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Abstract: The probabilistic analysis of geotechnical structures presenting spatial variability in the soil properties is generally performed
using Monte Carlo simulation (MCS) methodology. Despite being robust and accurate, MCS has low efficiency when considering the
small failure probabilities encountered in practice. This is because it is very time-expensive in such cases due to the large number of sim-
ulations required to calculate a small failure probability with a small value of the coefficient of variation of this failure probability. In order to
reduce the number of calls of the mechanical model when performing a probabilistic analysis, this paper uses the active learning reliability
method combining kriging and Monte Carlo simulation (AK-MCS). This method is shown to be very efficient because the obtained prob-
ability of failure is very accurate, needing only a small number of calls to the computationally expensive mechanical model compared with
MCS methodology. This study involves a probabilistic analysis at the ultimate limit state of a strip footing resting on a spatially varying soil
using the AK-MCS approach. The soil cohesion and angle of internal friction are considered as random fields. The mechanical model is based
on numerical simulations using the finite-difference code FLAC3D. The obtained probabilistic numerical results are presented and discussed.
DOI: 10.1061/(ASCE)GT.1943-5606.0001958. © 2018 American Society of Civil Engineers.
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Introduction

As is well known, the spatial variability of the soil properties has a
significant impact on the probabilistic outputs of geotechnical
structures. Several authors have considered the effect of the spatial
variability of the soil properties on the statistical moments (mean
and standard deviation) of their system response or on the failure
probability against a prescribed threshold of this response. The
probabilistic analysis of shallow foundations, which is the subject
of the present paper, has been studied often (e.g., Fenton and
Griffiths 2001; Griffiths et al. 2002; Fenton and Griffiths 2003;
Popescu et al. 2005; Cho and Park 2010; Ching et al. 2011; Al-
Bittar and Soubra 2013; Al-Bittar and Soubra 2014a, b; Li et al.
2015; Al-Bittar and Soubra 2016; Ching et al. 2016; Li et al. 2016).

When dealing with the computation of the failure probability of
geotechnical structures involving spatially varying soils, the
classical Monte Carlo simulation (MCS) methodology is generally
used. This method is known to be very time-consuming. This is
because (1) it usually makes use of finite-element or finite-
difference models, which are generally time-expensive, and, more
importantly, (2) it requires a large number of calls of the mechanical
model for the computation of the small failure probabilities

encountered in practice. The computation time becomes excessive
when considering a small target value of the coefficient of variation
of the failure probability. Thus, a method is needed that keeps to a
minimum the number of calls to the mechanical model when per-
forming a probabilistic analysis.

In order to overcome the shortcoming related to the excessive
number of calls of the mechanical model when performing a prob-
abilistic analysis, Echard et al. (2011) proposed an active learning
reliability method combining kriging and Monte Carlo simulation
(AK-MCS). This method consists of constructing a metamodel,
i.e., an analytical equation which substitutes the original mechani-
cal model. The computation of the failure probability can thus be
easily performed using this metamodel.

The AK-MCS approach is based on the kriging theory and it
makes use of a powerful learning function. In this method, an initial
approximate kriging metamodel is constructed based on a small
number of samples [called design of experiments (DoE)] computed
using the mechanical model. This metamodel is then successively
updated by adding each time a new sample chosen according to a
powerful learning function until satisfying a prescribed stopping
condition. Because the computation of the failure probability re-
quires only the sign of the performance function values, the objec-
tive of the learning function is to choose samples that have a high
uncertainty on the sign of their performance function values,
i.e., those that are close to the limit state surface (LSS).

Echard et al. (2011) validated the AK-MCS approach by con-
sidering several academic examples involving nonlinear limit state
surfaces and high-dimensional stochastic problems, in which the
performance function was given by an analytical equation. They
showed this method to be very efficient because the obtained prob-
ability of failure was very accurate, needing a smaller number of
calls to the mechanical model than the crude MCS methodology.

This paper extends the AK-MCS approach by Echard et al.
(2011) to the study of geotechnical structures involving spatially
varying soil properties. More specifically, this paper presents a
probabilistic analysis at the ultimate limit state of a strip footing
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resting on a spatially varying soil. The objective is the computation
of the probability Pf of exceeding the ultimate bearing capacity of
the footing under a prescribed vertical load. The soil cohesion and
angle of internal friction (c and φ, respectively) are considered as
two anisotropic non-Gaussian random fields. They are character-
ized by two specified marginal distribution functions and a
common autocorrelation function. The expansion optimal linear
estimation method (EOLE) methodology proposed by Li and
Der Kiureghian (1993) was used to generate these two random
fields. The mechanical model used to calculate the system response
(i.e., the ultimate bearing capacity) was based on numerical simu-
lations using the finite-difference code FLAC3D.

This paper is organized as follows. The next section presents
the probabilistic models. This is followed by an illustration of the
AK-MCS approach via a simple bearing capacity problem (without
spatial variability). Then a probabilistic analysis of a strip footing
resting on a spatially varying soil and the corresponding numerical
results are presented and discussed. The paper ends with a conclu-
sion of the main findings.

Probabilistic Models

This section presents the probabilistic models used in this paper.
The method of discretization of the random fields is presented first.
It is followed by a brief presentation of the kriging metamodeling
technique and the combined use of the kriging and the Monte Carlo
simulation (i.e., the AK-MCS methodology) as it can be used for
the probabilistic analyses of geotechnical structures involving spa-
tially varying soil properties.

Random Fields Discretization Method

Assume that the soil cohesion c and friction angle φ are two non-
Gaussian random fields that share the same autocorrelation func-
tion. These two random fields are denoted ZNG

i ðx; yÞ (i ¼ c;φ) and
they are described by two non-Gaussian marginal cumulative
density functionsGi (i ¼ c;φ) and a common autocorrelation func-
tion ρNGZ [ðx; yÞ; ðx 0; y 0Þ] which gives the values of the correlation
function between two arbitrary points ðx; yÞ and ðx 0; y 0Þ.

This paper uses the following anisotropic square exponential
autocorrelation function:

ρNGZ ½ðx; yÞ; ðx 0; y 0Þ� ¼ exp

�
−
�jx − x 0j

ax

�
2 −

�jy − y 0j
ay

�
2
�

ð1Þ

where ax and ay = autocorrelation distances along x and y,
respectively.

The discretization of the two random fields via EOLE is
described as follows (Li and Der Kiureghian 1993): first define
a stochastic grid composed of Nq grid points (or nodes), and then
compute a common non-Gaussian autocorrelation matrix using
Eq. (1). The common non-Gaussian autocorrelation matrix ΣNG

χ;χ

should be transformed into the Gaussian space using the correction
functions proposed by Nataf (1962) because the discretization of
the random fields using EOLE is performed in the Gaussian space.
This obtains two Gaussian autocorrelation matrices Σc

χ;χ and Σφ
χ;χ

that can be used to discretize the two Gaussian random fields at any
point using

~Ziðx; yÞ ¼ μi þ σi

XM
j¼1

ξijffiffiffiffiffi
λij

q · ðϕi
jÞT · Σi

Zðx;yÞ;χ i ¼ c;φ ð2Þ

where μi and σi (i ¼ c;φ) = mean and standard deviation
values of the two random fields, respectively; ξij (i ¼ c;φ;
j ¼ 1; : : : ;M) = two blocks of independent standard normal ran-
dom variables; λij and ϕi

j (i ¼ c;φ; j ¼ 1; : : : ;M) = eigenvalues
and eigenvectors of the two Gaussian autocorrelation matrices
Σc

χ;χ and Σφ
χ;χ, respectively; Σi

Zðx;yÞ;χ = correlation vector between

the values of the random field at the different nodes of the stochastic
grid and its value at an arbitrary point ðx; yÞ obtained using Eq. (1);
and M = number of terms (expansion order) retained in the EOLE
method. This number is determined later in this section.

Once the two Gaussian random fields [Eq. (2)] are obtained,
they should be transformed to the non-Gaussian space by applying
the following formula:

~ZNG
i ðx; yÞ ¼ G−1

i fΦ½ ~Ziðx; yÞ�g i ¼ c;φ ð3Þ

where Φð·Þ = standard normal cumulative density function.
The series given by Eq. (2) are truncated for a number of terms

M (expansion order) smaller than the number of grid points Nq,
after sorting the eigenvalues λc

j and λ
φ
j ðj ¼ 1; : : : ;MÞ in descend-

ing order. This number should ensure that the variance of the error
is smaller than a prescribed tolerance. The variance of the error for
EOLE is given by Li and Der kiureghian (1993) as follows:

Var½Ziðx;yÞ− ~Ziðx;yÞ�¼σ2
Z−

XM
j¼1

1

λij

h
ðϕi

jÞTΣi
Zðx;yÞ;χ

i
2 ði¼c;φÞ

ð4Þ

where Ziðx; yÞ and ~Ziðx; yÞ = exact and the approximate values,
respectively, of the random fields at a given point ðx; yÞ.

Kriging Metamodeling Technique

This paper used a metamodel to predict the outcome from software
for any sample, provided that the outcomes for a few other samples
(i.e., DoE) are known; the software was used as a black-box. This
paper used the kriging metamodeling technique. This kind of meta-
modeling can approximate arbitrary functions with high accuracy.
The kriging metamodel does not assume an underlying global
functional form. However, it is based on the assumption that there
is a spatial correlation between the values of the function to be
approximated.

The aim of this paper was to determine a metamodel of the
performance function based on some performance function values
GðXÞ obtained from FLAC3D software. The kriging theory consid-
ers the value of the performance function GðXÞ of an unknown
sample X as a realization ⁀GðXÞ of a random function, which
includes a regression part and a centered stochastic process as
follows (Sacks et al. 1989):

⁀GðXÞ ¼ FðX; βÞ þ ZðXÞ ð5Þ

where FðX;βÞ = deterministic part defined by a regression model
that gives an approximation of the mean of GðXÞ; and ZðXÞ =
fluctuation around this mean. It is given by a stationary Gaussian
random process with zero mean and covariance (COVAR) that in-
terpolates the errors between the regression model prediction and
the true performance function values at the different N samples of
the DoE. This covariance is given by

COVAR½ZðXÞ;ZðX 0Þ� ¼ σ2
ZRðX;X 0Þ ð6Þ

© ASCE 04018071-2 J. Geotech. Geoenviron. Eng.
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where σ2
Z = random field variance; X and X 0 = two arbitrary sam-

ples from the whole design of experiments; and RðX;X 0Þ = spatial
correlation function between these two samples with a correlation
parameter vector θ. This paper selected ordinary kriging, which
means that FðX; βÞ is a scalar [i.e., FðX;βÞ ¼ β] to be determined.
Therefore, the estimated performance function ⁀GðXÞ can be sim-
plified as

GðXÞ ¼ FðX;βÞ þ ZðXÞ ¼ β þ ZðXÞ ð7Þ

Furthermore, the most widely used correlation function for reli-
ability analysis is the anisotropic square exponential function. This
paper used this function, which is given by

RðX;X 0Þ ¼ Π
M

i¼1
e½−θiðxi−x 0

i Þ2� ð8Þ

where M = number of random variables; xi and x 0
i ¼ ith coordi-

nates of the points X and X 0, respectively; and θi = scalar which
is equal to the inverse of the correlation length in the ith direction.

Eqs. (5) and (7) show that the first part of the kriging metamodel
is a regression model, which approximates the performance func-
tion over the whole design space. The second part is a stochastic
process, which creates localized deviations from the regression
model. This metamodel is completely defined by the scalar β, the
correlation parameter vector θ, and the process variance σ2

z . These
parameters can be estimated by fitting the kriging metamodel to the
design of experiments and the corresponding performance function
values. They can be easily computed using the DACE toolbox in
MATLAB (Lophaven et al. 2002). At this stage, all the three param-
eters of Eq. (7) are completely determined.

The best linear unbiased predictor (BLUP) of the performance
function ⁀GðXÞ at an unknown sample X is a Gaussian random
variate ⁀GðXÞ ∼ N

�
μ
⁀GðXÞ; σ⁀GðXÞ

�
(Santner et al. 2003). The mean

prediction μ
⁀GðXÞ and the prediction variance σ2

⁀GðXÞ of any unknown

sample can be easily obtained by DACE toolbox in MATLAB
making use of the already obtained values of β, σ2

Z, and θ.
Contrary to other types of metamodels, the kriging metamodel

provides not only a predicted value of an unknown sample but also
an estimate of the prediction variance, which gives an uncertainty
indication in the kriging metamodel of this sample. The variances
of samples in the initial DoE are zero, but the variances of the other
samples are always different from zero. A large value of σ2

⁀GðXÞ
means that the prediction is not exact. Therefore, the prediction
variance σ2

⁀GðXÞ is an important indicator of the unexplored areas

and presents a good index to improve the initial DoE. This property
is interesting and thus is used in the following paragraph.

AK-MCS Methodology for Geotechnical Structures
Involving Spatially Varying Soil Properties

This section presents the AK-MCS methodology for geotechnical
structures involving spatially varying soil properties and making
use of computationally expensive numerical models (such as the
FLAC3D model used in this paper for the mechanical analysis).
The basic idea of this approach is as follows.

In the AK-MCS method, a small design of experiments is ran-
domly selected from a large Monte Carlo population. Then the
kriging metamodeling technique is used to construct an approxi-
mate kriging metamodel based on the responses of this DoE
computed using the mechanical model. This approximate kriging
metamodel is successively improved (i.e., updated) by considering
each time a new best sample that is computed using the mechanical

model. This process, called an enrichment process, is repeated until
satisfying a prescribed stopping criterion. A best new sample is
chosen using a powerful learning function that makes use of the
prediction mean μ

⁀GðXÞ and the prediction variance σ2
⁀GðXÞ of the

already-obtained kriging metamodel.
As is shown subsequently, the chosen best new samples are

those that are close to the limit state surface because the interest
is not to determine accurate values of the performance function
for the different samples but rather to accurately determine the signs
of the performance function values for these samples. This is
because the computation of the failure probability only requires
the knowledge of the signs of the performance function values
for the different samples.

A comprehensive step-by-step procedure describing the imple-
mentation of the AK-MCS methodology in the specific case of a
strip footing resting on a spatially varying soil (where c and φ are
two random fields and the numerical software used for the
mechanical analysis is FLAC3D) is given as follows:
1. Generate a population S of NMC samples (say, 500,000 samples)

of M standard Gaussian random variables fðξ11; : : : ; ξ1MÞ;
ðξ21; : : : ; ξ2MÞ; : : : ; ðξNMC

1 ; : : : ; ξNMC
M Þg, where M is the number

of random variables needed by EOLE methodology to discretize
the two random fields c and φ. Each sample of standard Gaus-
sian random variables provides [when substituted into Eqs. (2)
and (3)] typical spatial variations of c and φ that respect the
correlation structure of these fields, i.e., the so-called realiza-
tions of c and φ. This is performed by computing, for this sam-
ple, the values of c and φ at the centroids of the different
elements of the FLAC3D mesh. The difference between the dif-
ferent realizations lies in the positions of the weak and strong
soil zones, although all realizations respect the correlation struc-
ture of the corresponding random fields. The computation of the
performance function values for the generated samples (based
on FLAC3D software) is not required at this stage. This paper
denotes these as candidate samples.

2. Randomly select from the population S a small number of sam-
ples, i.e., a small DoE of size N1 (say, N1 ¼ 20 samples). Then
use EOLE methodology to transform each sample into realiza-
tions of c and φ that provide the spatial distribution of the soil
cohesion and angle of internal friction respectively. For the N1

samples, evaluate the performance function values using the
following equation:

G ¼ qu
qs

− 1 ð9Þ

where qu = ultimate bearing capacity computed based on
FLAC3D software, and qs = vertical loading applied to the
footing.

3. Based on the DoE and the corresponding performance function
values, construct an approximate kriging metamodel in the stan-
dard space of random variables using the DACE toolbox.

4. Use the DACE toolbox to compute (for the whole population S
containing the NMC samples) both the kriging predictor values
μ
⁀G and their corresponding kriging variance values σ2

⁀G
using the

metamodel. From the obtained values of the kriging predictors
μ
⁀G, obtain an estimation of the probability of failure Pf by

counting the number of negative predictors N
⁀G≤0 and dividing

it by the total number of samples in S as follows:

Pf ¼ N
⁀G≤0

NMC
ð10Þ

© ASCE 04018071-3 J. Geotech. Geoenviron. Eng.
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Then compute the coefficient of variation (COV) of Pf as
follows:

COVðPfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Pf

Pf · NMC

s
ð11Þ

5. Identify the best next candidate sample in S for which to com-
pute the performance function value using FLAC3D. This is per-
formed by evaluating a learning function U for each sample in S

UðXiÞ ¼
		μ

⁀GðXiÞ
		

σ
⁀GðXiÞ

i ¼ 1; : : : ;NMC ð12Þ

The best next sample is the one with minimum value of U;
more details of this criterion for the choice of the best sample
are given subsequently in this section. If this minimum value of
U is smaller than 2, the performance function value based on
FLAC3D is evaluated for this best candidate and the initial
DoE is updated. Then return to Step 3 and evaluate a new
kriging model based on the updated DoE.

6. Steps 3, 4, and 5, which constitute the enrichment process, are
repeated until the minimum value of U becomes larger than 2.
More details of this stopping criterion are given subsequently in
this section.
At this stage, the learning stops and the metamodel is considered

accurate enough for the computation of the estimated values of
both the probability of failure Pf and the coefficient of varia-
tion COVðPfÞ.

A small initial DoE is chosen in the present approach (Step 2) in
order to keep to a minimum the number of calls to the computa-
tionally expensive mechanical model. This initial DoE is succes-
sively increased by a single sample each time (Step 5). The
chosen sample is the one that mostly improves the metamodel
because Eq. (12) searches for the sample that has a small kriging
predictor (i.e., a sample that is close to the limit state surface) and/or
a high kriging variance (i.e., a high uncertainty in the sign of its
performance function value). The samples with high uncertainties
in the sign of their performance function values (positive or neg-
ative) are those that are close to the limit state surface. Finally, the
stopping criterion ½minðUÞ� > 2 corresponds to a maximal proba-
bility of making a mistake in the sign of the performance function
value of Φð−2Þ ¼ 0.023 (Echard et al. 2011). This means that the
stopping criterion is relevant, making use of the samples with a
small probability of making a mistake in the signs of their perfor-
mance function values. The number of predictions by kriging can
be important because the whole Monte Carlo population is esti-
mated. However, the computation time of the predictions is much
smaller than that required to evaluate the performance function
values using the computationally expensive mechanical model.

Illustration of AK-MCS Procedure via Analytical
Example

This section illustrates the performance of the AK-MCS procedure
via a simple bearing capacity problem (i.e., without considering
the soil spatial variability) in which the system response (ultimate
bearing capacity) is given by a simple analytical equation with a
quasi-negligible computation time. The performance of AK-MCS
approach is illustrated by comparing its results with those given by
the crude MCS methodology.

The probabilistic analysis presented in this section involves
the computation of the failure probability against soil punching
of a shallow strip footing of breadth B ¼ 2 m resting on a

homogeneous (c, φ) soil. A uniform surcharge loading q ¼
10 kN=m2 was applied at the level of the base of the foundation
on both sides of this foundation. The soil unit weight was γ ¼
18 kN=m3. The applied footing load was equal to qs ¼ 400 kN=m.
The uncertain parameters considered in the analysis were the
soil shear strength parameters c and φ. The illustrative statistical
parameters of these two random variables, as used in this analysis,
are those commonly encountered in practice (e.g., Phoon and
Kulhawy 1999) (Table 1). Eq. (9) is the performance function used
to calculate the failure probability; qu was calculated herein using
the following equation:

qu ¼
1

2
γBNγ þ cNc þ qNq ð13Þ

where Nγ , Nq, and Nc = bearing capacity factors due to the soil
weight, surcharge loading, and cohesion, respectively. The adopted
factors used in this section are those suggested by Vesic (1973).
These factors are widely used in routine foundation design. They
are functions only of the soil angle of internal friction φ.

The reference values adopted for both the failure probability Pf
and the coefficient of variation COVðPfÞ were those obtained by
the crude MCS runs with NMC ¼ 106 samples. Both methods
(MCS and AK-MCS) provided the same values for the probabilistic
outputs, i.e., Pf and COVðPfÞ in Table 2, although the AK-MCS
method needed only 30 calls of the mechanical model (which cor-
responded to 20 samples from the initial DoE plus 10 samples
added during the enrichment process). This number of calls to
the mechanical model is to be compared to that required by
MCS, which needed 106 samples to lead to the same value of
COVðPfÞ. This clearly illustrates the benefit of using the AK-MCS
approach instead of the crude MCS methodology. The determinis-
tic safety factor for the studied configuration was Fs ¼ qu=qs ¼
1190=400≈ 3.0.

In order to better understand the impact of the number of
samples added during the enrichment process on the probabilistic
outputs, Figs. 1(a and b) plot Pf and COVðPfÞ versus the number
of added samples. Fig. 1(c) presents the value of the learning
function U that was obtained each time the mechanical model
computed a new added sample with index i (i ¼ 1; : : : ; 10 in this
example).

The new samples chosen during the enrichment process for the
computation by the mechanical model had increasing values of U
[Fig. 1(c)]. The process of adding new samples stopped (as required
by the algorithm of the AK-MCS approach) when the value of U
became greater than 2. This analytical problem required 10 added

Table 1. Statistical characteristics of random variables

Random
variable Mean, μ

Coefficient of variation
(COV) (%)

Type of the probability
density function (PDF)

c 20 kPa 25 Log-normal
φ 30° 10 Beta

Table 2. Failure probability Pf, coefficient of variation COVðPfÞ, and
number of calls of mechanical model Ncalls obtained by MCS and AK-MCS

Method Pf ð×10−4Þ COVðPfÞ (%) Ncalls

MCS 6.530 3.912 106

AK-MCS 6.530 3.910 20 samples for the initial
DoEþ 10 added

samples = 30 samples

© ASCE 04018071-4 J. Geotech. Geoenviron. Eng.
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samples to achieve this goal. On the other hand, Figs. 1(a and b)
show that Pf and COVðPfÞ attained an asymptote when the num-
ber of added samples became greater than 5. This means that this
number of added samples could be used to obtain the values of Pf
and COVðPfÞ corresponding to convergence. For this number of
added samples, the metamodel became sufficiently accurate to
compute Pf and COVðPfÞ.

As a conclusion, the adopted stopping criterion ½minðUÞ� > 2
was quite severe [more restrictive than the simple visual inspection
of convergence observed in Fig. 1(a)] and thus, it led to conver-
gence of Pf because it suggested adding all the samples that were
close to the limit state surface (G ¼ 0), although the value of Pf
likely stabilized. This criterion was adopted for all the soil configu-
rations studied later in this paper.

AK-MCS Results for Spatially Varying Soil
Properties

This section presents the impact of the soil spatial variability on the
probability of failure against soil punching of a strip footing sub-
jected to a vertical load. Thus, the system response involves the
ultimate bearing capacity qu of a vertically loaded strip footing rest-
ing on a spatially varying soil. This analysis used the performance

function defined by Eq. (9) in which qu was based on numerical
simulations using the FLAC3D model.

The soil cohesion c and angle of internal friction φ were
modeled as two anisotropic non-Gaussian random fields. The
EOLE methodology was used to discretize the two random fields,
i.e., to obtain realizations of the soil cohesion c and angle of internal
friction φ that respect the correlation structure of those fields.
Table 1 presents the illustrative statistical parameters of these two
random fields as used in the analysis. The same autocorrelation
function (square exponential) was used for both c and φ. In addi-
tion, the soil dilation angle ψwas considered to be related to the soil
angle of internal friction φ by ψ ¼ 2φ=3. This means that the soil
dilation angle was implicitly assumed as a random field that was
perfectly correlated with the soil angle of internal friction random
field. All the other parameters of the soil, footing, and interface were
assumed to be deterministic. Furthermore, the number of Monte
Carlo realizations NMC used in all subsequent computations was
500,000.

The mechanical model considered a strip footing of breadth
B ¼ 1 m resting on a soil domain of width 13B and depth 5B
(Al-Bittar and Soubra 2014a). Der Kiureghian and Ke (1988) sug-
gested that the length of the largest element of the deterministic
mesh in a given direction (horizontal or vertical) should not exceed
0.5 times the autocorrelation distance in that direction. In order to
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Fig. 1. AK-MCS results for case of homogeneous soil: (a) Pf versus number of added samples; (b) COVðPfÞ versus number of added samples; and
(c) value of U for different numbers of added samples (i ¼ 1; : : : ; 10).
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respect this criterion for the different autocorrelation distances,
the FLAC3D model considered two different deterministic meshes
(Al-Bittar and Soubra 2014a). The first was devoted to the
case of moderate to large values of the autocorrelation distances
(i.e., when ax ≥ 10 m and ay ≥ 1 m) and the second considered
small values of the autocorrelation distances (i.e., when 2 m ≤ ax <
10 m or 0.5 m ≤ ay < 1 m). Al-Bittar and Soubra (2014a) pre-
sented other details concerning the stochastic mesh and the deter-
ministic model, and therefore they are not provided here in order to
avoid repetition.

Probabilistic Numerical Results

The desired level of accuracy of the random field discretization may
be achieved by imposing a threshold value for the variance of error
computed using Eq. (4). The adopted number of random variables
should lead to a computed variance of error that is smaller than this
prescribed value. Several authors proposed a target value of 10%
for the variance of error (e.g., Sudret and Der kiureghian 2000;
Al-Bittar and Soubra 2013, 2014a).

All configurations considered in the following sections were
studied with a target value of the variance of the error of 5%
except two configurations [ðax ¼ ay ¼ 2 mÞ and (ax ¼ 10 m,
ay ¼ 0.5 m)] corresponding to small values of the autocorrelation
distance which adopted a greater value of the variance of error of
about 10% (Tables 4–6). Consequently, the discretised random
field can be considered to be sufficiently accurate for all the con-
figurations considered in the paper.

Failure Probability Pf and COV�Pf � versus Number of
Added Realizations
Fig. 2 presents the probability of failure Pf and the coefficient of
variation COVðPfÞ versus the number of added realizations for

the case in which ax ¼ 10 m and ay ¼ 1 m. The number of random
variables adopted for this configuration was 32 (Table 5).
Fig. 2 also provides the learning function values for the different
added realizations; 752 realizations were needed in the enrichment
process in addition to the initial DoE before the algorithm stopped
½minðUÞ > 2�. The final obtained values of Pf and COVðPfÞ
were respectively 1.656 × 10−3 and 3.47%. Fig. 2 shows that
the probability of failure started to converge at about 727 calls
to the mechanical model. This means that there was no bias in
the metamodel (in the zone of interest for the computation of
the failure probability) beyond this number of calls of the mechani-
cal model. However, the addition of new samples continued until
satisfying the stopping criterion ½minðUÞ� > 2.

Effect of Number of Added Realizations on Limit State
Surface
Fig. 3 shows the evolution of the limit state surface corresponding
to G ¼ 0, with the number of added realizations (from 5 to 35 real-
izations) for the case in which ax ¼ ay ¼ 10,000 m. Two random
variables were adopted for the discretization of the random fields c
and φ for this configuration (Table 4). Fig. 3 is represented in the
standard Gaussian space in which ξc and ξφ are the standard
Gaussian random variables needed to discretize the random fields
c and φ, respectively. This small number of random variables
(i.e., 2) allowed visualizing the evolution of the LSS because only
a two-dimensional space was needed.

The increase in the number of added realizations improved the
limit state surface in the zone that has an impact on the value of
the failure probability (i.e., the zone corresponding to the high
values of the probability density which is close to the origin of
the standard space); the other zones (far from the origin) has a
nonsignificant effect on the value of the failure probability
(Fig. 3).
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Fig. 2. AK-MCS results for spatially varying soil (ax ¼ 10 m, ay ¼ 1 m).
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Effect of Variance of Error of EOLE Methodology on
Probabilistic Outputs
In order to reduce the effect of the error of discretization of
random fields on the estimated value of the failure probability,
the variance of the error of EOLE methodology must be suffi-
ciently small. Table 3 provides the effect of the number of
random variables used in the discretization scheme (and the
corresponding value of the variance of the error of EOLE meth-
odology) on the value of Pf for the case in which ax ¼ 10 m
and ay ¼ 5 m.

The percentage difference in the Pf value (with respect to the
accurate solution corresponding to a very small value of the
variance of error of about 0.08%) was 19.5% when adopting
a variance of error of about 10%, and it decreased to 7.3% with
a variance of error of 1.7%. This means that the percentage dif-
ference between the Pf value corresponding to a variance of the
error of 5% (the value adopted in this paper) and the accurate
Pf value was expected to be about 12%, which may be consid-
ered to be sufficiently accurate for engineering applications; the
value of the variance of error adopted in the literature (i.e., 10%)
led to a greater (although acceptable) error of 19.5% on the
value of Pf .

Validation of AK-MCS Approach by Comparison with
Crude MCS
In order to show the efficiency of the proposed AK-MCS method-
ology, it was compared with the crude Monte Carlo simulation
method. The computation considered a total of 136,959 simulations.

Fig. 4 presents the evolution ofPf andCOVðPfÞ as functionof the
number of simulations as obtained from MCS. Fig. 4 also presents
the values obtained from the AK-MCS approach for comparison.

The values of Pf and COVðPfÞ obtained from the crude MCS
were, respectively, 1.701 × 10−3 and 6.54%. Those values were
compared with the values obtained from the AK-MCS approach
[i.e., Pf ¼ 1.656 × 10−3 and COVðPfÞ ¼ 3.47%]. The results
showed good agreement in term of the value of Pf . The AK-MCS
approach was clearly more efficient than the MCS because only
772 samples (which corresponds to 20 samples from the initial
DoE plus 752 samples added during the enrichment process) were
needed to obtain an accurate value of Pf with a value of COVðPfÞ
that was smaller than the value obtained using the crude MCS with
136,959 simulations. A better agreement with MCS in terms of Pf
and COVðPfÞ could be obtained for a much greater number of
MCS simulations (about 500,000), but this was not done because
it is very time-comsuming.

Fig. 3. Effect of number of added realizations on limit state surface when ax ¼ ay ¼ 10,000 m.

Table 3. Effect of number of random variables on Pf and COVðPfÞ for case in which ax ¼ 10 m and ay ¼ 5 m

Number of random variables for
two random fields (c, φ)

Variance
of error (%) Pf (×10−3) COVðPfÞ (%) δPf

(%)
Number of

added realizations

6 9.9 2.822 2.66 19.5 115
12 1.7 3.25 2.48 7.3 406
24 0.08 3.506 2.38 — 695
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Probabilistic Parametric Study

Columns 2 and 3 of Tables 4–6 provide the number of eigenmodes
and the corresponding variance of the error of EOLE methodology
for different values of the autocorrelation distances. Columns 4, 5,
and 6 of the same tables provide the failure probabilities, the

corresponding values of the coefficient of variation, and the number
of added realizations.

A maximal target value of 5% was adopted for the variance
of the error of EOLE methodology except for two configurations
in which a variance of error of about 10% was considered. As
expected, the number of random variables was small for very large
values of the autocorrelation distances and significantly increases
for small values of the autocorrelation distances (Tables 4–6).
A greater value of the variance of the error was considered for
the two configurations because of the huge computation time re-
quired for these cases. Small values of the autocorrelation distances
required a greater number of random variables, leading to a high-
dimensional stochastic problem with greater heterogeneity. These
configurations were typical of very small failure probabilities
(on the order of 10−4). In order to allow the AK-MCS approach
to handle these cases, the population S must be increased from
500,000 to 1,000,000 or more. However, increasing the population
S significantly increases the computation time. This is because in
the process of enrichment (i.e., the process of adding new samples
to the DoE), the AK-MCS approach requires the computation of the
U values for all the samples in the population S. The problem of a
very large population did not appear in the academic example by
Echard et al. (2011) because the value of the probability of failure
they considered was relatively large (on the order of 10−3). In
addition, the computational model used was an analytical equation
(not a computationally expensive numerical model) which made
the use of a large population S feasible. In conclusion, the excessive
computation time that appeared in the two configurations was not
related to the number of random variables but was inherent in the
very small values of the failure probability corresponding to
these cases.

Table 4 presents the effect of the isotropic autocorrelation dis-
tance (ax ¼ ay) on the failure probability Pf and the corresponding
value of the coefficient of variation COVðPfÞ; Pf increased with
the increase in the autocorrelation distance (Fig. 5). However, the
rate of increase decreased for large values of the autocorrelation
distances (when ax ¼ ay > 10 m) to attain an asymptote corre-
sponding to the case of a homogeneous soil. Indeed, for small val-
ues of the isotropic autocorrelation distance, the soil heterogeneity
led (for most realizations) to relatively high values of the ultimate
bearing capacity due to the averaging phenomenon. This means
that the number of realizations leading to failure was very small
in this case. In contrast, the number of realizations leading to failure
was higher in the case of a homogeneous soil due to the fact that the
realizations were homogeneous in this case, with either small or
large values of soil resistance.

For the case of anisotropic random fields, Table 5 presents the
effect of the vertical autocorrelation distance (ay) on the failure
probability Pf when ax ¼ 10 m; this study introduced some non-
practical values in which the vertical autocorrelation distance was

Fig. 4. Comparison of crude Monte Carlo simulation and AK-MCS
approach for reference case in which ax ¼ 10 m and ay ¼ 1 m:
(a) Pf versus number of simulations; and (b) COVðPfÞ versus number
of simulations.

Table 4. Adopted number of random variables and corresponding value of variance of error of EOLE together with values of Pf , COVðPfÞ, and number of
added realizations for case of isotropic soil

ax ¼ ay (m)
Adopted number

of random variables
Variance of
error (%) Pf (×10−3) COVðPfÞ (%)

Number of
added realizations

2 48 9.45 0.730 5.23 742
3 32 4.65 1.846 3.29 995
5 24 0.95 2.762 2.69 870
10 10 0.81 3.444 2.41 286
20 8 0.17 3.648 2.34 210
50 6 0.02 3.736 2.31 105
100 6 0.001 3.772 2.29 100
10,000 2 0.000048 3.806 2.28 37
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larger than the horizontal autocorrelation distance in order to check
the behavior of the quantity of interest (i.e., Pf) when the vertical
autocorrelation distance varied within a wide range of values. Sim-
ilarly, Table 6 presents the effect of the horizontal autocorrelation
distance (ax) on the failure probability when ay ¼ 2 m. For very
large values of the horizontal or vertical autocorrelation distance,
the failure probability tended to a constant maximal value corre-
sponding to the case of a one-dimensional (1D) random field
(Figs. 6 and 7). The reason is similar to that of the isotropic case.
Indeed, the increase in the soil heterogeneity led (for most realiza-
tions) to relatively higher values of the ultimate bearing capacity
due to the averaging phenomenon. This means that the number of

realizations leading to failure was very small in this case and in-
creased for a lesser degree of heterogeneity in the soil mass.

For both cases of isotropic and anisotropic random fields,
Figs. 5–7 show that the Hasofer–Lind reliability index (as obtained
from optimization and making use of the final kriging meta-model)
decreased as expected with the increase in the autocorrelation dis-
tances. Furthermore, a small value of the coefficient of variation
of the failure probability (smaller than 6% for most cases) was
obtained for the adopted value of NMC, which indicates that
the obtained results are sufficiently accurate for practical use
(Tables 4–6). The number of added realizations required to lead
to a good approximation of the kriging model seemed to be larger

Fig. 5. Effect of isotropic autocorrelation distance ax ¼ ay on Pf

and βHL.
Fig. 6. Effect of vertical autocorrelation distance ay on Pf and βHL

when ax ¼ 10 m.

Table 5. Adopted number of random variables and corresponding value of variance of error of EOLE together with values of Pf , COVðPfÞ, and number of
added realizations for case of anisotropic soil (ax ¼ 10 m with varying ay)

ay (m)
Adopted number

of random variables
Variance of
error (%) Pf (×10−3) COVðPfÞ (%)

Number of
added realizations

0.5 44 9.12 0.318 7.93 427
0.8 38 4.80 1.178 4.12 790
1 32 4.21 1.656 3.47 752
2 24 1.44 2.818 2.66 672
5 12 1.68 3.250 2.48 406
10 10 0.81 3.444 2.41 286
20 8 0.85 3.502 2.39 190
50 8 0.30 3.570 2.36 239
100 8 0.10 3.616 2.35 232
10,000 8 0.03 3.690 2.32 227

Table 6. Adopted number of random variables and corresponding value of variance of error of EOLE together with values of Pf , COVðPfÞ, and number of
added realizations for case of anisotropic soil (ay ¼ 2 m with varying ax)

ax (m)
Adopted number

of random variables
Variance of
error (%) Pf (×10−3) COVðPfÞ (%)

Number of
added realizations

2 48 9.45 0.730 5.23 742
5 30 4.10 2.116 3.07 824
10 24 1.44 2.818 2.66 672
20 16 1.41 3.060 2.55 494
50 12 1.27 3.166 2.51 357
100 10 0.84 3.202 2.49 256
10,000 10 0.43 3.208 2.49 257
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for smaller values of the autocorrelation distance (because of
the increasing fluctuations of the highly heterogeneous soils),
although there was no regular increase in the number of added real-
izations with the decrease in the autocorrelation distance. Indeed,
this number depends on the evolution of the kriging metamodel
during the enrichment process.

Conclusion

The literature generally performs probabilistic analysis of shallow
foundations resting on spatially varying soils using the Monte
Carlo simulation methodology. The mean value and the standard
deviation of the system response have been extensively investi-
gated. This is not the case for the probability of failure, because
MCS methodology requires a large number of calls of the mechani-
cal model to accurately calculate the small failure probabilities
encountered in practice.

This paper presented a probabilistic analysis at the ultimate limit
state of a strip footing resting on a spatially varying soil using an
active learning reliability method combining kriging and Monte
Carlo simulation. This method involves performing a Monte Carlo
simulation without evaluating the whole population using the origi-
nal computationally expensive mechanical model. Indeed, the pop-
ulation is predicted using a kriging metamodel which is defined
based on only a few points of the population that are evaluated
using the mechanical model. The main findings of this study are
summarized as follows:
• The AK-MCS method was shown to be very efficient because

the obtained probability of failure was very accurate [i.e., with a
small COVðPfÞ] using a smaller number of calls to the compu-
tationally expensive mechanical model compared with the crude
MCS methodology.

• The failure probability Pf increased with the increase in the
autocorrelation distances. However, the rate of increase de-
creased for large values of autocorrelation distances (when ax ¼
ay > 10 m, ay > 5 m or ax > 10 m) . Indeed, these cases
closely resembled the limit cases corresponding to a homoge-
neous soil or a 1D random field.

• A more relevant stopping criterion that is based on the conver-
gence of the quantity of interest (i.e., Pf) rather than on the
accuracy of the metamodel would lead to a further reduction

in the number of calls of the mechanical model. This is the
object of future research.
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