a combination between subset simulation and Kriging, and Echard et al12,13 combined Kriging
metamodeling with Monte Carlo and importance sampling, respectively. All these methods take advantage of both the
metamodeling and the simulation techniques. They aim at efficiently computing the small failure probabilities on the
basis of the constructed metamodel, making use of a reduced number of calls to the time‐demanding mechanical model.

This paper takes benefit from the two methods developed by Echard et al.12,13 These methods are, respectively, the
Active learning method combining Kriging and MCS (named AK‐MCS method) and the Active learning method com-
bining Kriging and IS (named AK‐IS method). Notice that both AK‐MCS and AK‐IS approaches involve the construc-
tion of a surrogate Kriging metamodel on the basis of the responses of a small design of experiments (DoE) computed
using the mechanical model. This approximate Kriging metamodel is then successively updated via an enrichment pro-
cess by selecting new training samples that are close to the limit state surface. The strategy of selection of a new training
sample is based on a powerful learning function that takes benefits from the Kriging characteristics. Once the adopted
convergence criterion indicates that the Kriging model is sufficiently improved, MCS methodology is applied on the
obtained Kriging surrogate model instead of the time‐consuming mechanical model. It should be emphasized here that
the aim of the constructed metamodel is not to determine the accurate values of the performance function for the dif-
ferent samples but rather to accurately determine the signs of the performance function values for these samples in
order to accurately compute the probability of failure.

As was stated by Hu and Mahadevan,14 the essential issues in AK‐MCS and AK‐IS lie in (a) the choice of a “best”
new training sample during the enrichment process and (b) the stopping criterion related to the addition of a new train-
ing sample. Indeed, the strategy of selection of a new training sample and the convergence criterion are defined on the
basis of the individual responses at the different Monte Carlo population samples. This may lead to some extra evalu-
ations of unnecessary new training samples.

In order to overcome the shortcomings of AK‐MCS andAK‐IS approaches for the reliability analysis, a global sensitivity
analysis‐enhanced surrogate (GSAS) modeling was developed by Hu and Mahadevan.14 This methodology is used in this
paper. It is based on a Kriging metamodel combined with a global sensitivity analysis. Two techniques called GSAS‐MCS
and GSAS‐IS were proposed within GSAS methodology. These techniques combine GSAS with either MCS or IS. Within
GSASmethodology, both the strategy of selecting new training samples and the convergence criterion are defined from the
perspective of reliability estimate (ie, they are based on the failure probability estimate which represents the quantity of
interest for the probabilistic analysis) instead of focusing on the individual responses at the different Monte Carlo samples.
Indeed, the new training samples are identified according to their contribution to the uncertainty in the estimated failure
probabilitybPf (based on a global sensitivity analysis), and the selection of new training samples stops when the accuracy of
the estimated bPf reaches a specific target.

It should be mentioned that Hu and Mahadevan14 have validated the proposed GSAS methodology on the basis of
several academic examples for which the performance function was given by an analytical equation (ie, where the com-
putation time of the corresponding performance function is quasi‐negligible). A significant reduction in the number of
calls to the performance function has been obtained when using GSAS methodology, as compared with the classical
Kriging‐based methodology by Echard et al.12

The aim of this paper is to extend the GSAS methodology proposed by Hu and Mahadevan14 to the case of random
field problems in order to study geotechnical structures involving spatial variability of the soil properties. More specif-
ically, GSAS‐MCS and GSAS‐IS techniques are used in this paper for the computation of the failure probability of shal-
low foundations resting on a spatially varying soil. Two problems involving ultimate and serviceability limit states are
considered. These problems are quite time‐consuming because the corresponding mechanical models used for the com-
putation of the performance function are based on numerical simulations.

This paper is organized as follows: Section 2 presents the problem definition. In Section 3, the GSAS general proce-
dure as adapted to the case of geotechnical structures involving spatially varying soil properties is presented—both
GSAS‐MCS and GSAS‐IS techniques are described in some details. In Section 4, some numerical probabilistic results
are presented and discussed. The paper ends by a conclusion of the main findings in Section 5.
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2 | PROBLEM DEFINITION

Two geotechnical problems based on numerical simulations using FLAC3D finite difference code and involving ultimate
and serviceability limit states were considered in this paper.

The first problem aims at performing a probabilistic analysis at the ultimate limit state (ULS) of a strip footing resting
on a one‐layer spatially varying soil medium and subjected to a vertical load. The objective is the computation of the
probability P f against soil punching. This problem was recently considered by Pieczyńska‐Kozłowska et al15 using the
random finite element method (RFEM) (cf. Griffiths & Fenton,16 Griffiths et al,17 and Fenton & Griffiths18). The numer-
ical model considered in the present analysis consists of a strip footing of breadth B = 1 m, which rests on a soil domain
of width 13B and depth 5B (cf. Figure 1). The length of the largest element of the deterministic mesh in a given direction
(horizontal or vertical) was chosen in this paper such that it does not exceed 0.5 times the autocorrelation distance in that
direction.19 The soil behavior was modeled using a conventional elastic, perfectly plastic model on the basis of the Mohr‐
Coulomb failure criterion. The soil cohesion c and angle of internal friction φ were modeled as two anisotropic non‐
Gaussian random fields. The soil dilation angle ψ was considered to be related to the soil angle of internal friction φ
by ψ = 2 φ/3. This means that the soil dilation angle was implicitly assumed as a random field that is perfectly correlated
to the soil angle of internal friction random field. The illustrative statistical parameters of the two random fields c and φ
as used in the present paper are provided in Table 1. Concerning the soil elastic parameters, the soil Young modulus E
and Poisson ratio υ were considered as deterministic parameters in this problem with the following values: E = 60 MPa
and υ = 0.3. The footing is subjected to an applied load qs = 400 kN/m. The ultimate deterministic footing load computed
by FLAC3D using the mean values of the soil shear strength parameters is equal to 1,190 kN/m. This corresponds to a
safety factor against soil punching of about 3.0. Although the present analysis focuses on a single layer soil medium,
the present probabilistic approaches may be extended to the case of spatially varying multi‐layered soil medium by using
numerical simulations from finite element method or by employing numerical limit analysis simulations as those pre-
sented by Eshkevari et al.20

The second geotechnical problem aims at performing a probabilistic analysis at the serviceability limit state (SLS) of
two neighboring strip footings resting on a spatially varying soil and subjected to central vertical loads with equal mag-
nitude. The objective in this problem is to compute the failure probability against exceeding a prescribed threshold on
the differential settlement between the two footings. The numerical model consists of two footings of breadth b = 2 m,
which rest on a soil domain of width 9b and depth 3b (cf. Figure 2). The two footing centers are separated by a distance
equal to 4 m. Each footing is subjected to a central vertical load of 1,000 kN/m. An optimized non‐uniform symmetrical
mesh was adopted (cf. Figure 2). As before, the length of the largest element in a given direction was chosen such that it
does not exceed half the value of the autocorrelation distance in that direction.20 Concerning the soil behavior, it was
modeled in this problem using the conventional elastic‐perfectly plastic model based on the Mohr‐Coulomb failure cri-
terion in order to take into account the possible plastification that may take place near the footings edges even under
service load conditions. In this SLS problem, the soil Young modulus E was modeled as an anisotropic non‐Gaussian
random field. A lognormal distribution was used for E with a mean value of 60 MPa and a coefficient of variation of
15%. The randomness of the Poisson ratio was neglected, and a deterministic value of 0.3 was adopted. The soil shear
strength parameters were also considered as deterministic parameters in this problem with the following values:
c = 20 kPa, φ = 30°, and ψ = 2 φ/3.

It should be noted that the same square exponential autocorrelation function was used for all the random fields con-
sidered in this paper (ie, c, φ, and E). This autocorrelation function is given by the following equation:
FIGURE 1 Soil domain and mesh used

in the numerical simulations for the soil

punching problem



TABLE 1 Statistical characteristics of the random fields

Random Field Mean, μ Coefficient of variation COV, % Type of the Probability Density Function (PDF)

c 20 kPa 25 Log‐normal

φ 30o 10 Beta

FIGURE 2 Soil domain and mesh used

in the numerical simulations for the

differential settlement problem
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ρ ¼ exp −
Δxj j
ax

� �2

−
Δyj j
ay

� �2
 !

; (1)

where ax and ay are the autocorrelation distances along x and y, respectively. Notice also that the values of the autocor-
relation distances considered in this paper will be given later when dealing with the numerical results.

The EOLEmethodology suggested by Li and Der Kiureghian21 was used in this paper to discretize the random fields (ie,
to obtain realizations of the soil properties that respect the correlation structure of those fields). This method allows one to
compute the variance of the error of the corresponding discretization scheme and thus, to determine theminimal (optimal)
number M of eigenmodes that is required for a prescribed value of the variance of the error. It should be noted that the
discretization of a random field by EOLE leads to an expression that provides the value of this random field at each point
of the soil mass as a function of M standard Gaussian random variables (this number M is equal to the number of eigen-
modes). For a prescribed value of the variance of the error on EOLE, the numberM is small for the high values of the auto-
correlation distances (ie, case of a homogeneous soil) and it increases with the decrease of the autocorrelation distance.
3 | GSAS GENERAL PROCEDURE FOR SOIL SPATIAL VARIABILITY
PROBLEMS

The extension of the GSAS approach by Hu and Mahadevan14 to the case of spatially varying soil properties is presented
in some details in this section. Firstly, the GSAS‐MCS technique (which may be considered as an improvement of AK‐
MCS) is presented. Then, the GSAS‐IS technique based on IS instead of MCS will be briefly described.

Before the presentation of GSAS‐MCS and GSAS‐IS approaches, it should be noted that the Kriging technique allows
one to construct a metamodel (ie, an analytical model) on the basis of a few number of samples (ie, a small DoE) com-
puted using the mechanical model. According to the Kriging property, the predicted response at an unknown sample x(i)

(as determined on the basis of the constructed Kriging surrogate model) is a random Gaussian variate as follows:

Gp x ið Þ
� �

∼ N bg x ið Þ
� �

; σ2Gp
x ið Þ
� �� �

;

where N stands for the Normal distribution,bg x ið Þ
� �

and σ2Gp
x ið Þ� �

are the Kriging mean prediction and the corresponding

mean square error (prediction variance), respectively. The variances of the samples in the DoE are zero, but the
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variances of the other samples are always different from zero. For more details concerning the theory of Kriging
metamodeling, the reader may refer to Sacks et al22 or to different recently published papers using Kriging
metamodeling as in Echard et al12,13 and Al‐Bittar et al.23
3.1 | GSAS‐MCS technique

The GSAS‐MCS technique as adapted to the case of random field problems can be summarized by the two following
stages:
3.1.1 | Stage 1 (construction of a preliminary Kriging metamodel)

This stage includes three steps:

1. In step 1, one generates a large Monte Carlo population x(i) (i = 1,2,…,NMCS), where NMCS was taken equal to
500 000 samples. Each sample is composed of M standard Gaussian random variables where M is the number of
random variables (or the number of eigenmodes), which is needed by EOLE methodology to obtain a variance of
the error that is smaller than a target prescribed value as was explained in the previous section. In this paper, a tar-
get maximal value of 5% was imposed for the variance of the error by EOLE methodology as it may be seen from the
third column of Table 4.

2. In step 2, one randomly selects a small design of experiments DoE from the generated population (a DoE of 20 sam-
ples was used in this work) and then, one computes for each sample, the realizations (ie, typical spatial variations)
of the random fields (ie, c and φ in the first geotechnical problem and E in the second geotechnical problem) on the
basis of EOLE methodology. For each selected sample, one should also compute the performance function G that is
defined by Equation (2) for the first geotechnical problem and by Equation (3) for the second problem.

G ¼ qu
qs

− 1; (2)

G ¼ δmax − δ: (3)

In Equation (2), qu represents the ultimate bearing capacity computed on the basis of FLAC3D software, making use
of the obtained realizations of c and φ, and qs is the footing applied loading. In Equation (3), δ represents the value
of the differential settlement computed using the obtained realization of E, and δmax is the prescribed threshold on
the differential settlement. The value of δmax was assumed to be equal to 3 × 10−3 m in this paper. For both equa-
tions (ie, Equations 2 and 3), a negative (respectively positive) value of G indicates that the considered realization is
located in the failure (respectively safe) domain.
On the basis of the DoE and the corresponding performance function evaluations, one should construct an approx-
imate Kriging metamodel in the standard space of random variables using the DACE toolbox.24

3. In step 3, one should determine the Kriging predictions values bg x ið Þ
� �

(ie, mean values) and their corresponding

Kriging prediction variances σ2Gp
x ið Þ� �

, for the whole MCS samples, using the DACE toolbox. The estimated failure

probability bPf may be computed using the following equation:

bPf ¼ ∑
NMCS

i¼1
I Gp x ið Þ

� �� �
=NMCS; (4)

where the metamodel random responses Gp(x
(i)) in this equation are replaced by the mean prediction valuesbg x ið Þ

� �
.

Notice that in Equation (4), I(Gp(x
(i))) = 1 if Gp(x

(i)) ≤ 0; otherwise, I(Gp(x
(i))) = 0, where x(i)(i = 1,2,…,NMCS) is the

Monte Carlo population. Thus, bPf is estimated by counting the number of negative mean predictors and dividing it

by the total number of MCS samples. The corresponding coefficient of variation COV bPf

� �
is given by the following

equation:
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COV bPf

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − bPfbPf : NMCS

vuut : (5)

It should be emphasized here that the value of the failure probability computed at this stage is far from being accu-
rate because of the small DoE used so far. An enrichment process is thus needed.
3.1.2 | Stage 2 (enrichment process)

According to the property of the Kriging metamodeling, the predicted responses Gp(x
(i)) are random variates presenting

some uncertainty. Hence, the failure probability estimate bPf given by Equation (4) is also a random variate since it is a

sum of random variates. The variance in the failure probability estimate bPf is given by the following equation (see Hu
and Mahadevan14):

Var bPf

� �
≈

1
NMCS

2 ∑
NMCS

i¼1
Var I Gp x ið Þ

� �� �� �
þ ∑

i ≠ j
Cov I Gp x ið Þ

� �� �
; I Gp x jð Þ

� �� �� � !
; (6)

where the first summation represents the sum of the individual variances of the predicted responses and the second one
represents the sum of the covariances between these responses.

Within AK‐MCS and AK‐IS approaches, the best next candidate sample adopted during the enrichment process is
selected as the one that has the highest probability of being misclassified with respect to the sign of its performance
function value. This choice aims at reducing the individual variances coming from the first part of Equation (6), but
it does not consider the effect of the correlation between samples (second part of Equation 6) on the uncertainty ofbPf . Furthermore, the convergence criterion adopted in AK‐MCS (or AK‐IS) approach is defined from the aspect of indi-
vidual samples (ie, when all the individual variances of the different MCS [or IS] samples are reduced) but not from the
aspect of the reliability estimate accuracy. The GSAS methodology allows one to overcome this shortcoming.

The basic idea of GSAS is to treat the probability of failure estimate bPf as a random variate representing the output of
the system presented in Figure 3 where the system inputs are the random responses Gp(x

(i)) predicted by the Kriging
metamodel.

Strategy of selecting a new training sample
For an efficient enrichment of the Kriging metamodel, the new training sample is selected within GSAS on the basis of

its contribution to the uncertainty of the quantity of interest (ie, bPf Þ. This is done via a global sensitivity analysis method
FIGURE 3 Probability of failure estimate as a system response (after Hu & Mahadevan, 2016) [Colour figure can be viewed at

wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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extended to the case of models with dependent inputs. The extended FAST method developed by Xu and Gertner25 was
used in this paper. The enrichment process within GSAS approach can be briefly described as follows:

The MCS samples x(i)(i = 1,2,…,NMCS) are divided into two groups: (a) group xMCS
g1 where the different samples have U

values that are larger than 2 and (b) group xMCS
g2 with the remaining samples, U being a classical learning function that is

usually employed in the Kriging‐based approaches (see Echard et al12,13). It is given by:

U x ið Þ
� �

¼ bg x ið Þ� �		 		
σGp x ið Þð Þ: (7)

Samples with a value of U that is larger than 2 are considered to have at most a probability of about 2.5% of being
misclassified (ie, a very small probability to have wrong performance function signs) as was shown by Echard et al.12

The global sensitivity analysis is then performed on the samples of the xMCS
g2 group to determine their contributions to

the uncertainty of bPf since we assume that the uncertainty of bPf comes from this group of samples. It should be noted that
in order to reduce the dimensionality of the problem, only a reduced number ncan of samples (taken equal to 20 in this
work) of the xMCS

g2 group with the lowest U values are selected to perform the global sensitivity analysis since they have

the highest probabilities of having wrong performance function signs (ie, high probability of being the new selected train-

ing sample). Finally, the sample having the biggest contribution to the uncertainty ofbPf is selected to be evaluated and to be

used for the enrichment process. Notice that the number of samples in groupxMCS
g1 is denoted in this paper byN1 and that of

group xMCS
g2 is denoted by N2. Notice also that the number N1 is expected to increase and the number N2 is expected to

decrease during the enrichment process because of the successive improvement of the metamodel during this process.

Stopping condition
A powerful stopping criterion based on the quantification of the uncertainty in the failure probability was suggested
within GSAS methodology (cf. Hu and Mahadevan14). These authors suggest stopping the addition of new samples based
on the uncertainty of the error on the failure probability εr. The error on the failure probability is a measure of the gap
between the theoretical and the computed values of the failure probability. It is defined by the following equation:

εr ¼
bPf − bP′

fbPf

; (8)

where bPf is the theoretical failure probability given by Equation (4) and bP′

f is its estimated value that can be directly com-

puted by replacing the Kriging metamodel random responses Gp(x
(i)) by the mean prediction values bg x ið Þ

� �
.

It should be noted here that bPf in Equation (8) is a random variate since it is a function of the Kriging predictions
that are random normal variates (according to the Kriging property as was stated before). Thus, the error εr as given
by Equation (8) is also a random variate for which one may quantify the corresponding uncertainty on the basis of

the uncertainty quantification of bPf . To do this, the sampling‐based method was used as follows:
This method consists in generating nr samples (nr = 600 in this paper), where each sample is composed of N2 normal

variables Gp xMCS
g2 ið Þ

� �
; i ¼ 1; 2; …; N2; N2 being the number of samples in the xMCS

g2 group. From these samples, one

can compute nr samples of the failure probability bPf and then nr corresponding samples of the error εr. From the obtained
samples εr(i),i = 1,2,…,nr, the Kernel smoothing function is employed to fit the distribution of εr. On the basis of the fitted
distribution, Hu and Mahadevan14 have suggested stopping the addition of new samples when the quantity εmax

r becomes
smaller than a prescribed threshold a (a is taken equal to 0.1% in this paper), where εmax

r is defined as follows:

εmax
r ¼ max F−1

εr 0:99ð Þ		 		; F−1
εr 0:01ð Þ		 		n o

: (9)

In this equation, F−1
εr is the inverse CDF of εr. The proposed stopping condition corresponds to a probability that the

actual estimation error on bPf is larger than 0.1%, is equal to 0.02. In other words, this criterion ensures a very small pos-

sibility of having a relatively big error on the estimation of bPf .
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Notice finally that the value of εmax
r was checked every time the surrogate model was updated, except for the case

where the number N2 was still too large (more than 8,000 samples in this paper). The reason is related to the fact that
the error computation cost is very expensive in this case. Furthermore, this cost would be with no interest since the
uncertainty on the failure probability estimate is obviously significant in the case where the number N2 of samples in
the group xMCS

g2 is large. Remember here that the uncertainty in the failure probability was assumed to come from

the xMCS
g2 group.
3.2 | GSAS‐IS technique

This section presents the combination between GSAS methodology and the IS variance reduction technique. Such a
combination (called GSAS‐IS technique) serves in reducing the samples population size with respect to GSAS‐MCS,
while conserving the small value of the coefficient of variation on the failure probability. Notice that a reduction in
the samples population size (eg, 10 000 samples in GSAS‐IS instead of 500 000 samples in GSAS‐MCS) has the advan-
tage of reducing the number of metamodel predictions for each enrichment iteration and thus, a reduction in the cor-
responding computation time.

The GSAS‐IS procedure (as adapted to the case of random fields) consists of two main stages. In the first stage, the
most probable failure point (design point) is determined via an iterative procedure using an approximate Kriging
metamodel based on a small number of samples. In the second stage, the obtained approximate Kriging metamodel
is successively improved via an enrichment process (as in GSAS‐MCS). Notice however that in GSAS‐IS, the enrichment
is performed based on samples generated according to the probability density function of a multivariate Gaussian dis-
tribution that is shifted to the obtained design point.

The step‐by‐step procedure of the GSAS‐IS method is nearly the same as that of GSAS‐MCS described in Section 3.1.
The differences involve step (3) of stage 1 and the sampling by IS (instead of MCS) during the enrichment process.

Step (3) of stage 1 within GSAS‐IS can be described as follows (steps a to d):

a. Find the minimum value of the Hasofer‐Lind reliability index and the corresponding design point by making use of
the approximate already‐obtained Kriging metamodel for the performance function. This procedure gives an
approximate value of the reliability index and its corresponding design point.

b. Generate a small number of samples (five samples are used in this paper) ofM standard Gaussian random variables.
Then, translate these samples such that the obtained samples follow a shifted multivariate Gaussian distribution
having a mean vector whose components are equal to the coordinates of the obtained design point in the standard
coordinate system. After the generation of the five samples, transform each sample into realization(s) of the random
field(s). Finally, for each one of the five samples, compute the corresponding value of the performance function
using FLAC3D.

c. Construct a new Kriging metamodel in the standard space using all samples generated so far. This Kriging
metamodel is used to obtain an updated design point and its corresponding Hasofer‐Lind reliability index.

d. Steps b and c are repeated several times until the absolute difference between two successive values of the Hasofer‐
Lind reliability index becomes smaller than a given tolerance (taken equal to 0.01).

It should be noted here that steps a to d described above were suggested in Soubra et al.26 They were applied within this
paper because we are dealing here with an analytically unknown performance function. These steps were not needed in
the paper by Hu and Mahadevan14 because only analytical performance functions were considered by these authors.

Concerning the enrichment process, once the final design point is obtained, an IS population (with a reduced num-
ber of samples of say 10 000 samples) is generated according to the PDF of a multivariate Gaussian distribution shifted

to the obtained design point. The failure probability estimate bPf is calculated using the following formula of importance
sampling approach:

bPf ¼ 1
N IS

∑
N IS

i¼1
I Gp x ið Þ

� �� �f x ið Þ� �
h x ið Þð Þ; (10)

in which I(Gp(x
(i))) is the indicator function, I(Gp(x

(i))) = 1 when Gp(x
(i)) ≤ 0 and I(Gp(x

(i))) = 0 when Gp(x
(i)) > 0; f (x(i))

is the PDF of the initial multivariate standard Gaussian distribution; h(x(i)) is the PDF of the shifted multivariate
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Gaussian distribution; and NIS is the number of samples in IS. The coefficient of variation COV bPf

� �
is given by the

following equation:

COV bPf

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var bPf

� �r
bPf

; (11)

where Var bPf

� �
is the variance of the failure probability estimate. It is calculated by the following equation:

Var bPf

� �
¼ 1

NIS − 1
1
NIS

∑
NIS

i¼1
I Gp x ið Þ

� �� � f x ið Þ� �
h x ið Þð Þ

 !2 !
− bP2

f

24 35: (12)

It should be emphasized herein that the enrichment process is similar to that of GSAS‐MCS, except that the selection
of the enrichment samples is done among the reduced IS population (10 000 samples). Notice also that the number N2 is
considered herein as being too large if it is bigger than 1000 samples.
4 | NUMERICAL RESULTS

4.1 | Probabilistic results of the soil punching problem

In this section, the failure probability against soil punching of a strip footing resting on a spatially varying soil is com-
puted. Both GSAS‐MCS and GSAS‐IS techniques are used for the computations. The results provided by the proposed
techniques are compared with those obtained by employing the classical Kriging‐based approaches (ie, AK‐MCS and
AK‐IS). A reference practical configuration with a vertical autocorrelation distance of 2 m and a horizontal autocorre-
lation distance of 10 m was considered in this section. For this case, 18 random variables were adopted within EOLE
methodology with a corresponding value of the variance of the error of 4.1%. Such a small value of the error (smaller
than 5%) indicates a sufficiently accurate random field discretization.
4.1.1 | GSAS probabilistic results

Figure 4 shows the evolution of the error εmax
r , with the number of added samples during the enrichment process as

obtained when using GSAS‐MCS. Similar trend was obtained when using GSAS‐IS (figure not shown). It should be
noted that the error εmax

r was not computed before reaching 52 added samples because of the high uncertainty in the
FIGURE 4 εmax
r vs the number of added samples within GSAS‐MCS when ax = 10 m and ay = 2 m [Colour figure can be viewed at

wileyonlinelibrary.com]
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failure probability estimate (indicated by the large value of N2 > 8000 as was mentioned before) and the corresponding
high computation cost. Beyond 52 added samples, εmax

r was computed each time a new sample was added during the
enrichment process until reaching the stopping condition (εmax

r < 0:1%) shown by the horizontal dotted red line. This
criterion has led to a number of added samples equal to 138 as shown in Figure 4.

Figure 5 shows the decreasing trend of the number N2 of samples of xMCS
g2 group with the increase in the number of

added samples. The number N2 of samples was shown to be important (N2 = 115 677 > 8000 samples) at the beginning
of the enrichment process when the metamodel was still not updated. This number decreases with the increase in the
number of added samples. When N2 has become below 8000 samples (which corresponds to a number of added samples
that is larger than 52), the computation of εmax

r was undertaken until reaching the stopping condition (εmax
r < 0:1%). This

criterion was satisfied for 138 added samples. At this point, N2 was found to be equal to 1803. A further decrease in the
number N2 was not necessary because the stopping criterion was satisfied. It should be emphasized here that the num-
ber N2 in AK‐MCS is equal to zero at the end of the enrichment process since the corresponding stopping criterion
requires that all the samples of the MCS population have a U value that is greater than 2.

Figure 6 presents the distribution of εr for three different numbers of added samples as obtained from GSAS‐MCS
method. Similar trend was obtained from GSAS‐IS method (figure not shown). This figure shows that the variability
of εr decreases with the number of added samples. When reaching the optimal number of added samples (ie, 138 sam-
ples), the mean value of the error converges to zero and the corresponding value of the standard deviation becomes very
FIGURE 5 N2 vs the number of added samples within GSAS‐MCS when ax = 10 m and ay = 2 m [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 6 Distribution of εr for three
different numbers of added samples when

ax = 10 m and ay = 2 m [Colour figure can

be viewed at wileyonlinelibrary.com]
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small (with a value of 3.47 × 10−4). These observations confirm the convergence of the estimated failure probability to
its theoretical value.

For the optimal number of added samples (ie, 138 samples), a failure probability value of 2.30 × 10−3 and a corre-
sponding value of the coefficient of variation of 2.94% were obtained within GSAS‐MCS. The corresponding GSAS‐IS
results were found to be very close to those of GSAS‐MCS with a failure probability of 2.42 × 10−3 and a corresponding
coefficient of variation of 2.86% with a significant reduction of about 50% in the computation time.

Finally, Table 2 presents the effect of the number ncan of samples (to be used for the global sensitivity analysis) on the
calculation time. GSAS‐MCS method was used for this computation. As may be seen from this table, the obtained values
of the failure probability are very close for the three cases. The increase in the number ncan of samples from 10 to 20
leads to a decrease in the number of added samples and thus in the calculation time even though the computation time
of the global sensitivity analysis increases with the increase in the number ncan. The reduction in the number of added
samples may be explained by the fact that the best sample for the enrichment was chosen in this case among a higher
number of candidates. A further increase in ncan from 20 to 30 has shown an increase in the calculation time even
though the number of added samples is reduced. This may be explained by the fact that in this case, the time increase
induced by the global sensitivity analysis is greater than the time decrease induced by the reduction in the number of
added samples. In the following sections, the adopted number ncan of samples is taken equal to 20.
4.1.2 | Comparison of GSAS results with those of the classical Kriging approaches

In order to check the efficiency of GSAS‐MCS and GSAS‐IS approaches with respect to the corresponding classical AK‐
MCS and AK‐IS approaches, some probabilistic computations have been performed on the same problem presented in
this paper but using AK‐MCS and AK‐IS techniques presented, respectively, in Al‐Bittar et al23 and Soubra et al.26

Table 3 provides for the four methods the obtained values of the failure probability and the corresponding values of
the coefficient of variation. This table also provides (a) the size of the design of experiments DoE adopted in the analysis
(note that when using IS‐based approaches, eight iterations were needed for the determination of the design point in the
step preceding the generation of the IS population), (b) the number of added samples used during the enrichment pro-
cess, and (c) the total number of calls to the mechanical model (ie, DoE + number of added samples). Figure 7 presents

the evolution of bPf with the number of added samples as given by the different methods making use of the correspond-
ing stopping conditions. Remember here that the stopping condition for AK‐MCS and AK‐IS is (min[U]) > 2. However
the stopping condition for GSAS‐MCS and GSAS‐IS is (εmax

r < 0:1%).
As may be seen from Figure 7 and from Table 3, GSAS‐MCS and GSAS‐IS are powerful approaches since they pro-

vide very close values of the failure probability as the corresponding AK‐MCS and AK‐IS classical Kriging‐based
approaches making use of a much reduced number of calls to the mechanical model (158 calls to the mechanical model
in GSAS‐MCS instead of 591 calls in AK‐MCS and 262 calls in GSAS‐IS instead of 618 calls in AK‐IS). Indeed, the
TABLE 2 Effect of ncan parameter on the computation time when ax = 10 m and ay = 2 m

ncan
bPf × 10−3 Number of Added Samples Calculation Time, sec

10 2.464 156 1.44 × 105

20 2.302 138 1.00 × 105

30 2.356 132 1.39 × 105

TABLE 3 Numerical results of the different methods when ax = 10 m and ay = 2 m

Method bPf × 10−3 COV bPf

� �
% Size of the DoE Number of Added Samples Number of calls to the Mechanical Model

AK‐MCS 2.526 2.81 20 571 591

GSAS‐MCS 2.402 2.85 20 138 158

AK‐IS 2.423 2.86 20+5 × 8 558 618

GSAS‐IS 2.454 2.72 20+5 × 8 202 262



FIGURE 7 Failure probability vs the number of added samples when ax = 10 m and ay = 2 m [Colour figure can be viewed at

wileyonlinelibrary.com]
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efficiency of the proposed GSAS‐MCS and GSAS‐IS methods over the classical AK‐MCS and AK‐IS methods was
expressed in this paper in terms of reduction in the number of added samples.

It should be emphasized that the number of added samples in the IS‐based approaches may be comparable (or even
higher) than that of the MCS‐based approaches. The advantage of GSAS‐IS approach over GSAS‐MCS approach may be
explained by the reduction in the computation time because of the prediction of only 10 000 responses by the Kriging
metamodel per iteration instead of 500 000 predictions in GSAS‐MCS (and not by the reduction in the number of added
samples). As was mentioned before, up to 50% reduction in the computation time can be reached when using GSAS‐IS

approach instead of GSAS‐MCS approach. Finally, note that when using IS‐based methods, the bPf values calculated after

the first few added samples were not very far from the final bPf value (see Figure 7 [right]). This may be explained by the
fact that the added samples in this case are chosen within the zone of interest for the computation of the failure prob-
ability (ie, around the design point).
4.1.3 | Critical and noncritical realizations

The critical realization corresponds to the design point. This point is characterized by the highest probability density
along the limit state surface G = 0 and thus, it represents the most likely failure realization. It is determined by mini-
mization of the reliability index subjected to the constraint that the performance function (modeled here by the Kriging
metamodel) is equal to zero. In this section, critical and noncritical realizations are presented and discussed.

Figure 8 presents the critical realizations of the soil shear strength parameters corresponding to the obtained design
point for the adopted reference case (ie, when ax = 10 m and ay = 2 m). Figure 9 presents typical noncritical realizations
of the soil shear strength parameters corresponding to the same configuration. Contrary to Figure 9, Figure 8 exhibits a
FIGURE 8 Critical realizations of the soil shear strength parameters when ax = 10 m and ay = 2 m [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 9 Typical realizations of the soil shear strength parameters when ax = 10 m and ay = 2 m [Colour figure can be viewed at

wileyonlinelibrary.com]
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symmetrical distribution of the soil shear strength parameters with respect to the central vertical axis of the foundation.
The weaker soil zone is concentrated around the foundation, while the stronger soil is far from the foundation. The
weak soil zone under the foundation allows the failure mechanism to easily develop through this zone thus reflecting
the most prone soil to punching.

The failure mechanisms for the two cases of critical and noncritical realizations are superimposed to the corresponding
distributions of the soil cohesion in Figure 10. As may be seen, a symmetrical failure mechanism was obtained only for the
case of the critical realization. A similar result was obtained for the soil angle of internal friction (figure not shown).
4.1.4 | Probabilistic results for one‐dimensional vertical random fields

The aim of this section is to investigate the effect of the vertical autocorrelation distance (the soil being assumed homo-

geneous in the horizontal direction) on the failure probability bPf , the Hasofer‐Lind reliability index βHL, and on the crit-
ical realization.

Table 4 provides the number of random variables adopted within EOLE methodology and the corresponding value of
the variance of the error for different values of the vertical autocorrelation distance ay. As may be seen from this table, a
value of the variance of the error smaller than 5% was adopted for all the treated configurations.

Table 4 and Figure 11 show that the failure probability increases and the Hasofer‐Lind reliability index decreases
with the increase in the vertical autocorrelation distance. Figure 11 shows that the increase in the failure probability
is significant for the small values of the vertical autocorrelation distance (as compared to the breadth of the foundation)
and becomes less significant for the larger values of the vertical autocorrelation distance to attain finally an asymptote
corresponding to the case of a homogeneous soil. Notice that the value of the coefficient of variation on the failure prob-
ability (see column 5 of Table 4) was smaller than 7% for all the configurations treated in this table. This implies that the
obtained values of the failure probability are computed with accuracy.

From Table 4, one may also observe that the number of added samples is small for the very large values of the vertical
autocorrelation distance (case of a homogeneous soil) and it increases with the decrease in the vertical autocorrelation
distance (ie, for the heterogeneous soil medium). This may be explained by the increase in the nonlinearity of the limit
state surface for the highly heterogeneous soil.
FIGURE 10 Failure mechanisms for the critical and non‐critical realizations when ax = 10 m and ay = 2 m [Colour figure can be viewed at

wileyonlinelibrary.com]

TABLE 4 Adopted number of random variables and the corresponding value of the variance of error of EOLE together with the values ofbPf , COV bPf

� �
, reliability index βHLand number of added realizations for various values of ay

ay, m
Adopted Number of
Random Variables

Variance of the
Error, % bPf×10

–3 COV bPf

� �
% βHL

Number of Added
Samples

0.5 24 4.41 0.446 6.69 3.39 130

1 14 2.45 1.478 3.67 2.88 57

2 8 1.93 2.794 2.67 2.73 50

5 4 2.00 3.558 2.31 2.67 36

20 2 1.62 3.692 2.28 2.65 30

10 000 2 4.8 × 10−5 3.772 2.28 2.63 19
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FIGURE 11 Failure probability and Hasofer‐Lind reliability index versus the vertical autocorrelation distance [Colour figure can be

viewed at wileyonlinelibrary.com]
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Figure 12A presents the distribution of the soil cohesion within the soil mass for the critical realization in the case
where ay = 0.5 m. Figure 12B presents the corresponding distribution of the soil cohesion along a vertical soil profile.
It also presents the distribution of the cohesion for two typical realizations corresponding to safe (G > 0) and unsafe
(G < 0) zones.

As may be seen from Figure 12B, the noncritical realizations show more fluctuations than the critical realization cor-
responding to the design point. The distribution of the soil cohesion corresponding to the critical realization was shown
to present a fluctuation in the upper part of the soil profile near the foundation (ie, in the depth affected by the soil fail-
ure mechanism) and tends to be nearly uniform in the lower part of the soil (see Figure 12A,B). One may also see that
smaller values of the soil cohesion were found in the upper part of the soil mass for this critical realization thus allowing
the failure mechanism to easily develop within this zone. Higher values of the soil cohesion were observed in the lower
zone far from the foundation, this zone having negligible influence on the bearing capacity of the foundation. Finally,
notice that the same observation about critical and noncritical realizations was found for the soil friction angle as may
be seen from Figure 13.

Figure 14 shows the critical distribution of the soil cohesion for different values of the vertical autocorrelation dis-
tance. One can see that the fluctuation of the soil cohesion decreases with the increase of the vertical autocorrelation
FIGURE 12 A, Critical realization of the soil cohesion for the case where ay = 0.5 m. B, Critical and noncritical distributions of the soil

cohesion for the case where ay = 0.5 m [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


FIGURE 13 A, Critical realization of the soil friction angle for the case where ay = 0.5 m. B, Critical and noncritical distributions of the

soil friction angle for the case where ay = 0.5 m [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 14 Critical realizations of the soil cohesion for different values of the vertical autocorrelation distance [Colour figure can be

viewed at wileyonlinelibrary.com]

EL HAJ ET AL. 15
distance and it disappears for the large values of this vertical autocorrelation distance. Finally, it should be noted that
the same trend was obtained concerning the critical distribution of the soil friction angle as may be seen from Figure 15,
and thus, the same observations remain valid herein.
4.2 | Probabilistic results of the differential settlement problem

In this section, the failure probability against exceeding a prescribed threshold on the differential settlement between
two neighboring footings is computed using the proposed GSAS‐MCS technique.
4.2.1 | Comparison between GSAS‐MCS and AK‐MCS results

This section aims at comparing the results of GSAS‐MCS with those of AK‐MCS for the reference case where ax = 10 m
and ay = 2 m. For this configuration, 11 random variables were adopted. The corresponding variance of the error was
equal to 4.3%.

http://wileyonlinelibrary.com
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FIGURE 15 Critical realizations of the soil friction angle for different values of the vertical autocorrelation distance [Colour figure can be

viewed at wileyonlinelibrary.com]
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Figure 16 presents the evolution of bPf with the number of added samples as given by GSAS‐MCS and AK‐MCS
methods. As may be seen from this figure, a failure probability of 1.48 × 10−3 was obtained when using AK‐MCS
approach requiring 613 added samples. A much smaller number of added samples of only 139 (with a very close value
of the failure probability of 1.54 × 10−3) was required when using GSAS‐MCS approach. Thus, GSAS‐MCS is a powerful
approach for the computation of the failure probability of the differential settlement problem since it leads to a very
close value of the failure probability as the one obtained by AK‐MCS approach making use of a much reduced number
of added samples.
4.2.2 | Effect of the vertical and horizontal autocorrelation distances

The aim of this section is to investigate the effect of the autocorrelation distances (in both the horizontal and the vertical

directions) on the failure probability bPf . Figure 17 presents the evolution of the failure probability with the horizontal
autocorrelation distance ax (from 3 to 15 m), the vertical autocorrelation distance being equal to ay = 2 m. As it may be
seen from this figure, the failure probability decreases with the increase in the horizontal autocorrelation distance and it
attains very small values of the failure probability for relatively large values of the horizontal autocorrelation distance
ax. The observed phenomenon may be explained as follows: for moderate values of the horizontal autocorrelation dis-
tance (eg, the case where ax = 3 m), a typical realization of the soil Young modulus exhibits as a mixture of stiff and soft
soil zones (cf. Figure 18A). In such a case, the vertical displacements of the two footings may be very different for most
realizations leading to large values of the differential settlements and thus, to a high value of the failure probability.
FIGURE 16 Failure probability vs the number of added samples when ax = 10 m and ay = 2 m [Colour figure can be viewed at

wileyonlinelibrary.com]
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FIGURE 17 Failure probability versus the horizontal autocorrelation distance ax when ay = 2 m [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 18 Typical realizations of the soil Young modulus: (A) ax = 3 m and ay = 2 m, (B) ax = 15 m and ay = 2 m [Colour figure can be

viewed at wileyonlinelibrary.com]
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When the horizontal autocorrelation distance becomes very large (ie, ax > 10 m), the soil tends to be homogenous in the
horizontal direction. For instance, a typical realization of the soil Young modulus for the case where ax = 15 m exhibits
a horizontal multilayer for which each sublayer may have a high or a small value of E (cf. Figure 18B). In such a case,
the displacements of the two footings will be very close for most realizations (ie, the differential settlements will be very
small) and thus, a very small value of the failure probability (nearly zero‐probability value) may be obtained.

Figure 19 presents the evolution of the failure probability with the vertical autocorrelation distance ay (from 2 to
50 m), the horizontal autocorrelation distance being equal to ax = 10 m. From this figure, one may observe that the fail-
ure probability is very small for the small values of the vertical autocorrelation distance. Then, it increases with the
increase in the vertical autocorrelation distance to attain an asymptote for the large values of ay corresponding to the
case of a vertical multilayer. The observed phenomenon can be explained as follows: for the case where the vertical
autocorrelation distance is small (eg, the case where ay = 2 m), a typical realization of the soil Young modulus exhibits
a horizontal multilayer where each layer may have a high or a small value of the soil Young modulus (cf. Figure 20A).
In this case, the settlements of the two footings will be almost equal for most realizations and thus, the differential set-
tlements between the footings will be very small for these realizations leading to a very small value of the failure prob-
ability. On the contrary, for the case where the vertical autocorrelation distance is very large (eg, the case where
ay = 20 m), a vertical multilayer composed of stiff and soft large vertical sublayers may be attained (cf. Figure 20B).
Thus, there is a high number of realizations where the two foundations rest on two different vertical sublayers with very
different Young modulus values (ie, a stiff sublayer under one footing and a soft sublayer under the other footing).

http://wileyonlinelibrary.com
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FIGURE 19 Failure probability versus the vertical autocorrelation distance ay when ax = 10 m [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 20 Typical realizations of the soil Young modulus: (A) ax = 10 m and ay = 2 m, (B) ax = 10 m and ay = 20 m [Colour figure can

be viewed at wileyonlinelibrary.com]
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Therefore, large values of the differential settlement are obtained and thus a high value of the failure probability is
expected in this case.
5 | CONCLUSION

The GSAS modeling proposed by Hu and Mahadevan14 was applied in this work to two geotechnical problems involving
soil spatial variability. The first problem involves a probabilistic analysis against soil punching of a strip footing resting
on a spatially varying soil and subjected to a vertical load. The second one concerns a probabilistic analysis against
excessive differential settlement of two neighboring strip footings resting on a spatially varying soil and subjected to
two equal loads. The developed probabilistic model aims at computing the failure probability within a reasonable com-
putation time. GSAS methodology was applied in this paper in combination with MCS or IS approach, leading to what
is called GSAS‐MCS and GSAS‐IS techniques. A simple and not expensive iterative procedure based on Kriging
metamodeling (cf. Soubra et al26) was proposed within GSAS‐IS approach for the determination of the design point
in the step preceding the generation of the IS population. This is because an analytically unknown performance func-
tion was involved in this paper.

Within GSAS methodology, both the strategy of selecting new training samples and the convergence criterion are
defined from the perspective of reliability estimate instead of individual responses at MCS or IS samples as is the case
in AK‐MCS and AK‐IS classical Kriging‐based approaches by Echard et al.12,13
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The main findings of this paper can be summarized as follows:

• GSAS‐MCS and GSAS‐IS methods have shown high efficiency as compared with the corresponding AK‐MCS and
AK‐IS approaches since they have led to quasi similar values of the failure probability and coefficient of variation
making use of a much reduced number of calls to the mechanical model.

• The GSAS‐IS method is more efficient than GSAS‐MCS in terms of the computation time because a much smaller
population is used in this method when computing the predictions by the Kriging metamodel.

• In the soil punching problem, the reliability index and the corresponding design point were computed. The critical
realizations at the design point have shown a symmetrical distribution of the soil shear strength parameters with
respect to the central vertical axis of the foundation with a weak soil zone near the footing. Thus, a critical realiza-
tion was found to respect not only the correlation structure of the random field (as is the case of a typical realization)
but also the mechanics of the treated problem. Furthermore, the failure probability was found to increase and the
Hasofer‐Lind reliability index was found to decrease with the increase in the vertical autocorrelation distance of
the one‐dimensional vertical random fields. The increase in the failure probability is more significant for small
values of the autocorrelation distance (as compared with the footing breadth) and tends to be negligible for the large
values of the vertical autocorrelation distance.

• In the differential settlement problem, the failure probability was found to decrease with the increase in the horizon-
tal autocorrelation distance and it attains very small values (nearly zero‐probability values) for relatively large values
of the horizontal autocorrelation distance. On the contrary, the failure probability was found to increase with the
increase in the vertical autocorrelation distance and it attains an asymptotic value for the large values of this distance.
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