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Bearing capacity of spatially random rock masses obeying Hoek–Brown failure
criterion
Tamara Al-Bittara and Abdul-Hamid Soubrab

aFaculty of Engineering, Lebanese University, Tripoli, Lebanon; bFaculty of Engineering, University of Nantes, Saint-Nazaire, France

ABSTRACT
This paper presents a probabilistic analysis to compute the probability density function of the
bearing capacity of a strip footing resting on a spatially varying rock mass. The rock is
assumed to follow the generalised Hoek–Brown failure criterion. The uniaxial compressive
strength of the intact rock (σc) was considered as a random field and the geological strength
index was modelled as a random variable. The uncertainty propagation methodology
employed in the analysis is the sparse polynomial chaos expansion. A global sensitivity
analysis based on Sobol indices was performed. Some numerical results were presented and
discussed.
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1. Introduction

The analysis and design of a strip footing resting on a
rock mass obeying Hoek–Brown (HB) failure criterion
are generally based on deterministic approaches
(Maghous, de Buhan, and Bekaert 1998; Yang and
Yin 2005; Merifield, Lyamin, and Sloan 2006; Saada,
Maghous, and Garnier 2008). In this paper, the behav-
iour of a strip footing resting on a HB rock mass is
studied using a probabilistic approach. The probabilis-
tic approaches allow one to consider the propagation of
the uncertainties from the input parameters to the sys-
tem responses. Most existing probabilistic analyses on
foundations consider the case of a foundation resting
on a soil mass (Griffiths and Fenton 2001; Griffiths,
Fenton, and Manoharan 2002; Fenton and Griffiths
2003; Popescu, Deodatis, and Nobahar 2005; Youssef
Abdel Massih, Soubra, and Low 2008; Cho and Park
2010; Soubra and Youssef Abdel Massih 2010; Li,
Tian, and Cassidy 2015). Only few studies may be
found in literature concerning the probabilistic analy-
sis of a foundation resting on a rock mass obeying
HB failure criterion (Ching et al. 2011; Mao, Al-Bittar,
and Soubra 2012). This paper fills this gap. It aims at
determining the ultimate bearing capacity of a strip
footing resting on a spatially varying rock mass and
subjected to a vertical load. The rock mass follows
the generalised HB failure criterion (Hoek and Brown
1980, 1997; Hoek, Carranze-Torres, and Corkum
2002; Hoek and Marinos 2007; Brown 2008). In this

criterion, only intact rocks or heavily jointed rocks
masses (i.e. with sufficiently dense and randomly dis-
tributed joints) can be considered. The HB failure cri-
terion is characterised by four parameters: (i) the
geological strength index (GSI), (ii) the uniaxial com-
pressive strength of the intact rock (σc), (iii) the intact
rock material constant (mi) and (iv) the disturbance
coefficient (D). Mao, Al-Bittar, and Soubra (2012)
have modelled these four parameters as random vari-
ables and have performed a probabilistic analysis of
the ultimate bearing capacity of foundations. These
authors have shown that the variability of the ultimate
bearing capacity is mainly due to the uniaxial compres-
sive strength of the intact rock (σc) and the geological
strength index (GSI). Based on this study, only these
two parameters were considered herein as uncertain.
The rock uniaxial compressive strength of the intact
rock (σc) was considered as a non-Gaussian (NG) ran-
dom field characterised by a square exponential auto-
correlation function. The expansion optimal linear
estimation (EOLE) method proposed by Li and Der
Kiureghian (1993) was used to dicretise this random
field. As for GSI, Ching et al. (2011) have stated that
this parameter is based on engineering judgement. It
characterises the overall rock mass condition and it
does not represent a precise physical parameter varying
in space. Thus, this parameter cannot be modelled as a
random field and will be treated herein as a random
variable.
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As for the probabilistic method of analysis, the
classical Monte Carlo simulation (MCS) methodology
is generally used when dealing with random fields
(Griffiths and Fenton 2001; Griffiths, Fenton, and
Manoharan 2002; Fenton and Griffiths 2003;
Popescu, Deodatis, and Nobahar 2005; Cho and
Park 2010; Ching et al. 2011; Li, Tian, and Cassidy
2015). In spite of being a rigorous method, MCS
requires a large number of calls to the deterministic
model. This is not convenient in the case where a
computationally expensive (finite element or finite
difference) deterministic model is used. This paper
makes use of an efficient probabilistic approach
which significantly reduces the number of calls of
the deterministic model. The sparse polynomial
chaos expansion (SPCE) methodology was proposed
in this regard. Notice that the SPCE is an extension
of the polynomial chaos expansion (PCE). A PCE
or a SPCE methodology aims at replacing the com-
plex deterministic model by a meta-model (i.e. a
simple analytical equation) (Al-Bittar and Soubra
2013, 2014; Jiang et al. 2014, 2015). The probability
density function (PDF) of the system response can
thus be easily obtained. This is because MCS is no
longer applied on the original computationally expens-
ive deterministic model, but on the meta-model. The
other significant advantage of the present SPCE meth-
odology with respect to the classical MCS method is
that it allows one to easily perform a global sensitivity
analysis (GSA) based on Sobol indices using the meta-
model. These indices give the contribution of each
uncertain parameter to the variability of the system
response.

The paper is organised as follows: the next section
aims at presenting the deterministic model used for
the computation of the ultimate bearing capacity of a
vertically loaded strip footing resting on a rock mass
obeying the HB failure criterion. It is followed by a
presentation of the probabilistic method used for the
computation of the PDF of the ultimate bearing

capacity of a strip footing resting on a HB spatially
varying rock mass. Finally, the probabilistic numerical
results are presented and discussed. The paper ends
with a conclusion.

2. Deterministic model

In this section, one first presents a brief description of
the generalised HB failure criterion. This is followed by
a presentation of the numerical model used to com-
pute the ultimate bearing capacity of a strip footing
resting on a HB rock mass and subjected to a vertical
load.

2.1. Generalised HB failure criterion

The generalised HB failure criterion only deals with
intact rocks or heavily jointed rock masses (Hoek and
Brown 1980, 1997; Hoek, Carranze-Torres, and Corkum
2002; Hoek and Marinos 2007; Brown 2008). A heavily
jointed rock mass involves sufficiently dense and ran-
domly distributed joints so that in the scale of the pro-
blem, it can be regarded as an isotropic assembly of
interlocking particles. Consequently, rocks with few dis-
continuities cannot be considered in this framework. The
generalised HB failure criterion can be described by the
following equation:

s1 − s3 = sc mb
s3

sc
+ s

( )n

, (1)

where σ1 and σ3 are, respectively, the major and minor
principal stresses at failure and σc is the uniaxial com-
pressive strength of the intact rock material. The par-
ameters mb, s and n are given by the following
equations:

mb = mi. exp
GSI − 100
28− 14D

( )
, (2)

s = exp
GSI− 100
9− 3D

( )
, (3)

n = 1
2
+ 1

6
exp −GSI

15

( )
− exp − 20

3

( )[ ]
. (4)

In these equations, the geological strength index
(GSI) characterises the quality of the rock mass and
depends on its structure and its joints surface con-
ditions (Hoek and Brown 1997). On the other hand,
the parameter mi is the value of parameter m for intact
rock and can be obtained from experimental tests. The
parameter mi varies from 4 for very fine weak rock-like
claystone to 33 for coarse igneous light-coloured rock
such as granite. Finally, D is the disturbance coefficient.

Figure 1. Failure envelope of the HB failure criterion in the (σ, τ)
plan.
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It varies from 0.0 for undisturbed in situ rock masses to
1.0 for very disturbed rock masses. Figure 1 presents
the nonlinear generalised HB failure criterion in the
(τ, σ) plan. As for the modulus of deformation of the
HB rock mass, Hoek, Carranze-Torres, and Corkum
(2002) have proposed the following relationship
between this parameter and the generalised HB failure
criterion parameters:

Em = 1− D
2

( ) ����
sc

100

√
.10((GSI−10)/40), (5)

where Em in this equation is given in GPa.

2.2. Numerical model

The deterministic model used to calculate the ultimate
bearing capacity of a strip footing resting on a HB rock
mass and subjected to a vertical load was based on the
commercial numerical code FLAC3D. A footing of
breadth B = 1 m was considered in the analysis. For
this calculation, a rock mass of 20 m wide by 6 m
deep was considered (Figure 2). In contrast to the
homogeneous rock case where only one-half of the
rock mass domain may be considered in the analysis,
the entire rock domain shown in Figure 2 was con-
sidered herein. This is because the random field creates
a non-symmetrical failure mechanism. A control dis-
placement approach was used in this paper. The rigid
strip footing was modelled by a prescribed uniform vel-
ocity for all the rock nodes in contact with the footing.
A value of 10−6 m/time step was chosen for this vel-
ocity since a smaller value was proved to negligibly
decrease the value of the ultimate bearing capacity.
The mesh was refined near the footing edges where
high stress gradient may occur. For the displacement
boundary conditions, the bottom boundary was
assumed to be fixed and the vertical boundaries were
constrained in motion in the horizontal direction.
The rock behaviour was modelled by an elastic per-
fectly plastic model obeying the generalised HB failure
criterion. It should be emphasised here that an

associated flow rule was considered in the study in
order to be able to compare the obtained results with
those given in literature (Merifield, Lyamin, and
Sloan 2006; Mao, Al-Bittar, and Soubra 2012). For
this purpose, the confining stress at constant volume
scv
3 must be properly selected. In fact, beyond the

value of scv
3 , no volume changes are expected to appear.

This means that when scv
3 /sc is very small, the case of a

deformation at constant volume is rapidly reached and
the model can be considered to follow a non-associated
flow rule with a zero dilation angle. On the contrary,
the case of a large value of scv

3 /sc means that the defor-
mation at the constant volume cannot be reached easily
and thus the model can be considered to follow an
associated flow rule. In the present paper, a large
value of scv

3 /sc = 2 was selected. This value was chosen
since greater values have led to the same value of the
ultimate bearing capacity. The present deterministic
model was validated by comparison of its results with
those provided by Merifield, Lyamin, and Sloan
(2006) and Mao, Al-Bittar, and Soubra (2012) for
different configurations of the rock parameters. The
results are presented for the case of a weightless
material. The value of the Poisson ratio adopted in
this paper is 0.3. Table 1 presents a comparison
between the results obtained from the present determi-
nistic model and those given by Merifield, Lyamin, and
Sloan (2006) and Mao, Al-Bittar, and Soubra (2012). It
should be mentioned here that the results given by
Merifield, Lyamin, and Sloan (2006) present the aver-
age values between the upper and lower bound sol-
utions of the limit analysis theory. On the other
hand, Mao, Al-Bittar, and Soubra (2012) present only
an upper bound solution of the ultimate bearing
capacity. Table 1 shows that the present numerical
model provides slightly more critical values of the ulti-
mate bearing capacity. This model will be used to per-
form the probabilistic analysis.

Figure 2.Mesh used for the computation of the ultimate bearing
capacity.

Table 1. Values of qu (MPa) as given by FLAC3D, by Merifield,
Lyamin, and Sloan (2006) and by Mao, Al-Bittar, and Soubra
(2012) when D = 0.

GSI
(-)

σc
(MPa)

mi

(MPa) FLAC3D

Mao, Al-Bittar,
and Soubra

(2012)
Merifield, Lyamin,
and Sloan (2006)

20 7.5 10 1.460 1.600 1.568
20 10 10 1.960 2.130 2.090
20 12.5 10 2.450 2.670 2.613
20 15 10 2.930 3.200 3.135
20 20 10 3.920 4.270 4.180
30 7.5 10 2.784 3.040 2.978
30 10 10 3.710 4.060 3.970
30 12.5 10 4.660 5.070 4.963
30 15 10 5.605 6.120 5.955
30 20 10 7.498 8.080 7.940
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3. Probabilistic analysis

First, the discretisation of the NG (log-normal in the pre-
sent paper) random field of σc is briefly presented. It is
followed by a brief presentation of the SPCE method-
ology used for the probabilistic analysis.

3.1. Discretisation of the random field

Consider a 2D NG random field ZNG described by (i)
a NG (log-normal in the present paper) marginal
cumulative distribution function FG for which μ and
σ are, respectively, its mean and standard deviation
values and (ii) a square exponential isotropic autocor-
relation function rNG

Z [(x, y), (x′, y′)], which gives the
values of the correlation between two arbitrary points
(x, y) and (x′, y′). Notice that this function is given as
follows:

rNG
Z [(x, y), (x′, y′)]=exp − |x − x′|

a

( )2

− |y − y′|
a

( )2
( )

,

(6)

where a is the autocorrelation distance. The EOLE
method proposed by Li and Der Kiureghian (1993)
to discretise a random field is used herein. In this
method, one should first define a stochastic grid com-
posed of s grid-points (or nodes) and determine the
NG autocorrelation matrix S

NG, which gives the cor-
relation between each grid point of the stochastic
mesh and the other grid-points of this mesh using
Equation (6). The NG autocorrelation matrix S

NG

should then be transformed into the Gaussian space
using the Nataf transformation (1962). As a result,
one obtains a Gaussian autocorrelation matrix S

G

that can be used to discretise the Gaussian random
field Z as follows:

Z̃(x, y) � mlnZ + slnZ

∑N
j=1

jj���
lj

√ .fj.V, (7)

where μln Z and σln Z are the mean and standard devi-
ation values of the underlying Gaussian random field
(i.e. ln(Z )); (lj, fj) are the eigenvalues and eigenvectors
of the Gaussian autocorrelation matrix S

G; V is the
correlation vector between the value of the field at an
arbitrary point (x, y) and its values at the different
grid-points and jj is a vector of N standard normal ran-
dom variables, where N is the number of terms (expan-
sion order) retained in the EOLE method. Notice that
both fj and V are vectors of dimension s, where s is
the number of the grid-points of the stochastic mesh.
Notice also that the number N in Equation (7) is
obtained (i) by sorting the eigenvalues lj ( j = 1,… , s)

in a descending order and (ii) by choosing the number
N of eigenmodes that leads to a variance of the error
which is smaller than a prescribed value (10% in this
paper). Notice finally that the variance of the error for
EOLE is given as follows:

Var[Z(x, y)− Z̃(x, y)] = s2 −
∑N
j=1

1
lj
[(fj)

TV]2, (8)

where Z(x, y) and Z̃(x, y)are, respectively, the exact
and the approximate values of the random field at
a given point (x, y) and (fj)

Tis the transpose of the
eigenvector fj. Once the Gaussian random field is
obtained, it should be transformed into the NG
(log-normal in the present paper) space by exponen-
tiating the approximated Gaussian random field Z̃(x, y)
given by Equation (7).

3.2. SPCE for the system response

In this section, one first presents the PCE and then its
extension, the SPCE. The PCE methodology allows one
to replace a complex deterministic model whose input
uncertain parameters are random variables by a meta-
model. Thus, the random system response may be easily
calculated (when performing the probabilistic analysis by
MCS) using a simple analytical equation. Within the
PCE methodology, the system response Γ of a given
model with M random variables can be expressed by a
PCE as follows:

GPCE(j) =
∑1
b=0

abCb(j) �
∑P−1

b=0

abCb(j), (9)

where P is the number of terms retained in the trunca-
tion scheme, j = {ji}i=1,...,M is a vector ofM independent
standard random variables that represent theM random
variables, aβ are unknown coefficients to be computed
and Cb are multivariate Hermite polynomials. These
multivariate Hermite polynomials can be obtained
from the product of one-dimensional Hermite poly-
nomials as follows:

Cb =
∏M
i=1

Hai(ji), (10)

where αi (i = 1,… , M ) are a sequence of M non-nega-
tive integers and Hai(.) is the aith one-dimensional
Hermite polynomial. The expressions of the one-
dimensional Hermite polynomials are given in Appen-
dix 1. The coefficients aβ of the PCE are computed in
this paper using a non-intrusive technique where the
deterministic calculations are done using the finite
difference software FLAC3D treated as a black box.
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The most used non-intrusive method is the regression
approach (Isukapalli, Roy, and Georgopoulos 1998;
Huang, Liang, and Phoon 2009; Mollon, Dias, and Sou-
bra 2009; Blatman and Sudret 2010; Li et al. 2011; Mao,
Al-Bittar, and Soubra 2012; Al-Bittar and Soubra 2013,
2014; Jiang et al. 2014, 2015). This method is used in the
present work.

In fact, for a PCE of order p, only the multivariate
polynomialsCb of degree less than or equal to p should
be retained. This leads to a number P of the unknown
PCE coefficients (see Equation (9)) equal to
((M + p)!)/(M!p!). It should be noticed that the num-
ber of the PCE coefficients to be computed grows dra-
matically with the size M of the input random vector
and the PCE order p. When dealing with a random
field as is the case in the present paper (and especially
when considering small values of the autocorrelation
distance), the discretisation of the random field by
EOLE may lead to a significant number of random
variables, which makes the determination of the PCE
coefficients unfeasible because of the significant in-
crease in the number of calls of the deterministic
model. To address such problems, the SPCE developed
by Blatman and Sudret (2010) is used herein. Indeed,
Blatman and Sudret (2010) have shown that the num-
ber of significant terms in a PCE is relatively small
since the multivariate polynomials Cb corresponding
to high-order interaction (i.e. those resulting from the
multiplication of the Haiwith increasing αi values) are
associated with very small values for the coefficients
aβ. Based on this observation, these authors have pro-
posed a so-called hyperbolic truncation scheme to
determine the significant Cb terms. This scheme
suggests that the q-norm ‖a‖q of the retained Cb

term should be less than or equal to the order p of
the PCE. The q-norm is given by

‖a‖q =
∑M
i=1

(ai)
q

( )1/q

, (11)

where q is a coefficient (0 < q < 1). In this formula, q can
be chosen arbitrarily. Blatman and Sudret (2010) have
shown that sufficient accuracy is obtained for q ≥ 0.5.

The proposed SPCE methodology leads to a SPCE
that contains a small number of unknown coefficients,
which can be calculated from a reduced number of
calls of the deterministic model with respect to the clas-
sical PCE methodology. Notice that the SPCE method-
ology as proposed by Blatman and Sudret (2010) is
based on an iterative procedure to arrive to a minimal
number for the SPCE coefficients. This procedure is pre-
sented in a flowchart in Appendix 2. It is used in this
paper to build up a SPCE for the system response. For

more details on this procedure, the reader may refer to
Al-Bittar and Soubra (2013, 2014) and Blatman and
Sudret (2010). Once the coefficients aβ are computed,
the PDF of the system response and the corresponding
statistical moments (mean μ, standard deviation σ, skew-
ness δu, and kurtosis κu) can be easily calculated with no
additional cost using the meta-model. The two next sub-
sections are, respectively, devoted to (i) the method used
for the computation of the coefficients aβ of the SPCE
using the regression approach and (ii) the GSA based
on Sobol indices.

3.2.1. Computation of the SPCE coefficients by the
regression approach
Consider a set of K realisations
{j(1) = (j1, . . . , jM), . . . , j

(K) = (j1, . . . , jM)} of the
standard normal random vector ξ. These realisations
are called experimental design (ED) and can be obtained
from MCSs. We note G = {G(j(1)), . . . , G(j(K))} the cor-
responding values of the response determined by deter-
ministic calculations. The computation of the SPCE
coefficients using the regression approach is performed
using the following equation:

_
a = (hTh)−1hTG, (12)

in which the matrix η is defined by

hib = Cb(j
(i)), i = 1, · · · , K ,

b = 0, · · · , J − 1,
(13)

where J is the number of the retained SPCE coefficients.
Notice that in order to ensure the numerical stability of
the treated problem in Equation (12), the size K of the
ED must be selected in such a way that the matrix
(hTh)−1 is well-conditioned. This implies that the
rank of this matrix should be larger than or equal to
the number of unknown coefficients. This test was sys-
tematically performed while solving the linear system of
equations of the regression approach to arrive to the
numerical stability. Notice finally that the quality of
the output approximation via a SPCE closely depends
on the SPCE order p. To ensure a good fit between
the meta-model and the true deterministic model
(i.e. to obtain the optimal SPCE order), one successively
increases the SPCE order until a target accuracy was
obtained. In this paper, the coefficient of determination
Q2 (see Blatman and Sudret 2010) is used. This coeffi-
cient is more efficient than the classical coefficient of
determination R2 since it allows one to check the capa-
bility of the meta-model of correctly predicting the
model response at any point which does not belong to
the ED.
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3.2.2. Global sensitivity analysis
Once the SPCE coefficients are determined, a GSA based
on Sobol indices can be easily performed. Notice that the
first-order Sobol index of a given random variable ξi (i =
1,… , M) gives the contribution of this variable in the
variability of the system response. The first-order Sobol
index is given as follows (Saltelli, Chan, and Scott
2000; Sobol′ 2001):

S(ji) =
Var[E(Y |ji)]

Var(Y)
, (14)

where Y is the system response (i.e. the ultimate bearing
capacity in the present paper), E(Y|ji) is the expectation
of Y conditional on a fixed value of ji and Var denotes
the variance. In the present paper, the system response
is represented by a SPCE. Thus, by replacing Y in
Equation (14) with the SPCE expression, one obtains
the Sobol index as a function of the different terms of
the SPCE as follows (Sudret 2008):

S(ji) =

∑
b[Ii

(ab)
2E[(Cb)

2]

∑
b[[I1,I2,...,IM]

(ab)
2E[(Cb)

2]
, (15)

where ab are the obtained SPCE coefficients, Cb are the
multivariate Hermite polynomials, E[.] is the expectation
operator and E[(Cb)

2] is given by Sudret (2008) as fol-
lows:

E(C2
b) =

∏M
i=1

ai!, (16)

where the αi are the same sequence of M non-negative
integers {a1, . . . , aM} used in Equation (10). It should
be mentioned here that Equation (15) is similar to
Equation (14), in which Y is the system response (i.e.
the ultimate bearing capacity in the present paper).
Equation (15) was obtained by replacing the system
response Y by the PCE expression given by Equation
(9). The mathematical derivation of Equation (15) was
presented by Sudret (2008). Notice also that Ii, which
appears in the numerator of Equation (15), denotes the

set of indices β for which the corresponding Cb terms
are only functions of the random variable ξi (i.e. they
only contain the variable ξi), and Ii (i = 1,… , M) in
the denominator of the same equation regroup all the
indices β for which the corresponding Cb terms are
functions of all the random variables ξi (i = 1,… , M).

In the present paper, where both a random variable
(GSI) and a random field (σc) are involved, the Sobol
index of the random field (σc) is computed as the sum
of the Sobol indices of the different variables that rep-
resent this field.

In order to illustrate the construction of a PCE and
the derivation of the equations providing Sobol indices,
an example of a PCE of order p = 3 using onlyM = 2 ran-
dom variables (ξ1 and ξ2) is presented in Appendix 1.

4. Numerical results

The aim of this section is to present the probabilistic
numerical results obtained from the analysis at the ulti-
mate limit state of a shallow strip footing resting on a
HB spatially varying rock mass and subjected to a verti-
cal load. The uniaxial compressive strength of the intact
rock (σc) was considered as a log-normal random field
characterised by a square exponential autocorrelation
function. Its mean value and coefficient of variation
(referred to in this paper as reference values) were
taken as follows: msc

= 10MPa, COVsc = 25%. On the
other hand, GSI was modelled as a log-normally distrib-
uted random variable with a mean value and a coefficient
of variation given as follows: mGSI = 25, COVGSI = 10%.
As for the autocorrelation distance (a) of the random
field σc, the reference value adopted is 2 m; however, a
range of 0.5–100 m was considered for the parametric
study. For the different values of the autocorrelation dis-
tance (a), the total number N of random variables (or
eigenmodes) that should be used to discretise the ran-
dom field of σc within the prescribed value of 10% for
the variance of the error is presented in Table 2. Notice
that the intact rock material constant (mi) and the dis-
turbance coefficient (D) were assumed to be determinis-
tic since the probabilistic ultimate bearing capacity was
found not sensitive to the variability of these parameters
(Mao, Al-Bittar, and Soubra 2012). Their corresponding
values were respectively mi = 8 and D = 0.3. Notice
finally that the probabilistic results are presented in the
case of a weightless rock mass.

The deterministic numerical model was presented in
the previous section. It should be noted that the size of
a given element in the deterministic mesh depends on
the autocorrelation distance of the spatially varying
rock property. Der Kiureghian and Ke (1988) have
suggested that the length of the largest element of the

Table 2. Number of random variables needed to discretise the
random field σc

Autocorrelation distance
a (m)

Total number of random variables used to
discretise the uniaxial compression strength

random field

0.5 120
1 99
2 35
5 8
10 5
50 5
100 5
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deterministic mesh in a given direction (horizontal or
vertical) should not exceed 0.5 times the autocorrelation
distance in that direction. In order to respect this cri-
terion for the different values of the autocorrelation dis-
tance, a refinement of the deterministic mesh was
performed in FLAC3D for the very small values of the
autocorrelation distance (<1 m).

The following subsections are organised as follows:
first, the probabilistic results of the reference case (i.e.
a = 2 m) are presented and discussed. This is followed
by a presentation of the parametric study. The aim of
this parametric study is to show the effect of the different
governing statistical parameters on both the PDF of the
ultimate bearing capacity and the Sobol indices of the
uncertain parameters (i.e. σc and GSI).

4.1. Probabilistic results for the reference case

The different steps of the probabilistic computation are
presented herein for the reference case where a = 2 m
(similar steps were done when performing the para-
metric study). These steps can be summarised by two
stages as follows:

In a first stage, discretise the random field σc into a
finite number of random variables using EOLE and
determine a realisation of the two uncertain parameters
σc and GSI using M random variables as follows:

. Define the stochastic grid: Li and Der Kiureghian
(1993) have shown that the variance of the error
(Equation (8)) is large at the boundaries of the sto-
chastic domain. This problem can be solved by
using a stochastic domain ΩRF that extends beyond
the boundaries of the physical domain Ω. In this
paper, a uniform stochastic grid of dimensions ΩRF

= [21 m, 7 m] was used while the size of the physical
domain was Ω = [20 m, 6 m]. On the other hand, Li
and Der Kiureghian (1993) have shown that the num-
ber of grid-points in the stochastic grid strongly

depends on the autocorrelation distances. These
authors have shown that a ratio of about
lRF/a = 1/5 provides a sufficient accuracy in terms
of the variance of the error, where lRF is the typical
element size in the stochastic grid, and a is the auto-
correlation distance. In this paper, the number of
grid-points in the stochastic grid was chosen as fol-
lows: six grid-points were considered within each
autocorrelation distance with a minimum of six
grid-points in that direction when the autocorrelation
distance is larger than the size of the stochastic
domain. Thus, a fine stochastic mesh was used for a
highly heterogeneous soil and a coarse stochastic
mesh was used for a slightly heterogeneous soil.

. Calculate the autocorrelation matrix S
NG using

Equation (6) (notice that the dimension of this matrix
depends on the value of the autocorrelation distance
a). Then, compute its corresponding eigenmodes
(i.e. eigenvalues and eigenvectors). Finally, identify
for the random field σc its N largest eigenmodes lj
and wj ( j = 1,… , N), for which the variance of the
error is smaller than a threshold of say 10%. As may
be seen from Table 2, for smaller values of the auto-
correlation distance of the random field, the number
of random variables (which is equal to the number
N of eigenmodes) increases. The total number of ran-
dom variables M to be introduced in the probabilistic
analysis is equal to the number N of terms retained in
EOLE method (to discretise the random field σc) plus
one (which represents the random variable GSI), that
is, M =N + 1.

. For each realisation, compute the values of σc at the
centroid of each element of the deterministic mesh
using Equation (7), the value of GSI being the same
for all the elements of the deterministic mesh and it
is obtained by generating a realisation from the PDF
describing this parameter. Figure 3 presents a realis-
ation of the random field σc. As may be seen from
this figure, the isotropy in the autocorrelation distance
is well presented within this realisation.

In a second stage, an arbitrary number of realisations
K = 200 (with M random variables for each realisation)
was performed using MCS technique to construct the
ED. The number K is an initial (arbitrary) value since
the iterative algorithm by Blatman and Sudret (2010)
suggests to automatically add other simulations (an arbi-
trary number of 100 realisations was taken in this paper)
each time the regression problem is ill-posed. The algor-
ithm stops if either the target accuracy Q2

TARGET is
achieved or if the SPCE order p reached a maximal pre-
scribed value fixed by the user. In this paper, a target

Figure 3. Typical realisation of the uniaxial compressive strength
random field σc for the reference case where a = 2 m.
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accuracy Q2
TARGET = 0.999, a value of q = 0.7 (see

Equation (11)), and a maximal SPCE order equal to 5
were used. Notice that for the reference case (i.e. a =
2 m), the algorithm has stopped when the target accu-
racy Q2

TARGET was reached. The corresponding order of
the SPCE was equal to 3. In this case, where 35 random
variables were needed for the random field σc (see
Table 2) and a single random variable was used to rep-
resent GSI, the classical PCE leads to P = 9139 unknown
coefficients and thus a minimum of 9139 calls of the
deterministic model were needed to accurately represent
the ultimate bearing capacity by a meta-model. By using
the SPCE iterative algorithm by Blatman and Sudret
(2010), only P = 127 unknown coefficients were retained
and only 500 calls of the deterministic model were found
to be largely sufficient to construct the meta-model.
Consequently, a significant reduction in the number of
calls of the deterministic model can be obtained using
the SPCE. This greatly facilitates the solution of pro-
blems involving random fields.

In order to show the efficiency of the proposed SPCE
methodology, a comparison with the crude MCS method
was performed. A total number of simulations of 10,000
was considered in the computation. This number is lar-
gely sufficient to lead to convergence of the mean, stan-
dard deviation, skewness and kurtosis of the ultimate
bearing capacity as may be seen from Figure 4. Figure 5
presents the histogram obtained from the 10,000 MCSs
(performed on the original expensive finite difference
code FLAC3D) and the PDF obtained using the SPCE
metamodelling technique based on only 500 simulations.
As may be seen from this figure and from Table 3, the
SPCE metamodelling technique is an efficient alternative
to the crude MCS technique because the results show
good agreement between the two methods (in terms of
the mean, standard deviation, skewness and kurtosis
of the ultimate bearing capacity) with a much smaller
number of calls of the deterministic model when using
the SPCE.

Figure 6 depicts the values of Sobol indices as given by
the obtained SPCE for (i) the random variable GSI and
(ii) the 35 random variables representing the random
field σc. The first random variable ξ1 corresponds to
GSI and its Sobol index was found to be equal to 0.66.
However, the last 35 random variables [i.e. ξi for i = 2,

… , 36] are those corresponding to the σc random field.
The sum of their Sobol indices gives the weight of the
random field σc in the variability of the ultimate bearing
capacity. This sum was found to be equal to 0.34. Figure
6 shows that only six random variables (ξ2, ξ4, ξ6, ξ8, ξ9,
ξ12) of the σc random field are the most influential (they
involve 89% of the variance of σc). This can be explained
by the fact that the system response (i.e. the ultimate
bearing capacity) is a quantity that depends on the aver-
age distribution of the spatially varying rock property
over the entire domain and it is therefore quite insensi-
tive to small-scale fluctuations of σc. Notice that the
first eigenmodes provide the average distribution of σc
over the rock domain; however, the remaining eigen-
modes give the small-scale fluctuations around this aver-
age distribution.

4.2. Probabilistic parametric study

The aim of this section is to study the effect of the differ-
ent statistical governing parameters (autocorrelation dis-
tance of σc and coefficient of variation of both σc and
GSI) (i) on the PDF of the ultimate bearing capacity
and (ii) on Sobol indices.

4.2.1. Effect of the autocorrelation distance
Figure 7 provides the PDFs of the ultimate bearing
capacity for different values of the autocorrelation dis-
tance of σc (a = 0.5, 1, 2, 5, 10, 50, 100 m) and for the
case where σc is modelled as a random variable (case of
a homogenous rock mass). Table 4 presents the four stat-
istical moments and the number of needed simulations
to construct the meta-model using the SPCE technique
for the cases presented in the same figure. The PDF
and the statistical moments corresponding to a great
value of the autocorrelation distance (a = 100 m) are
similar to those given by the case of a random variable.
This is because the case of a random variable can be con-
sidered as the limiting case of a random field with an
infinite value of the autocorrelation distance.

Figure 7 shows that the PDF is less spread out when
the autocorrelation distance decreases. For the very
large values of the autocorrelation distance (i.e. a =
100 m), the coefficient of variation of the ultimate
bearing capacity tends to a constant maximal value
(see Table 4), which is the value corresponding to the
case of a random variable. In this case, the different values
of σc (at the different locations in a given realisation) are
perfectly correlated. This means that for a given simu-
lation, a single value of σc is affected to the entire rock
mass. This value of σc is chosen according to the pre-
scribed PDF of σc and it may vary (from a realisation to
another one) in the range of values imposed by this

Table 3. Mean, standard deviation, skewness and kurtosis of the
ultimate bearing capacity as obtained from the Monte Carlo
simulations and the SPCE meta-model for the reference case
where a = 2 m.
Reference case a = 2 m m (MPa) s (MPa) COV% δu (-) κu (-)

MCS results 1.462 0.349 23.87 0.55 0.6
SPCE results 1.462 0.342 23.40 0.52 0.54
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PDF. This observation is also valid for GSI. This leads to a
large variability of the ultimate bearing capacity. To con-
clude, the large value of the variability is because one
obtains a large variety of homogeneous rock masses
with low, intermediate and high values of σc and GSI
from simulation to another one. The decrease in the auto-
correlation distance of the random field σc from infinity
to a finite value (moderate or small where a ≤ 10m)

limits the correlation between the values of this random
field (in a given simulation) to a finite zone which leads
to several zones with different values of σc over the entire
rock mass. This means that in a single simulation, one
obtains a set of weak and strong zones for which the pos-
ition may change from one simulation to another. The
case of moderate-to-small values of the autocorrelation
distance leads to a decrease in the variability of the

Figure 4. Mean, standard deviation, skewness and kurtosis of the ultimate bearing capacity (as computed from crude MCS) versus the
number of simulations for the reference case where a = 2 m.

Figure 5. Comparison between the crude MCS and the SPCE
metamodelling technique for the reference case where a = 2 m.

Figure 6. Sobol indices of the random variable GSI (i.e. ξi (i = 1))
and the random field σc (i.e. ξi (i = 2,… , 36)).
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ultimate bearing capacity since the presence of the rock
mass heterogeneity (weak and strong zones) will produce
a somewhat close global behaviour of the footing because
of the averaging phenomenon over the zone of possible
failure mechanism. The decrease in the variability of the
ultimate bearing capacity becomes the most significant
for the case of a very small value of the autocorrelation
distance because the rapid change in the values of σc
from one element to another of the mesh leads to
quasi-similar ultimate bearing capacity for all the realis-
ations. For these very small values of the autocorrelation
distance, the rock mass can be considered as having a
somewhat deterministic value of σc with only GSI being
a random variable.

Figure 8 and Table 4 show that the probabilistic mean
value of the ultimate bearing capacity presents a mini-
mum when the autocorrelation distance is nearly equal
to the footing breadth B (i.e. in our case when a =
1 m). Notice that the minimal probabilistic mean was
also observed by other authors (Griffiths, Fenton, and
Manoharan 2002; Fenton and Griffiths 2003) when con-
sidering the bearing capacity of foundations resting on a
soil mass. For the very large values of the autocorrelation
distance (a = 100 m), the probabilistic mean tends to the

one of the homogenous rock mass (case of random vari-
ables) as may be seen from Table 4. On the other hand,
for the very small values of the autocorrelation distance,
the probabilistic mean becomes greater than the minimal
value because the weakest path becomes increasingly tor-
tuous and its length is also longer (cf. Fenton and Grif-
fiths 2003). As a result, the failure mechanism will start
to look for shorter path cutting through higher values
of σc.

Table 4 also shows the impact of the autocorrelation
distance on both the skewness and the kurtosis of the
PDF. For small values of the autocorrelation distance,
the skewness and kurtosis of the response are small,
which means that the PDF of the response is not far
from a Gaussian one in these cases. Notice however
that these moments increase when the autocorrelation
distance increases, which means that for great values of
the autocorrelation distance, the shape of the PDF of
the output becomes far from a Gaussian one.

Finally, Figure 9 and Table 5 show the effect of the
autocorrelation distance on the Sobol indices of the ran-
dom field σc and the random variable GSI. The results
show that for very large values of the autocorrelation dis-
tance (i.e. a = 100 m), the variability of the ultimate bear-
ing capacity is mainly due to σc. Similar results were
obtained by Mao, Al-Bittar, and Soubra (2012), where

Figure 7. Influence of the autocorrelation distance on the PDF of
the ultimate bearing capacity.

Table 4. Effect of the autocorrelation distance a on the statistical moments (μ, σ, δu, κu) of the ultimate bearing capacity and the
corresponding number of simulations needed in each case.
Autocorrelation
distance a[m] m (MPa) s (MPa) COV% δu (-) κu (-)

Number of needed simulations
to construct the meta-model

0.5 1.486 0.288 19.35 0.46 0.31 1000
1 1.459 0.301 20.88 0.45 0.32 700
2 1.462 0.342 23.40 0.52 0.54 500
5 1.484 0.408 27.49 0.79 1.10 300
10 1.512 0.450 29.78 0.88 1.29 200
50 1.557 0.486 31.41 0.97 1.69 200
100 1.560 0.488 31.41 0.98 1.73 200
Random variable 1.560 0.488 31.41 1.02 1.72

Figure 8. Influence of the autocorrelation distance on the prob-
abilistic mean of the ultimate bearing capacity.
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the uncertain parameters were modelled by random vari-
ables. It should be emphasised here that σc is the most
weighted parameter in the variability of the ultimate
bearing capacity only in the case of very large values of
the autocorrelation distance and in the case of random
variables. Indeed, Figure 9 shows that the decrease in
the autocorrelation distance of σc reduces its weight in
the variability of the ultimate bearing capacity and
increases the weight of GSI. Although this result was
impossible to be detected when a simplified modelling
(i.e. random variables) of the uncertain rock parameters
was used, it can be explained by the fact that the small
values of the autocorrelation distance increase the rock
mass heterogeneity (i.e. one obtains a set of weak and
strong zones), which will produce a somewhat close glo-
bal behaviour of the footing from one simulation to
another because of the averaging phenomenon over the
zone of possible failure mechanism. The expected
decrease in the variability of the ultimate bearing
capacity with the decrease in the autocorrelation distance
of σc is reflected herein by a decrease in the weight of σc in
the variability of this response. For the limiting case of a
very small value of the autocorrelation distance, σc can be
seen as a deterministic value, which implies that in this

case the variability of the ultimate bearing capacity is
only due to GSI (i.e. S(GSI) tends to one).

4.2.2. Effect of the coefficients of variation
The effect of the coefficients of variation (COVs) of the
random field σc and the random variable GSI is studied

Figure 9. Influence of the autocorrelation distance on the Sobol
indices of GSI and σc.

Table 5. Effect of the autocorrelation distance a on the Sobol
indices of GSI and σc.
Autocorrelation distance a (m) S(GSI) S(σc)

0.5 0.92 0.08
1 0.82 0.18
2 0.66 0.34
5 0.50 0.50
10 0.42 0.58
50 0.38 0.62
100 0.38 0.62
Random variable 0.38 0.62

Figure 10. Influence of the coefficients of variation COVs of the
random variable GSI and the random field σc. on the PDF of the
ultimate bearing capacity: (a) influence of COV(GSI); (b) influence
of COV(σc).

Table 6. Effect of the coefficients of variation (COVs) of the
random field σc and the random variable GSI on the statistical
moments (μ, σ, δu, κu) of the ultimate bearing capacity when a
= 2 m.
COVGSI COVsc m (MPa) s (MPa) COV% δu (-) κu (-)

10% 12.5% 1.530 0.307 20.05 0.48 0.46
10% 25% 1.462 0.342 23.40 0.52 0.54
10% 37.5% 1.366 0.364 26.65 0.53 0.58
5% 25% 1.470 0.226 15.37 0.13 0.05
10% 25% 1.462 0.342 23.40 0.52 0.54
15% 25% 1.451 0.458 31.56 0.73 0.77
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and presented in Figure 10 and Tables 6 and 7. Notice
that in this study, the adopted value of the autocorrela-
tion distance of the random field σc is the reference
value (i.e. a = 2 m). Figure 10 and Table 6 show that
the variability of the ultimate bearing capacity increases
when the coefficient of variation of either the random
field σc or the random variable GSI increases, with the
increase being more significant for the GSI parameter
(see Table 6). This is because an increase in the coeffi-
cient of variation of σc by 50% (with respect to the refer-
ence case where COVσc = 25%) increases the COV of the
ultimate bearing capacity by only about 13.9%, while
increasing the coefficient of variation of GSI by 50%
(with respect to the reference case where COVGSI =
10%) increases the COV of the ultimate bearing capacity
by about 34.9%. Table 6 also shows that the probabilistic
mean value of the ultimate bearing capacity slightly
decreases when the coefficients of variation increase.
From Table 7, one can see that an increase in the coeffi-
cient of variation of a rock parameter increases its Sobol
index and thus its weight in the variability of the ultimate
bearing capacity; this automatically reduces the contri-
bution of the other uncertain parameter. This increase
is more significant for σc. This is because an increase in
the coefficient of variation of GSI by 50% (with respect
to the reference case where COVGSI = 10%) increases
its Sobol index by only about 24.3%, while increasing
the coefficient of variation of σc by 50% (with respect
to the reference case where COVσc = 25%) increases its
Sobol index by about 50%.

5. Conclusions

A probabilistic analysis of a vertically loaded strip foot-
ing resting on a spatially varying rock mass has been per-
formed to compute the PDF of the ultimate bearing
capacity. The rock was assumed to follow the generalised
HB failure criterion. The uniaxial compressive strength
of the intact rock (σc) was considered as a random field
and the Geological Strength Index (GSI) was modelled
as a random variable. The aim of this paper is to propa-
gate the uncertainties from the input parameters (GSI
and σc) to the system response (i.e. the ultimate bearing

capacity). The uncertainty propagation methodology
employed in the analysis makes use of a non-intrusive
approach to build up a SPCE for the system response.
In addition to the uncertainty propagation, a GSA
based on Sobol indices was performed. The deterministic
model was based on numerical simulations using
FLAC3D software. The probabilistic numerical results
were presented in the case of a weightless rock mass. A
good agreement with the probabilistic results obtained
from MCS was observed in terms of the mean, standard
deviation, skewness and kurtosis of the ultimate bearing
capacity. The parametric study has shown that the varia-
bility of the ultimate bearing capacity increases with the
increase in the coefficients of variation of the rock par-
ameters σc and GSI, with the increase being more signifi-
cant for the GSI parameter. Sobol indices have shown
that for the very large values of the autocorrelation dis-
tance, the variability of the ultimate bearing capacity is
mainly due to σc; however, in the case of very small
values of the autocorrelation distance, GSI is the most
weighed variable. It was also shown that an increase in
the coefficient of variation of a rock parameter (σc or
GSI) increases its Sobol index and thus its weight in
the variability of the system response and decreases the
weight of the other parameter; the increase is more sig-
nificant for σc. With a decrease in the autocorrelation
distance of the uniaxial compressive strength of the
intact rock (σc), a less spread-out PDF of the ultimate
bearing capacity was obtained; however, the probabilis-
tic mean value of the ultimate bearing capacity presents
a minimum. This minimum was obtained when the
autocorrelation distance is equal to the footing breadth
B. Small values of the autocorrelation distance lead to
small values of the skewness and the kurtosis of the sys-
tem response. Thus, a PDF of the system response that
is not far from a Gaussian one was obtained in these
cases.

Disclosure statement

No potential conflict of interest was reported by the authors.

ORCiD

Tamara Al-Bittar http://orcid.org/0000-0002-3382-7069

References

Al-Bittar, T., and A. H. Soubra. 2013. “Bearing Capacity of
Strip Footings on Spatially Random Soils Using Sparse
Polynomial Chaos Expansion.” International Journal for
Numerical and Analytical Methods in Geomechanics 37
(13): 2039–2060.

Table 7. Effect of the coefficients of variation (COVs) of the
random field σc and the random variable GSI on the Sobol
indices of GSI and σc when a = 2 m.
COVGSI COVsc S(GSI) S(σc)

10% 12.5% 0.88 0.12
10% 25% 0.66 0.34
10% 37.5% 0.49 0.51
5% 25% 0.32 0.68
10% 25% 0.66 0.34
15% 25% 0.82 0.18

226 T. AL-BITTAR AND A.-H. SOUBRA

http://orcid.org/0000-0002-3382-7069


Al-Bittar, T., and A. H. Soubra. 2014. “Efficient Sparse
Polynomial Chaos Expansion Methodology for the
Probabilistic Analysis of Computationally-expensive
Deterministic Models.” International Journal for
Numerical and Analytical Methods in Geomechanics 38
(12): 1211–1230.

Blatman, G., and B. Sudret. 2010. “An Adaptive Algorithm to
Build Up Sparse Polynomial Chaos Expansions for
Stochastic Finite Element Analysis.” Probabilistic
Engineering Mechanics 25: 183–197.

Brown, E. T. 2008. “Estimating the Mechanical Properties of
Rock Masses.” In Proceedings of the 1st Southern
Hemisphere International Rock Mechanics Symposium:
SHIRMS 2008, edited by Y. Potvin, J. Carter, A. Dyskin,
and R. Jeffrey, Vol. 1, 3–21. Perth, Western Australia.

Ching, J., Y. G. Hu, Z. Y. Yang, J. Q. Shiau, J. C. Chen, and Y. S.
Li. 2011. “Reliability-based Design for Allowable Bearing
Capacity of Footings on Rock Masses by Considering
Angle of Distortion.” International Journal of Rock
Mechanics and Mining Sciences 48: 728–740.

Cho, S. E., and H. C. Park. 2010. “Effect of Spatial Variability of
Cross-correlated Soil Properties on Bearing Capacity of
Strip Footing.” International Journal for Numerical and
Analytical Methods in Geomechanics 34: 1–26.

Der Kiureghian, A., and J. B. Ke. 1988. “The Stochastic Finite
Element Method in Structural Reliability.” Probabilistic
Engineering Mechanics 3: 83–91.

Fenton, G. A., and D. V. Griffiths. 2003. “Bearing Capacity
Prediction of Spatially Random c-ϕ Soils.” Canadian
Geotechnical Journal 40: 54–65.

Griffiths, D. V., and G. A. Fenton. 2001. “Bearing Capacity of
Spatially Random Soil: The Undrained Clay Prandtl
Problem Revisited.” Géotechnique 51: 351–359.

Griffiths, D. V., G. A. Fenton, and N. Manoharan. 2002.
“Bearing Capacity of Rough Rigid Strip Footing on
Cohesive Soil: Probabilistic Study.” Journal of Geotechnical
and Geoenvironmental Engineering 128: 743–755.

Hoek, E., and E. Brown. 1980. “Empirical Strength Criterion
for Rock Masses.” Journal of the Geotechnical Engineering
Division 106 (GT9): 1013–1035.

Hoek, E., and E. T. Brown. 1997. “Practical Estimates of Rock
Mass Strength.” International Journal of Rock Mechanics
and Mining Sciences 34 (8): 1165–1186.

Hoek, E., C. Carranze-Torres, and B. Corkum. 2002. “Hoek-
Brown Failure Criterion-2002 edition.” Proceeding of the
North American Rock Mechanics Society Meeting,
Toronto, 267–273.

Hoek, E., and P. Marinos. 2007. “A Brief History of the
Development of the Hoek-Brown Failure Criterion.” Soils
Rocks 30 (2): 85–92.

Huang, S. P., B. Liang, and K. K. Phoon. 2009. “Geotechnical
Probabilistic Analysis by Collocation-based Stochastic
Response Surface Method: An Excel Add-in
Implementation.” Georisk: Assessment and Management
of Risk for Engineered Systems and Geohazards 3: 75–86.

Isukapalli, S. S., A. Roy, and P. G. Georgopoulos. 1998.
“Stochastic Response Surface Methods (SRSMs) for
Uncertainty Propagation: Application to Environmental
and Biological Systems.” Risk Analysis 18: 351–363.

Jiang, S. H., D. Q. Li, Z. J. Cao, C. B. Zhou, and K. K. Phoon.

2015. “Efficient System Reliability Analysis of Slope Stability
in Spatially Variable Soils Using Monte Carlo Simulation.”
Journal of Geotechnical and Geoenvironmental Engineering
141 (2): 04014096.

Jiang, S. H., D. Q. Li, L. M. Zhang, and C. B. Zhou. 2014. “Slope
Reliability Analysis Considering Spatially Variable Shear
Strength Parameters Using a Non-intrusive Stochastic
Finite Element Method.” Engineering Geology 168: 120–128.

Li, D., Y. Chen, W. Lu, and C. Zhou. 2011. “Stochastic
Response Surface Method for Reliability Analysis of Rock
Slopes Involving Correlated Non-normal Variables.”
Computers and Geotechnics 38: 58–68.

Li, C. C., and A. Der Kiureghian. 1993. “Optimal
Discretization of Random Fields.” Journal of Engineering
Mechanics 119: 1136–1154.

Li, J. H., Y. Tian, and M. Cassidy. 2015. “Failure Mechanism
and Bearing Capacity of Footings Buried at Various
Depths in Spatially Random Soil.” Journal of Geotechnical
and Geoenvironmental Engineering 141 (2): 04014099.

Maghous, S., P. de Buhan, and A. Bekaert. 1998. “Failure
Design of Jointed Rock Structures by Means of a
Homogenization Approach.” Mechanics of Cohesive-
Frictional Materials 3: 207–228.

Mao, N., T. Al-Bittar, and A. H. Soubra. 2012. “Probabilistic
Analysis and Design of Strip Foundations Resting on
Rocks Obeying Hoek–Brown Failure Criterion.”
International Journal of Rock Mechanics and Mining
Sciences 49: 45–58.

Merifield, R. S., A. V. Lyamin, and S. W. Sloan. 2006. “Limit
Analysis Solutions for the Bearing Capacity of Rock
Masses Using the Generalised Hoek–Brown Criterion.”
International Journal of Rock Mechanics and Mining
Sciences 43: 920–937.

Mollon, G., D. Dias, and A. H. Soubra. 2009. “Probabilistic
Analysis of Circular Tunnels in Homogeneous Soil Using
Response Surface Methodology.” Journal of Geotechnical
and Geoenvironmental Engineering 135: 1314–1325.

Nataf, A. 1962. “Détermination des distributions de
probabilités dont les marges sont données.” [In French.]
Comptes Rendus de L’Académie des Sciences 225: 42–43.

Popescu, R., G. Deodatis, and A. Nobahar. 2005. “Effects of
Random Heterogeneity of Soil Properties on Bearing
Capacity.” Probabilistic Engineering Mechanics 20: 324–
341.

Saada, Z., S. Maghous, and D. Garnier. 2008. “Bearing
Capacity of Shallow Foundations on Rocks Obeying a
Modified Hoek–Brown Failure Criterion.” Computers and
Geotechnics 35: 144–154.

Saltelli, A., K. Chan, and E. M. Scott. 2000. Sensitivity Analysis.
New York: John Wiley and Sons.

Sobol′, I. M. 2001. “Global Sensitivity Indices for Nonlinear
Mathematical Models and Their Monte Carlo Estimates.”
Mathematics and Computers in Simulation 55: 271–280.

Soubra, A. H., and D. Youssef Abdel Massih. 2010.
“Probabilistic Analysis and Design at the Ultimate Limit
State of Obliquely Loaded Strip Footings.” Géotechnique
60: 275–285.

Sudret, B. 2008. “Global Sensitivity Analysis Using Polynomial
Chaos Expansions.” Reliability Engineering and System
Safety 93: 964–979.

GEORISK 227



Yang, X. L., and J. H. Yin. 2005. “Upper Bound Solution for
Ultimate Bearing Capacity with a Modified Hoek-Brown
Failure Criterion.” International Journal of Rock
Mechanics and Mining Sciences 42: 550–560.

Youssef Abdel Massih, D., A. H. Soubra, and B. K. Low. 2008.
“Reliability-based Analysis and Design of Strip Footings
against Bearing Capacity Failure.” Journal of Geotechnical
and Geoenvironmental Engineering 134: 917–928.

Appendix 1

One-dimensional Hermite polynomials
The one-dimensional Hermite polynomials are given by

H0(j) = 1

H1(j) = j

H2(j) = j2 − 1

H3(j) = j3 − 3j

H4(j) = j4 − 6j2 + 3

H5(j) = j5 − 10j3 + 15j

H6(j) = j6 − 14j4 + 45j2 − 15

..

.

Hn(j) = jHn−2(j)− H
′
n−1(j)

Illustrative Example (PCE basis and Sobol indices
for a PCE with M = 2 and p = 3)

In order to illustrate the PCE theory in a simple manner, a PCE
of order p = 3 using only M = 2 random variables (ξ1 and ξ2)
will be considered in this illustrative example. As may be easily
seen from Table A1, the PCE basis contains P = 10 terms
whose expressions Cb(b = 0, . . . , 9) are computed using
Equation (10).

By using Table A1, one can write the PCE as function of the
input random variables (ξ1 and ξ2) as follows:

GPCE(j) = a0C0 + a1C1 + · · · + a9C9

= a0 + a1j1 + a2j2 + a3j1j2 + a4(j
2
1 − 1)

+ a5(j
2
2 − 1)+ a6(j

2
1 − 1)j2

+ a7j1(j
2
2 − 1)+ a8(j

3
1 − 3j1)+ a9(j

3
2 − 3j2),

(A1)

where the unknown coefficients can be computed using
Equation (12). Once the PCE coefficients are computed, the
first-order Sobol indices for the two random variables (ξ1
and ξ2) can be easily obtained using Equation (15), where
I1 = (1, 4, 8) and I2 = (2, 5, 9). The only additional step is
to compute E(C2

b) corresponding to these two random vari-
ables. Table A1 provides the values of E(C2

b) computed
using Equation (16) for the different Cb terms. The
expressions of the first-order Sobol indices of the two random
variables ξ1 and ξ2 can thus be written as follows:

S(j1) =
a21 + 2a24 + 6a28

a21 + 2a24 + 6a28 + a22 + 2a25 + 6a29
;

S(j2) =
a22 + 2a25 + 6a29

a21 + 2a24 + 6a28 + a22 + 2a25 + 6a29
.

(A2)

Table A1. + Basis Ψβ (β = 0,… , 9) of the PCE and values of
E(C2

b) for a PCE with M = 2 and p = 3.

Β
Order of

the term Ψβ

Cb = ∏M
i=1

Hai (ji) E(C2
b) =

∏M
i=1

ai!

0 p = 0 Ψ0 = H0(ξ1) × H0(ξ2) = 1 α1! × α2! = 0!× 0! = 1
1 1 Ψ1 = H1(ξ1) × H0(ξ2) = ξ1 α1! × α2! = 1! × 0! = 1
2 Ψ2 = H0(ξ1) × H1(ξ2) = ξ2 α1! × α2! = 0! × 1! = 1
3 2 Ψ3 = H1(ξ1) × H1(ξ2) = ξ1 ξ2 α1! × α2! = 1! × 1! = 1
4 Ψ4 = H2(ξ1) × H0(ξ2) = j21 − 1 α1! × α2! = 2! × 0! = 2
5 Ψ5 = H0(ξ1) × H2(ξ2) = j22 − 1 α1! × α2! = 0! × 2! = 2
6 3 Ψ6 = H2(ξ1) × H1(ξ2) = (j21 − 1)j2 α1! × α2! = 2! × 1! = 2
7 Ψ7 = H1(ξ1) × H2(ξ2) = j1(j

2
2 − 1) α1! × α2! = 1! × 2! = 2

8 Ψ8 = H3(ξ1) × H0(ξ2) = j31 − 3j1 α1! × α2! = 3! × 0! = 6
9 Ψ9 = H0(ξ1) × H3(ξ2) = j32 − 3j2 α1! × α2! = 0! × 3! = 6
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