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A B S T R A C T

This paper aims at computing the probability of failure of strip footings resting on a spatially varying soil and
subjected to a vertical load. The active learning reliability method (called AK-IS) which is a combination of
kriging metamodeling and importance sampling (IS) is used. The AK-IS technique significantly reduces the
computation time with respect to the classical active learning reliability technique (called AK-MCS) combining
kriging with Monte Carlo Simulations (MCS) by sampling around the design point. It was shown that the critical
realization corresponding to the design point exhibits a perfect symmetry about the central vertical axis of the
foundation.

1. Introduction

The computation of the failure probability Pf of geotechnical
structures is generally performed in literature using the crude Monte
Carlo Simulations (MCS) or a variance reduction technique (e.g
[1–11]). Despite of being robust and accurate, MCS shows a low effi-
ciency when considering practical problems with small Pf values
especially if a small value of the coefficient of variation on this failure
probability is desired. This is due to the large population required in
this case thus leading to a significant number of evaluations of the
performance function. For instance, one million of samples are required
for the computation of Pf values in the order of 10-4 for a coefficient of
variation on Pf of 10%. Furthermore, when dealing with spatially
varying soil properties as is the case in the present paper, the evaluation
of the performance function is generally based on computationally
expensive finite element/finite difference codes. This naturally leads to
a high computational cost. The variance reduction techniques such as
subset simulation (SS) or asymptotic sampling (AS) significantly reduce
the required number of evaluations of the performance function with
respect to the crude MCS; however, these methods remain quite ex-
pensive for the computation of the failure probability of computation-
ally-expensive mechanical models.

Recently, several metamodeling techniques have been developed for
the probabilistic analysis of engineering systems such as the polynomial
chaos expansion and its extension the sparse polynomial chaos

expansion, the artificial neural networks, the support vector machine
and the kriging. These techniques have shown high efficiency when the
user is interested in the computation of the first two statistical moments
(i.e. the mean and the standard deviation) of the system response (e.g.
[12–15]). Notice however that for problems involving the computation
of small failure probabilities, a large set of sample points is required to
accurately construct the meta-model in the zone of interest for the
computation of the failure probability (i.e. the tail distribution). This
task is time-consuming when the performance function is evaluated
using a computationally expensive finite element/finite difference code
as is the case in the present paper.

In order to overcome the shortcoming of the above-mentioned
methods related to the large number of calls to the mechanical model, a
combined use of a metamodeling technique with a simulation-based
method (e.g. Monte Carlo, importance sampling, subset simulation) was
proposed by several authors (cf. [16–22]). Among these methods, a
combined use of a kriging metamodeling technique with a Monte Carlo
Simulation (MCS) methodology was suggested by Echard et al. [18].
This method is an active learning reliability method combining kriging
and Monte Carlo simulation (called AK-MCS). It overcomes the short-
comings of the crude MCS and the kriging metamodeling technique
when used separately. This method consists in constructing a meta-
model (i.e. an analytical equation which substitutes the original me-
chanical model) based on a relatively small number of calls to the
computationally expensive mechanical model. The computation of the
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failure probability may thus be easily performed using this meta-model.
It should be emphasized here that AK-MCS makes use of a powerful
learning function (based on the kriging mean prediction and the kriging
variance prediction) for the selection of the ‘best’ samples to be eval-
uated by the computationally expensive mechanical model.

Echard et al. [18] have illustrated the efficiency of the AK-MCS
method through the computation of the failure probability for some
academic examples for which the system response is known analytically
(i.e. where the computation time of the corresponding performance
function is quasi-negligible). Later on, [23] used the AK-MCS technique
by Echard et al. [18] for the computation of the failure probability
against soil punching of a strip footing resting on a spatially varying
soil. This problem required the use of a computationally expensive
mechanical model based on numerical simulations for the computation
of the performance function. A much reduced number of calls to the
mechanical model was obtained when using the AK-MCS method as
compared to the commonly used variance reduction techniques.

Although AK-MCS significantly reduces the computation time with
respect to the variance reduction techniques and the meta-modeling
techniques, the computation time of this method remains important.
This is because the kriging predictions (mean prediction and variance
prediction) via the meta-model should be evaluated for the whole
Monte Carlo population each time a ‘best’ new sample (called hereafter
added sample) is to be selected for evaluation by the mechanical model.
This makes the AK-MCS time-consuming especially when dealing with
the small practical values of the failure probability. This statement was
also reported by Echard et al. [18]. In order to overcome the incon-
venience related to the huge number of predictions by the meta-model,
this paper makes use of the active learning method combining kriging
with importance sampling IS (called AK-IS procedure) suggested by
Echard et al. [19]. The aim is to perform a probabilistic analysis of the
same problem considered by [23] with a more powerful probabilistic
technique. In the framework of this approach, the small failure prob-
ability can be estimated with a similar accuracy as AK-MCS but using a
much smaller size of the population (i.e. a much smaller number of calls
to the kriging meta-model each time a new sample is to be selected for
evaluation by the mechanical model) because the sampling population
is centered at the design point. This reduced number of calls to the
kriging meta-model naturally leads to a reduction in the computation
time with respect to AK-MCS approach especially for the very small
values of the failure probability that require a significant number of
added samples.

Contrarily to [19] where the determination of the design point for
importance sampling computation is straightforward (because the
performance function used by these authors was given by an analytical
equation), the computation of the design point becomes an issue in the
present case of spatially varying soil properties where an analytically-
unknown performance function with several random variables is in-
volved in the analysis. This paper presents a simple and non-expensive
iterative procedure based on kriging metamodeling for the determina-
tion of the design point in the present case of a spatially varying soil
medium characterized by a quite large number of random variables.
This is followed by the enrichment process to lead to a sufficiently
accurate meta-model for the computation of the failure probability.

The soil cohesion and angle of internal friction were considered as
random fields. The Expansion Optimal Linear Estimation (EOLE)
methodology was used to generate these two random fields. As men-
tioned above, the mechanical model used in the probabilistic analysis
was the one presented in [23]. It is based on numerical simulations
using the finite difference code FLAC3D. The same deterministic and
uncertain parameters considered in [23] were also conserved in this
paper for comparison purposes.

The paper is organized as follows: The next two sections aim at
presenting EOLE methodology and the proposed AK-IS procedure in the
case of geotechnical structures involving spatially varying soil proper-
ties. This is followed by the probabilistic results. After a validation of

the present AK-IS approach via a simple academic example, some
probabilistic results involving a strip footing resting on a spatially
varying soil are presented and discussed. The paper ends with a con-
clusion of the main findings.

2. The Expansion Optimal Linear Estimation (EOLE) methodology

The Expansion Optimal Linear Estimation (EOLE) method by [24] is
used herein to discretize the two random fields of c and φ. The present
two random fields are denoted by Z x y( , )i

NG ( =i c, ). They are de-
scribed by two non-Gaussian marginal cumulative density functions Gi

( =i c, ) and a common square exponential autocorrelation function
Z
NG [(x, y), (x', y')] as follows:

=x y x y x x
a
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a
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Z
NG
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2 2

(1)

where ax and ay are the autocorrelation distances along x and y re-
spectively.

In the present discretization method, one should first define a sto-
chastic grid composed of Nq grid points (or nodes). The common non-
Gaussian autocorrelation matrix NG

; computed using Eq. (1) should be
transformed into the Gaussian space using the Nataf correction func-
tions proposed by [25]. As a result, one obtains two Gaussian auto-
correlation matrices c

; and ; that can be used to discretize the two
Gaussian random fields at any point using the following equations:
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=

Z x y µ i c( , ) . ( ) . ,i i i
j

M
j
i

j
i j

i T
Z x y
i

1
( , );

(2)

where µi and i ( =i c, ) are respectively the mean and standard de-
viation values of the two random fields, j

i ( =i c, ; j=1, …, M) are
two blocks of independent standard normal random variables, j

i, j
i

( =i c, ; j=1, …, M) are the eigenvalues and eigenvectors of the two
Gaussian autocorrelation matrices c

; and ; respectively, Z x y
i

( , ); is
the correlation vector between the values of the random field at the
different nodes and its value at an arbitrary point (x, y) as obtained
using Eq. (1), and finally M is the number of terms (expansion order)
retained in the EOLE method. This number will be determined later in
this section based on the variance of the error. Once the two Gaussian
random fields (i.e. Eq. (2)) are obtained, they should be transformed to
the non-Gaussian space by applying the following formula:

= =Z x y G Z x y i c( , ) { [ ( , )]} ,i
NG

i i
1 (3)

where (·) is the standard normal cumulative density function. It
should be mentioned here that the series given by Eq. (2) are truncated
for a number of terms M (expansion order) smaller than the number of
grid points Nq, after sorting the eigenvalues j

c and j (j=1, …, Nq) in a
descending order. This number should assure that the variance of the
error is smaller than a prescribed tolerance. Notice that the variance of
the error for EOLE for a given number s of terms is given by [24] as
follows:

= =
=
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s
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i T
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i2

1 ( , );
2

(4)

where Z x y( , )i and Z x y~ ( , )i are respectively the exact and the approx-
imate values of the random fields at a given point (x, y). In this paper, a
maximal value of 5% was adopted for the variance of the error when
discretizing the two random fields (see column 3 of Table 5).

3. Proposed AK-IS procedure for geotechnical structures involving
spatially varying soil properties

This paper aims at extending the AK-IS approach by [19] to the case
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of a spatially varying soil where the computationally expensive me-
chanical model based on FLAC3D software is used in the analysis. De-
tails on kriging metamodeling were not provided herein and the reader
may refer to [26] or to different recently published papers where kri-
ging metamodeling is used as in [18,19] and [23]. Also, the details on
AK-IS as presented by [19] is not provided herein in order to avoid
repetition. Only its extension to the case of spatially varying soil
properties was presented in some details in this paper. It should be
mentioned here that the random response predicted by a kriging sur-
rogate model is a Gaussian variate G N µ( , )G G

2 where µG and
G
2

are the mean prediction and the corresponding mean square error
(kriging variance) respectively. The variances of the training samples
are zero, but the variances of the other samples are always different
from zero.

The present AK-IS procedure consists of two main stages. First, the
most probable failure point (design point) is determined using an ap-
proximate kriging meta-model based on a small number of samples.
Second, the obtained approximate kriging meta-model is successively
improved via an enrichment process (by adding each time a new sample
selected from a probability density function h X( )x centered at the de-
sign point) until reaching a sufficiently accurate meta-model for the
computation of the failure probability. These two stages are described
in more details in the next two subsections.

3.1. Determination of the design point

When dealing with problems that are characterized by an explicit
performance function, the design point may be easily determined by
minimizing the Hasofer-Lind reliability index subjected to the con-
straint that the performance function equal to zero (see [19]). Notice
however that when dealing with analytically-unknown performance
functions with several random variables (as is the case in the present
work where spatially varying soil properties are involved in the ana-
lysis), the determination of the design point is less straightforward. The
problem is even more difficult when a high-dimensional stochastic
problem is involved (cf. [27]). Indeed, the discretization of the two
random fields of c and φ leads to a significant number of standard
normal random variables (between 6 and 62 random variables) as it
will be shown later in this paper. The large number of random variables
requires a significant number of calls to the mechanical model for the
determination of the design point.

In order to determine the design point in the present work using a
relatively small number of calls to the mechanical model, an iterative
procedure based on kriging metamodeling was proposed. This proce-
dure may be described as follows (see also the flowchart presented in
Fig. 1):

(1) Generate a large MCS population of NMc samples (say
NMc =500,000 samples) of M standard Gaussian random variables
{( , ..., ), ( , ..., ), . . . , ( , ..., )}M M

N
M
N

1
1 1

1
2 2

1
Mc Mc where M is the number

of random variables adopted in EOLE methodology for the dis-
cretization of both c and φ. It should be emphasized here that each
sample of M standard Gaussian random variables provides (when
substituted into Eqs. (2) and (3)) typical spatial variations of c and
φ that respect the correlation structure of these fields, i.e. the so-
called ‘realizations’ of c and φ. The difference between the different
realizations lies in the position of the weak and strong soil zones
although all realizations respect the correlation structure of the
corresponding random fields.

(2) From the generated population, randomly select a small number of
samples (say N1=20 samples) of M standard Gaussian random
variables. Then, use EOLE methodology to transform each sample
into realizations of c and φ that provide the spatial distribution of
the soil cohesion and angle of internal friction respectively. These
realizations are obtained through the computation of the values of c

and φ at the centroids of the different elements of the FLAC3D mesh
using Eqs. (2) and (3).

(3) Use the software FLAC3D to calculate the performance function
value corresponding to each sample (the performance function used
herein is presented later in Eq. (10) of this paper). Based on DACE
toolbox, construct an initial approximate kriging meta-model in the
standard space using the N1 samples and the corresponding per-
formance function values.

(4) Find the minimum value of the Hasofer-Lind reliability index and
the corresponding design point by making use of the already-ob-
tained kriging meta-model and by employing the Generalized
Pattern Search (GPS) algorithm within the global optimization
toolbox available in Matlab.

(5) Generate a small number of samples (5 samples are used in this
work) of M standard Gaussian random variables according to a
multivariate standard Gaussian distribution. Then, translate these
samples such that the obtained samples follow a shifted multi-
variate Gaussian distribution having a mean vector whose compo-
nents are equal to the coordinates of the design point in the stan-
dard coordinate system. After the generation of the five samples,
transform each sample into realizations of c and φ that provide the
spatial distribution of the soil cohesion and angle of internal friction
respectively. Finally, for each one of the five samples, compute the
corresponding value of the performance function using FLAC3D.

(6) Construct a new kriging meta-model in the standard space using all
samples of standard Gaussian random variables generated so far (i.e
from step (2) to step (5)).

(7) Compute an updated Hasofer-Lind reliability index and its corre-
sponding tentative design point using the obtained kriging meta-
model.

(8) Steps 5–7 are repeated several times until the absolute difference
between two successive values of the Hasofer-Lind reliability index
becomes smaller than a given tolerance. The required number of
iterations is denoted hereafter as N2. Consequently, the DoE (which
is considered in this paper to represent the number of samples
needed to obtain the final design point) is given by
DoE=N1+5×N2.

It should be emphasized that the aforementioned procedure does
not intend to accurately determine the performance function over the
entire design space but it focuses on the computation of the design point
using a relatively small number of evaluations of the computationally
expensive mechanical model. Notice that this procedure was not sug-
gested in [23] because one does not need to determine the design point
when dealing with AK-MCS approach. Notice also that the number
N1=20 samples used in this procedure was arbitrarily chosen as an
initial guess that can be increased if necessary, the objective being the
construction of an initial approximate meta-model that is suitable for
the determination of a first tentative design point using a limited
number of calls to the mechanical model.

3.2. Enrichment process

Further improvement of the already-obtained kriging meta-model is
achieved in this stage via an enrichment process. Referring to Fig. 2, the
enrichment process can be explained by the following steps:

(1) Generate a population of NIS samples (sayNIS =10,000 samples) of
M random variables according to the PDF h X( )x of a multivariate
standard Gaussian distribution shifted to the obtained design point,
M being the number of random variables needed by EOLE metho-
dology to discretize the two random fields c and φ. Notice that the
samples generated by IS are called hereafter candidate samples.
Among these samples, only a few ones are computed by the me-
chanical model; however, all the candidate samples are calculated
by the meta-model each time a new added sample is to be selected
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for evaluation by the mechanical model, as it will be shown below.
Notice also that the population size NIS is relatively small herein as
compared to the one generated in the AK-MCS procedure by [23]
where NMc =500,000 samples; however, both populations may
lead to relatively close values of the coefficient of variation on Pf as
it may be seen from the numerical results of AK-MCS and AK-IS
approaches.

(2) Use the DACE toolbox in order to compute (for the whole popula-
tion containing the NIS samples) both the kriging predictor values
µG and their corresponding kriging variance values

G
2 using the

obtained meta-model. From the obtained values of the kriging
predictors µG obtain an estimation of the probability of failure
using the following equation:

= =
=

P I X
f X
h X

h X dX
N

I X
f X
h X

( )
( )
( )

( ) 1 ( )
( )
( )f F

x

x
x

IS i

N

F i
x i

x i1

IS

(5)

in which I X( )F is the indicator function ( =I X( ) 1F when G X( ) 0
and =I X( ) 0F when >G X( ) 0), f X( )x is the PDF of the initial
multivariate standard Gaussian distribution, h X( )x is the PDF of the
shifted multivariate Gaussian distribution and NIS is the number of
samples. Notice that the values of G X( ) are calculated using the
obtained values of the kriging mean predictors µG . The accuracy of
Pf is measured by its coefficient of variation COV P( )f . This coeffi-
cient of variation is calculated as follows:

=COV P
Var P

P
( )

( )
f

f

f (6)

whereVar P( )f is the variance of the failure probability estimate. It is
calculated by the following equation:

=
=

Var P
N N

I X
f X
h X

P( ) 1
1

1 ( )
( )
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IS IS i

N

F i
x i

x i
f

1

2
2

IS

(7)

(3) Identify among the whole population of NIS samples, the ‘best’ next
candidate sample for which one will compute the performance
function value using FLAC3D. This is performed by evaluating a
learning function U for each sample in the population. The learning
function U usually employed in the kriging-based approaches is
given by (cf. [18,19]):

= = …U X
µ

i N( )
| |

, 1, ,i
G X

G X
IS

( )

( )

i

i (8)

The ‘best’ next sample is the one that has the smallest U value [i.e.
min(U)]. It should be noted here that the ‘best’ chosen sample is the
one that mostly improves the limit state surface (G= 0) of the
meta-model because min(U) searches for the sample that has a
small kriging predictor (i.e. a sample that is close to the limit state
surface) and/or a high kriging variance (i.e. a high uncertainty in
the sign of its performance function value).

(4) If the obtained minimum value of U is smaller than 2, evaluate the
performance function value based on FLAC3D for this ‘best’ candi-
date and update the DoE by adding the new ‘best’ sample. Also, re-
construct the kriging meta-model again with the updated DoE.

(5) Repeat the steps 2–4 several times until the smallest U value

Fig. 1. Flowchart of the proposed AK-IS procedure (Stage 1: Determination of the design point).
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becomes larger than 2. Notice that the stopping criterion min
(U)>2 corresponds to a maximal probability of making a mistake
on the sign of the performance function of Φ(−2)=0.023 (see
[18]).

At this stage, the learning stops and the meta-model is considered
sufficiently accurate for the computation of the failure probability.
When the learning stops, one must compute the estimated values of
both the probability of failure Pf and its corresponding coefficient of
variation COV P( )f using the obtained kriging meta-model. It should be
emphasized here that the 10,000 evaluations of the learning function U
in step 3 were performed for each added sample since the meta-model is
continuously changing during the enrichment process. This number of
evaluations is much smaller than that used in AK-MCS (i.e. 500,000),
thus leading to a much smaller computation time (for a typical added
sample) when using AK-IS instead of AK-MCS.

3.3. Numerical implementation

The comprehensive step-by-step procedure described above was
implemented in Matlab software. It includes the random field dis-
cretization by EOLE method, the determination of the design point by
an iterative procedure and the construction of a kriging meta-model for
the computation of the failure probability. The implemented Matlab
procedure makes several calls to the FLAC3D code for the computation
of the system response (i.e. ultimate bearing capacity on a spatially

varying soil) or the corresponding performance function value for the
different soil realizations. The computation of the system response via
FLAC3D software was not presented herein to avoid repetition and the
reader may refer to [12,13] for more details.

4. Probabilistic numerical results

Before the presentation of the probabilistic results of a spatially
varying soil, it seems necessary to validate the present AK-IS procedure
by comparison of its results with those obtained by [19] when con-
sidering a simple analytical equation. This is the aim of the next sub-
section.

4.1. Validation of the present AK-IS procedure via a simple analytical
equation

This section focuses on the validation of the present AK-IS proce-
dure through an analytical example. The corresponding performance
function is given as follows:

=G u u u u u( , ) 0.5( ) 1.5( 5) 31 2 1 2
2

2
3 (9)

where u1 and u2 are two standard normal random variables. A com-
parison between the results obtained by the present AK-IS procedure
and those provided by [19] was presented in Table 1. Notice that in
[19], the design point was determined using the classical FORM ana-
lysis based on the analytical equation of the performance function.

Yes

Identification by the learning criterion of the next 'best' 
sample x* in PIS to evaluate on G

Computation of the Kriging prediction  and its 

corresponding kriging variance  for all the samples in PIS

and estimation of using the signs of the predictions  

Evaluation of x* on G and 
update of the DoE and the 

kriging meta-model

1 G evaluation
Compute and By IS

Stopping 
condition on learning 

min (U)>2

Generation of a population PIS of NIS (say 104) samples centered 
at the design point P* obtained in stage 1

Input:  Kriging model from stage 1

No

Fig. 2. Flowchart of the proposed AK-IS procedure (Stage 2: Enrichment process).

Table 1
Probabilistic outputs and the corresponding number of calls to the performance function Ncalls as obtained from the two AK-IS methods.

Method Ncalls Pf×10-5 COV (Pf) (%) βHL Design point (u1, u2)

AK-IS by [19] 19 (DoE)+7 (enrichment)= 26 samples 2.86 2.39 3.93 (0.788, 3.853)
Present AK-IS approach 15+ (2×5)+ 4=29 samples 2.83 2.40 3.93 (0.786, 3.853)

A.-H. Soubra, et al. Computers and Geotechnics 114 (2019) 103107

5



However; in the present AK-IS procedure, this design point is de-
termined by employing the iterative procedure proposed in the pre-
vious section. The aim is to check and validate the proposed iterative
procedure which will be employed hereafter in the complex case of the
spatially varying soil properties.

As may be seen from Table 1, the approximate kriging meta-model
(which was needed for the determination of the design point) was
constructed using an initial design of experiments of 15 samples and
five iterations with 2 samples per iteration. The enrichment process
required 4 additional samples. Thus, the total number of samples (or
the number of calls to the performance function) needed in our pro-
cedure is equal to 29 samples. This number is close to that needed by
the classical FORM analysis by [19] (i.e. 26 samples) with the ad-
vantage that the present approach may be applied to analytically-un-
known performance functions.

As a conclusion, the iterative procedure proposed in this paper for
the computation of the design point can be considered as a powerful
tool and may be used for more complex cases involving spatially
varying soil properties.

4.2. Probabilistic results in the case of a spatially varying soil

This section aims at presenting the impact of the soil spatial varia-
bility on the failure probability against soil punching of a strip footing
subjected to a vertical loading. The soil cohesion c and angle of internal
friction φ were modeled as two non-isotropic non-Gaussian random
fields. The EOLE methodology was used to discretize the two random
fields. The illustrative statistical parameters of these two random fields
are presented in Table 2. Recall here that the same autocorrelation
function (square exponential) was used for both c and φ. Notice also
that the soil dilation angle ψ was considered to be related to the soil
angle of internal friction φ by ψ = 2φ/3. This means that the soil di-
lation angle was implicitly assumed as a random field that is perfectly
correlated to the soil angle of internal friction random field.

The performance function employed in the analysis is given by the
following equation:

=G
q
q

1u

s (10)

where qu is the ultimate bearing capacity computed using FLAC3D

model making use of the generated realizations of c and φ, and qs is the
footing applied loading. Concerning the mechanical model, a strip
footing of breadth B=1m that rests on a soil domain of width 13B and
depth 5B was considered in the analysis. As mentioned above, this
mechanical model was not provided herein and the reader may refer to
[12,13].

Finally, notice that the number NIS of samples used in most sub-
sequent configurations was equal to 10,000 samples. This number was
found to provide (for these configurations) a small value of the coeffi-
cient of variation on the failure probability (< 5%) as it will be shown
later. The small size of the sampling population may be explained by
the fact that the sampling is performed according to a probability dis-
tribution that is centered at the design point leading to a much larger
number of samples lying in the failure domain as compared to AK-MCS
methodology.

4.2.1. Evolution of the limit state surface during the computational process
As was previously mentioned in this paper, the AK-IS procedure

consists of two main stages: The first stage (called stage 1) consists in
computing the design point from an approximate kriging meta-model
constructed using a small number of samples. In the second stage
(called stage 2), the approximate meta-model is successively improved
through an enrichment process. In this section, the evolution of the
limit state surface with the addition of new samples (or realizations)
during the two stages (i.e. stage 1 and stage 2) was investigated (see
Figs. 3 and 4). A typical case where ax=10,000m and ay=10,000m
was considered in these figures. This configuration was chosen because
it requires only two random variables and thus, the limit state surface
can be easily visualized since only a two-dimensional space is needed in

Table 2
Illustrative statistical parameters of the uncertain soil properties.

Random fields Mean
value (µ)

Coefficient of
variation COV (%)

Probability density
function (PDF)

Soil cohesion (c) 20 kPa 25 Lognormal
Soil friction angle

( )
30o 10 Beta

Fig. 3. Evolution of the limit state surface with the addition of new samples
during the different iterations of stage 1 when ax= ay=10,000m.

Fig. 4. Effect of the number of added samples during the enrichment process on
the limit state surface when ax= ay=10,000m.
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this case.
Fig. 3 presents the evolution of the limit state surface with the ad-

dition of new samples during the different iterations of stage 1. Also,
Table 3 presents the evolution of the reliability index βHL for the dif-
ferent iterations. This table shows that the accurate value of the relia-
bility index was obtained from the first iteration in the present case of a
homogeneous soil where ax= ay=10,000m. Notice however that a
larger number of iterations was found necessary (N2 is between 3 and
13) for spatially varying soil mediums as may be seen from the sixth
column of Table 5. It should be remembered here that only the point of
the limit state surface which is the closest one to the origin of the
standard coordinates system is expected to be correct at the end of the
first stage of AK-IS; the other points of this limit state being in general
not correctly estimated within this stage.

Fig. 4 presents the evolution of the limit state surface with the ad-
dition of new samples (from zero to 28 samples) during stage 2; the
number 28 being the needed number of added realizations during the
enrichment process. From this figure, one may notice that the limit state
surface is successively improved with the addition of new samples.
Notice however that for the last two iterations, the two curves re-
presenting the limit state surface are coinciding. Thus, the limit state
surface cannot be further improved beyond 24 samples. This means that
there is no bias in the meta-model beyond 24 samples.

Table 4 presents the evolution of the probability of failure Pf and its
corresponding coefficient of variation COV P( )f as function of the added
samples.

This Table shows that the values of Pf and COV P( )f converge after
the addition of 24 samples. This is in conformity with Fig. 4 in which no
further improvement in the limit state function was obtained between
the last two iterations.

4.2.2. Evolution of the probabilistic outputs during the enrichment process
First of all, recall here that the failure probability is computed each

time a new sample is added during the enrichment process. Fig. 5 shows
the effect of the number of added samples in the enrichment process on
Pf andCOV P( )f values for a typical case where ax=10m and ay=1m.
This figure also provides the learning function values for the different
added samples. The configuration (ax=10m and ay=1m) was stu-
died because it represents a practical case requiring a significant
number of random variables (32 random variables in the present case as
it may be seen from Table 5).

Fig. 5 shows that both Pf and COV P( )f vary for the small number of
added samples. This is due to the inaccuracy of the kriging meta-model

when only a small number of realizations were considered. Notice
however that both Pf and COV P( )f tend to converge to a constant value
as the number of added samples increases. It should be mentioned here
that 921 samples were needed in the enrichment process in addition to
the DoE before the algorithm stops (i.e. [min(U)] > 2). The final ob-
tained values of Pf and COV P( )f are respectively 1.628×10-3 and
2.99%.

As may be seen from Fig. 5, the values of Pf and COV P( )f reach an
asymptote when the number of added samples is equal to 823. An ad-
ditional increase in the number of added samples does not lead to a
significant change in the values of Pf and COV P( )f . This means that
when the number of added samples becomes equal to 823, the kriging
meta-model is accurate enough (i.e. with no bias) and it can be used to
calculate a rigorous value of the failure probability.

Fig. 6a and b present two typical non-critical realizations of the soil
shear strength parameters corresponding to the safe (G > 0) and
failure (G < 0) domains respectively for the adopted reference case
(i.e. when ax= 10m and ay= 1m). On the other hand, Fig. 6c presents
the critical realizations of the soil shear strength parameters corre-
sponding to the obtained design point for the same configuration.

Contrary to Fig. 6a and b, Fig. 6c exhibits a symmetrical distribution
of the soil shear strength parameters with respect to the central vertical
axis of the foundation. The weaker soil zone is concentrated around the
foundation while the stronger soil is far from the foundation. The weak
soil zone under the foundation allows the failure mechanism to easily
develop through this zone thus reflecting the most prone soil to
punching. Concerning the non-critical realizations (corresponding to
G > 0 or G < 0), it can be observed that the realizations corre-
sponding to the safe domain exhibits high values of the shear strength
parameters (cf. Fig. 6a). The high shear strength parameters resist soil
punching and lead to footing safety. On the contrary, smaller values of
shear strength parameters were encountered in the soil mass when
dealing with the realizations corresponding to the failure domain (cf.
Fig. 6b). This allows the failure mechanism to easily develop in the soil
leading to soil failure.

In order to better visualize and interpret the distribution of the soil
shear strength in the soil mass, Fig. 7 presents the distribution of the
soil cohesion and friction angle along a vertical section (taken at the
center of the footing) for the realizations presented in Fig. 6. As may be
seen from Fig. 7, the non-critical realizations show more fluctuations
than the critical realization corresponding to the design point, with
large values in the safe realization and small values in the realization
corresponding to failure. The distribution of the shear strength para-
meters corresponding to the critical realization was shown to present
fluctuations in the upper part of the soil profile near the foundation (i.e.
in the depth affected by the soil failure mechanism) and tends to be
nearly uniform in the lower part of the soil. One may also see that
smaller values of the soil shear strength parameters were found in the
upper part of the soil mass for this critical realization thus allowing the
failure mechanism to easily develop within this zone. Higher values of
the soil shear strength parameters were observed in the lower part of
the soil mass far from the foundation, this zone having negligible in-
fluence on the bearing capacity of the foundation.

4.2.3. Parametric study
This section aims at presenting the effect of the autocorrelation

distances of the random fields on the probabilistic outputs (i.e. the
failure probability and the reliability index).

Fig. 8 presents the effect of the isotropic autocorrelation distance
(ax= ay) on Pf and βHL as obtained from AK-MCS and AK-IS meth-
odologies. Also, Figs. 9 and 10 present the effect of the autocorrelation
distance (ay or ax) on Pf and βHL as obtained from the same two
methodologies. Remember here that the AK-MCS results are those
provided by Al-Bittar et al. [23]. However, the AK-IS results are those
obtained in the present paper. From Figs. 8–10, one may observe that
the two methods lead to similar results. The maximal percent difference

Table 3
The evolution of the reliability index for the different iterations.

Case βHL

Initial DoE=20 samples 2.6205
Initial DoE+5 samples of iteration 1=25 samples 2.6345
Initial DoE+5 samples of iteration 1+5 samples of iteration 2=30

samples
2.6340

Table 4
The evolution of the probability of failure and its corresponding coefficient of
variation as a function of the added samples during the enrichment process.

Number of added samples Pf×10-3 COV P( )f %

0 3.606 1.957
4 4.589 1.736
8 4.171 1.763
12 4.111 1.878
16 3.919 1.772
20 3.828 1.772
24 3.830 1.771
28 3.830 1.771
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Fig. 5. AK-IS results for a spatially varying soil (ax=10m, ay=1m).

Table 5
Adopted number of random variables and the corresponding value of the variance of error of EOLE together with the values of Pf , COV P( )f , size of DoE, number of
added realizations and number of calls to the mechanical model for various soil variabilities.

(a) Case of an isotropic case (ax= ay)

ax= ay (m) Number of random
variables

Variance of the
error %

Pf×10-3 COV P( )f % Size of DoE=N1+5×N2 Number of added
realizations

Number of calls to the
mechanical model

2 62 4.850 0.710 4.64 62+5×9 2128 2235
3 32 4.647 1.718 5.38 20+5×6 1076 1126
5 24 0.953 2.738 2.42 20+5×10 812 882
10 10 0.815 3.404 1.91 20+5×10 243 313
20 8 0.170 3.745 1.91 20+5×3 200 235
50 6 0.016 3.831 1.82 20+5×6 74 124
100 6 0.001 3.933 1.82 20+5×6 90 140

(b) Case of an anisotropic case (ax=10 m with varying ay)

ay (m) Number of random
variables

Variance of the error
%

Pf ×10-3 COV P( )f % Size of DoE=N1+5×N2 Number of added
realizations

Number of calls to the mechanical
model

0.5 60 4.619 0.313 2.898 60+5×8 1937 2037
0.8 38 4.798 1.234 3.51 20+5×8 1192 1252
1 32 4.212 1.628 2.99 20+5×8 921 981
2 24 1.437 2.755 2.68 20+5×5 644 689
5 12 1.682 3.172 2.06 20+5×8 354 414
10 10 0.815 3.404 1.91 20+5×10 243 313
20 8 0.855 3.425 1.98 20+5×5 228 273
50 8 0.297 3.434 1.99 20+5×4 210 250
100 8 0.099 3.595 1.78 20+5×10 194 264

(c). Case of an anisotropic case (ay=2 m with varying ax)

ax (m) Number of random
variables

Variance of the error
%

Pf×10-3 COV P( )f % Size of DoE=N1+5×N2 Number of added
realizations

Number of calls to the mechanical
model

2 62 4.850 0.710 4.64 62+5×9 2128 2235
5 30 4.101 2.221 2.65 20+5×13 988 1073
10 24 1.437 2.755 2.68 20+5×5 644 689
20 16 1.415 3.023 2.07 20+5×9 437 502
50 12 1.272 3.180 1.87 20+5×12 313 393
100 10 0.842 3.191 1.82 20+5×12 244 324
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between the two approaches is smaller than 7%.
The values of the probabilistic outputs obtained by AK-IS approach

and corresponding to the different soil variabilities were given in
Table 5. Columns 2 and 3 of Table 5 provide the number of random
variables (or the number of eigenmodes) and the corresponding

variance of the error of EOLE methodology for different values of the
autocorrelation distances. Columns 4, 5, 6, 7 and 8 of the same table
provide the failure probabilities, the corresponding values of the coef-
ficient of variation, the size of the DoE (where DoE=N1+5×N2), the
number of added realizations and the total number of calls to the

Fig. 6. Typical realizations (a) safe domain, (b) failure domain and (c) design point.

Fig. 7. Vertical cross-section at the footing center.
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mechanical model [i.e. DoE+ Number of added realizations]. Re-
member here that a maximal value of 5% was adopted in this paper for
the variance of the error of EOLE methodology. As may be seen from
Table 5, the required number of random variables is small for the very
large values of the autocorrelation distances and significantly increases
for the small values of the autocorrelation distances.

Table 5 shows that the number N1=20 samples suggested in the
flowchart of Fig. 1 was sufficient for moderate to large values of the
autocorrelation distances; however, a higher number of samples was
found necessary when dealing with the two configurations corre-
sponding to the small values of the autocorrelation distances [i.e.
(ax= ay=2m) and (ax= 10m, ay= 0.5m)] for which a large number
of random variables (about 60 random variables) was required. The
greater number of samples needed for the configurations corresponding
to the small values of the autocorrelation distances may be explained by
the likely increasing non-linearity of the limit state surface for these
cases of very heterogeneous soils. It was found that adopting a value of
N1 that is equal to the number of eigenmodes is a suitable choice (to be
able to obtain a first tentative design point) for these configurations.

Table 5 also shows that the number of samples generated around the
successive tentative design points was equal to 5 as suggested in the

flowchart of Fig. 1. This small number of samples was found sufficient
even for the small values of the autocorrelation distances. This may be
explained by the fact that the initial construction of the approximate
metamodel (that is used to determine the first tentative design point) is
the most difficult task when dealing with the determination of the de-
sign point. Once an initial tentative design point was detected, the
determination of the subsequent tentative design points becomes quite
straightforward. Furthermore, the number of iterations that is needed
to reach the final design point is quite small (between 3 and 13).

Concerning the IS sampling population, the adopted number NIS of
samples determines the coefficient of variation of the computed failure
probability. The required number NIS of samples was determined in this
paper for the two following configurations [i.e. (ax= ay=3m) and
(ax=10m, ay=0.8m)] corresponding to moderate values of the au-
tocorrelation distances. This number was based on a small target value
of the coefficient of variation on Pf of about 5%. It was found equal to
about 10,000 samples. The number NIS=10,000 samples was then
adopted for all the other configurations corresponding to larger values
of the autocorrelation distances (where larger values of the failure
probability are expected). The obtained values of the coefficient of
variation for these configurations were smaller than 5%. This is because

Fig. 8. Effect of the isotropic autocorrelation distance ax= ay on Pf and βHL.

Fig. 9. Effect of the vertical autocorrelation distance ay on Pf and βHL when ax=10m.
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for a prescribed number NIS of samples, the coefficient of variation on
the failure probability is smaller for the larger values of the failure
probability. Finally, notice that the two configurations [i.e.
(ax= ay=2m) and (ax=10m, ay=0.5m)] corresponding to small
values of the autocorrelation distances and thus to quite small values of
the failure probability have led to large values of the coefficient of
variation when adopting NIS=10,000 samples. Thus, an increase in the
number NIS of samples was needed for these cases. A number NIS of
30,000 samples was adopted for these configurations. The resulting
values of the coefficient of variation on the failure probability were
found to be smaller than 5%. The small values of the coefficient of
variation obtained in this paper (smaller than about 5% for all config-
urations) indicate that accurate results were obtained.

Finally, one may observe from Table 5 that the number of added
realizations (and the corresponding total number of calls to the me-
chanical model) required to lead to a good approximation of the kriging
model seems to be larger for the smaller values of the autocorrelation
distance (because of the likely increasing nonlinearity of the meta-
model in the case of highly heterogeneous soils), although there is no
regular increase in the number of added realizations with the decrease
in the autocorrelation distance. Indeed, this number depends on the
evolution of the kriging meta-model during the enrichment process.

4.2.4. Comparison with other probabilistic approaches
In order to compare the Pf value obtained by the present AK-IS

approach to that computed by the crude MCS methodology, the reader
may refer to the crude MCS results provided in Al-Bittar et al. [23] for
the reference case ax=10m and ay=1m. These MCS results were not
detailed herein in order to avoid repetition. Notice that 136,959 calls to
the mechanical model were performed while running the crude MCS
methodology.

The values of Pf and COV P( )f obtained from the crude MCS are
respectively 1.701× 10-3 and 6.54%. These values are to be compared
with the present AK-IS results [i.e. Pf=1.628×10-3 and
COV P( )f =2.99%] and the results obtained by Al-Bittar et al. [23]
using AK-MCS approach [i.e. Pf=1.656× 10-3 and
COV P( )f =3.47%]. The results provided by the three approaches show
good agreement in term of the value of Pf. As a conclusion, the present
AK-IS approach gives a quasi-similar value of Pf as the crude MCS
method (considered as a reference methodology for the probabilistic
analysis). Furthermore, AK-IS is more efficient than AK-MCS because of
the smaller sampling population adopted in this approach as compared
to AK-MCS method. This leads to a significant reduction in the

computation time during the enrichment process as it will be explained
below.

The time required by the meta-model (for each added sample) to
perform 500,000 evaluations of the learning function U in AK-MCS
(where the learning function is based on the mean prediction and the
variance prediction by the meta-model) is more significant than that
required to perform 10,000 evaluations of this learning function in AK-
IS as it was mentioned before. Furthermore, the number of added
samples (and the resulting total number of calls to the mechanical
model) in AK-IS is either greater or smaller than that needed in AK-MCS
(see Table 6) but it remains in the same order as the number of added
samples needed in AK-MCS except for the configurations corresponding
to the very small values of the failure probability (because of the greater
number of samples close to the limit state surface in the case of AK-IS
approach). As a conclusion, the computation time required by AK-IS
during the enrichment process (which is equal to the number of added
samples multiplied by the time required to compute the 10,000 eva-
luations of the learning function U by the meta-model) is much smaller
than that required by AK-MCS that makes use of a quite similar number
of added samples with a much greater computation time needed for the
500,000 evaluations of the learning function U by the meta-model. For
instance; when considering the typical case where ax=10m and
ay=2m, 12 days (in average) were necessary to complete the AK-MCS
computation, whereas only 3 days were needed in average to perform a
complete calculation using the AK-IS method.

5. Conclusion

The popular active learning reliability method (called AK-IS) by
Echard et al. [19] which is a combination of kriging metamodeling and
importance sampling is used in this paper for the probabilistic analysis
of geotechnical structures involving spatially varying soil properties.
More specifically, the probabilistic model developed in this paper aims
at computing the probability of failure against soil punching of a strip
footing resting on a spatially varying soil and subjected to a vertical
load. The soil cohesion and angle of internal friction were modeled by
two non-isotropic non-Gaussian random fields that share an identical
square exponential autocorrelation function. The soil cohesion was
modelled by a log-normal distribution and the soil angle of internal
friction was modeled by a beta distribution. EOLE methodology was
used for the discretization of the two random fields.

As is well-known, AK-IS approach has the advantages of both kri-
ging (by using the prediction mean and prediction variance for the

Fig. 10. Effect of the horizontal autocorrelation distance ax on Pf and βHL when ay=2m.
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determination of the ‘best’ new candidate sample to be evaluated by the
computationally expensive mechanical model) and importance sam-
pling (for the generation of samples around the most probable failure
point). Indeed, contrary to the active learning method AK-MCS by
Echard et al. [18] combining kriging and Monte Carlo simulations (in
which the learning function is computed via the meta-model for the
whole Monte Carlo population for each added point during the en-
richment process), the AK-IS method solves this problem by sampling
around the design point using a much smaller size of the sampling
population. This significantly reduces the computation time.

This paper presents a simple and non-expensive iterative procedure
based on kriging metamodeling for the determination of the design
point in the present case of spatially varying soil properties. The other
probabilistic procedure related to the enrichment process is quite si-
milar to that of the original AK-IS methodology by Echard et al. [19].

The main findings of this study in terms of the obtained numerical
probabilistic results can be summarized as follows:

(1) The present AK-IS procedure was shown to be much more efficient
than AK-MCS in the present case of spatially varying soil properties.
It provides an accurate value of the failure probability (i.e. with a
small value of the coefficient of variation on this failure probability)
needing a much smaller computation time as compared to AK-MCS.
The reduced computation time results from the fact that the time
required by the meta-model (for each added sample) to perform
500,000 evaluations of the learning function in AK-MCS is more
significant than that required to perform 10,000 evaluations of this

learning function in AK-IS. As a conclusion, AK-IS significantly re-
duces the computation time compared to AK-MCS. For instance;
when considering the typical case where ax=10m and ay=2m,
12 days (in average) were necessary to complete the AK-MCS
computation, whereas only 3 days were needed in average to per-
form a complete calculation using the AK-IS method.

(2) The critical realizations at the design point have shown a symme-
trical distribution of the soil shear strength parameters with respect
to the central vertical axis of the foundation with a weak soil zone
near the footing.

The main findings and the limitation of this study in terms of the
developed methodology can be summarized as follows:

(1) The developed procedure related to the determination of the design
point was shown to be a powerful tool since it can handle complex
problems involving spatially varying soil properties where an ana-
lytically-unknown performance function with a quite large number
of random variables (of about 60 random variables) may be in-
volved in the analysis.

(2) Similarly to AK-MCS, the AK-IS kriging approach significantly re-
duces the number of calls to the mechanical model as compared to
the variance reduction techniques usually used in the geotechnical
literature in the case of spatially varying soils. Also, AK-IS approach
significantly reduces the computation time related to the number of
the predictions by the meta-model as compared to AK-MCS. Despite
these advantages, AK-IS remains insufficient in the case of very

Table 6
Number of added realizations and number of calls to the mechanical model as needed by AK-MCS and AK-IS for various soil variabilities.

(a) Case of an isotropic case (ax= ay)

ax= ay (m) AK-MCS AK-IS

Number of added realizations Number of calls to the mechanical model Number of added realizations Number of calls to the mechanical model

2 742 762 2128 2235
3 995 1015 1076 1126
5 870 890 812 882
10 286 306 243 313
20 210 230 200 235
50 105 125 74 124
100 100 120 90 140

(b) Case of an anisotropic case (ax=10 m with varying ay)

ay (m) AK-MCS AK-IS

Number of added realizations Number of calls to the mechanical model Number of added realizations Number of calls to the mechanical model

0.5 427 447 1937 2037
0.8 790 810 1192 1252
1 752 772 921 981
2 672 692 644 689
5 406 426 354 414
10 286 306 243 313
20 190 210 228 273
50 239 259 210 250
100 232 252 194 264

(c) Case of an anisotropic case (ay=2 m with varying ax)

ax (m) AK-MCS AK-IS

Number of added realizations Number of calls to the mechanical model Number of added realizations Number of calls to the mechanical model

2 742 762 2128 2235
5 824 844 988 1073
10 672 692 644 689
20 494 514 437 502
50 357 377 313 393
100 256 276 244 324
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heterogeneous soils [i.e. when (ax= ay) < 2m] because a large
number of calls to the mechanical model (> 2000 calls) is needed
for those cases. More advanced probabilistic approaches are desired
for these configurations.
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