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SUMMARY

A probabilistic model is presented to compute the probability density function (PDF) of the ultimate bearing
capacity of a strip footing resting on a spatially varying soil. The soil cohesion and friction angle were consid-
ered as two anisotropic cross-correlated non-Gaussian random fields. The deterministic model was based on
numerical simulations. An efficient uncertainty propagation methodology that makes use of a non-intrusive
approach to build up a sparse polynomial chaos expansion for the system response was employed. The
probabilistic numerical results were presented in the case of a weightless soil. Sobol indices have shown that
the variability of the ultimate bearing capacity is mainly due to the soil cohesion. An increase in the
coefficient of variation of a soil parameter (c or’) increases its Sobol index, this increase being more significant
for the friction angle. The negative correlation between the soil shear strength parameters decreases the response
variability. The variability of the ultimate bearing capacity increases with the increase in the coefficients of
variation of the random fields, the increase being more significant for the cohesion parameter. The decrease
in the autocorrelation distances may lead to a smaller variability of the ultimate bearing capacity. Finally, the
probabilistic mean value of the ultimate bearing capacity presents a minimum. This minimum is obtained in
the isotropic case when the autocorrelation distance is nearly equal to the footing breadth. However, for the
anisotropic case, this minimum is obtained at a given value of the ratio between the horizontal and vertical
autocorrelation distances. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The spatial variability of the soil properties affects the behavior of geotechnical structures (bearing
capacity, foundation settlement, slope stability, etc.). Several authors have considered the effect of
the spatial variability of the soil properties in their calculation models. For the bearing capacity of
foundations, which is the subject of the present paper, one may cite, among others, Griffiths and
Fenton [1], Griffiths et al. [2], Fenton and Griffiths [3], Popescu et al. [4], Youssef Abdel Massih [5],
Soubra et al. [6], Soubra and Youssef Abdel Massih [7] and Cho and Park [8].

It should be mentioned that when dealing with probabilistic studies that involve spatially varying soil
properties, the classical Monte Carlo Simulation (MCS) methodology is generally used to determine the
probability density function (PDF) of the system response. It is well known that this method is a very
time-expensive approach. This is because of the following: (i) it generally makes use of finite element
or finite difference models, which are generally time expensive; and (ii) it requires a great number of
calls of the deterministic model. To overcome the inconvenience of the time cost, this paper presents
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a more efficient probabilistic approach, which significantly reduces the number of calls of the deterministic
model. The sparse polynomial chaos expansion (SPCE) methodology was proposed in this regard. Notice
that the sparse polynomial chaos expansion is an extension of the polynomial chaos expansion (PCE). A
PCE methodology aims at replacing the deterministic model, which may be an analytical model or a finite
element/finite difference model by a meta-model. This allows one to calculate the system response using a
simple analytical equation (e.g. Isukapalli et al. [9]; Huang et al. [10]; Li et al. [11]; Mollon et al. [12];
Houmadi et al. [13]). This simple analytical equation is obtained by expanding the system response on
a suitable basis, which is a series of multivariate polynomials that are orthogonal with respect to the
joint probability density function of the input random variables. Consequently, the characterization of
the PDF of the system response is equivalent to the evaluation of the PCE coefficients as it will be
shown later in this paper.

The original PCEmethod is an intrusive approach in the sense that it requires extensive modifications in
the deterministic code. In particular, the so-called spectral stochastic finite element method (SSFEM) was
presented in [14] for mechanical problems involving random fields. In this approach, the classical finite
element discretization is combined with the Karhunen–Loève decomposition of the input random fields.
Then, the coefficients of the system response (i.e. the coefficients of the PCE) were obtained using a
Galerkin scheme [15]. As an alternative, non-intrusive computational schemes emerged recently in
stochastic finite element analysis. These methods allow one to compute the stochastic model response
(i.e. the coefficients of the PCE) using a set of calls to the existing deterministic model (i.e. without
modifying the underlying computer code). Two methods exist in literature for the computation of the
PCE coefficients in the framework of the non-intrusive approaches: the projection method (e.g. Le
Maître et al. [16]) and the regression method (i.e. [9–13, 17, 18]).

Within the framework of the PCE, the PDF of the system response can be easily obtained. This is
because MCS is no longer applied on the original expensive deterministic model but on the meta-
model. This consists in performing a great number of realizations on the meta-model. It should be
emphasized here that the obtained PCE coefficients can be used to perform a global sensitivity analysis
based on Sobol indices. These indices give the contribution of each random field in the variability of
the system response.

It should be noticed that the number of the PCE coefficients to be computed grows dramatically
with the size of the input random vector and the PCE order. When dealing with random fields as is the
case in the present paper, the discretization may lead to a significant number of random variables,
which makes the solution of the PCE unfeasible. This is because of the proliferation of the unknown
PCE coefficients to be computed. To address such problem, the sparse polynomial chaos expansion
developed by Blatman and Sudret [18] in the framework of the non-intrusive approaches is used herein.
This method is based on an adaptive regression-based algorithm, which automatically detects the
significant coefficients of the PCE to be computed. As a consequence, a rather small number of the
PCE coefficients is eventually retained (sparse representation), which may be obtained at a reduced
computational cost compared with the classical ‘full’ PCE representation. It should be emphasized here
that SPCE was applied by [18] to deal with problems where a large number of uncertain parameters
were modeled as random variables. In this paper, the SPCE is applied to a two-dimensional (2D)
spatially varying soil involving two random fields discretized into a great number of random variables
(between 10 and 88 random variables depending on the values of the autocorrelation distances). More
precisely, the aim of this paper is to compute the PDF of the ultimate bearing capacity of a shallow
strip foundation resting on a 2D spatially varying (c, ’) weightless soil. Although a ponderable soil can
be used, the soil weight was neglected in this paper. This assumption was adopted to validate the
present probabilistic approach with the use of a non-expensive deterministic model that has a
reasonable computation time. Thus, the present analysis only provides the component of the ultimate
bearing capacity related to the soil cohesion.

The soil cohesion and friction angle are considered as anisotropic cross-correlated non-Gaussian
random fields. They are characterized by two specified marginal distribution functions, a common
autocorrelation function, and a cross-correlation matrix. The methodology proposed by Vo�rechovsky
[19] is used to generate these two random fields. The deterministic model is based on numerical
simulations using FLAC3D software. The adaptive algorithm to build up a SPCE is used to obtain an
approximation of the analytical expression of the system response (ultimate bearing capacity). The
Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2013; 37:2039–2060
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BEARING CAPACITY OF STRIP FOOTINGS ON SPATIALLY RANDOM SOILS 2041
paper is organized as follows: The next section aims at presenting the probabilistic method used for the
computation of the PDF of the ultimate bearing capacity of a strip footing resting on a spatially varying
soil. It is followed by the numerical results. The paper ends with a conclusion.
2. PROBABILISTIC METHOD USED IN THE ANALYSIS

First, the generation of two anisotropic cross-correlated non-Gaussian random fields is briefly presented. It
is followed by a presentation of the probabilistic method adopted in this paper. Although the SPCE
methodology is used for the probabilistic analysis, the PCE (based on the classical truncation scheme)
is first presented, and then, it is followed by the presentation of the SPCE (based on the hyperbolic
truncation scheme) to facilitate the understanding of the used approach. This section ends with a brief
presentation of the post-treatment, which involves the following: (i) the statistical analysis of the system
output; and (ii) the method of computation of the global sensitivity indices.

2.1. Generation of anisotropic cross-correlated non-Gaussian random fields

Let us consider two anisotropic cross-correlated non-Gaussian random fields ZNG
i x; yð Þ i ¼ c; ’ð Þ

described by the following: (i) constant means and standard deviations (mi, si; i= c,’); (ii) non-
Gaussian marginal cumulative density functions Gi (i= c,’); (iii) a target cross-correlation matrix

CNG ¼ rc;c rc;’
r’:c r’;’

� �
; and (iv) a common autocorrelation function rNGZ [(x, y), (x0, y0)], which gives

the values of the correlation function between two arbitrary points (x, y) and (x0, y0). Notice that the
exponential form of the autocorrelation function is the one that is the most commonly used in
geotechnical engineering [4]. It is given as follows:

rNG
Z ½ x; yð Þ;ðx0 ; y0Þ� ¼ exp � x� x0j j

ax

� �n

� y� y0j j
ay

� �n� �
(1)

where ax and ay are the autocorrelation distances along x and y respectively. For n = 1, the autocorrelation
function is said to be exponential of order 1; however, for n = 2, it is said to be square exponential. In our
study, we deal with two random fields (cohesion c and friction angle ’) that are assumed to share an
identical 2D square exponential autocorrelation function over the physical domain Ω. The expansion
optimal linear estimation method (EOLE) (proposed by Li and Der kiureghian [20] for the case of
uncorrelated Gaussian random fields) and its extension by Vo�rechovsky [19] to cover the case of cross-
correlated non-Gaussian random fields are used herein to discretize the two random fields of c and ’. In
this method, one should first define a stochastic grid composed of q grid points (or nodes) obtained
from the different combinations of H points in the x (or horizontal) direction, and V points in the y (or
vertical) direction assembled in a vector Q = {Qn= (xh, yv)} where h=1, . . ., H; v=1, . . ., V; n=1, . . .,
q and q=HxV. Notice that for the vector Q composed of q elements, the values of the field are
assembled in a vector w= {wn=Z(xh, yv)}where h=1, . . ., H; v=1, . . ., V and n=1, . . ., q. Then,

one should determine the correlation matrix, for which each element ΣNG
w;w

� �
i; j

is calculated using

Equation (1) as follows:

ΣNG
w;w

� �
i; j
¼ rNG

Z
Qi;Qj

� �
(2)

where i=1, . . ., q and j=1, . . ., q. Notice that the matrix ΣNG
w;w

in Equation (2) provides the correlation

between each element in the vector w and all the other elements of the same vector. The common non-
Gaussian autocorrelation matrix ΣNG

w;w
and the target non-Gaussian cross-correlation matrix CNG should

be transformed into the Gaussian space using the Nataf correction functions proposed by Nataf [21]
because the discretization of the random fields using EOLE is carried out in the Gaussian space. This
can be performed by applying the following formulas:
Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2013; 37:2039–2060
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Σ k
w;w

� �
i; j
¼ oi; j ΣNG

w;w

� �
i; j
; i ¼ 1; . . . q; j ¼ 1; . . . q and k ¼ c; ’ (3)

Ci; j ¼ oi; jC
NG
i; j ; i ¼ c; ’ and j ¼ c; ’: (4)

whereoi, j is the correction factor. As a result, one obtains two Gaussian autocorrelation matricesΣc
w;w and

Σ’
w;w and a Gaussian cross-correlation matrix C that can be used to discretize the two random fields using

EOLE as follows:

~Zc x; yð Þ ¼ mc þ sc
XN
j¼1

kD
c; jffiffiffiffiffi
lc
j

q : fc
j

� �T
:Σc

Z x;yð Þ;w (5)

~Z’ x; yð Þ ¼ m’ þ s’
XN
j¼1

kD
’; jffiffiffiffiffi
l’
j

q : f’
j

� �T
:Σ’

Z x;yð Þ;w (6)

where lcj ;f
c
j

� �
and l’j ;f

’
j

� �
are the eigenvalues and eigenvectors of the two Gaussian autocorrelation

matrices Σc
w;w and Σ’

w;w, respectively; ΣZ(x, y) ; w is the correlation vector between the random vector w and
the value of the field at an arbitrary point (x, y) as obtained using Equation (1), and finally N is the
number of terms (expansion order) retained in the EOLE method. This number will be determined later
in this section. Notice that (fj)

Tand ΣZ(x, y) ; w in Equations (5) and (6) are two vectors of dimensions
(1xq) and (qx1), respectively, and the superscript ‘T’ in (fj)

Tdenotes the transpose of the vector fj.

Notice finally that kD
c; j; k

D
’; j

� �
are two cross-correlated blocks of independent standard normal random

variables obtained using the Gaussian cross-correlation matrix C between the two fields as follows: (i)
one should compute the diagonal eigenvalues matrix ΛC with its corresponding eigenvectors matrix ΦC

of the Gaussian cross-correlation matrix C using the spectral decomposition of the cross-correlation
matrix C; and (ii) generate the block sample vector kD, which contains the two cross-correlated blocks

kD
c; j; k

D
’; j

� �
of independent standard random variables using the following formula:

kD ¼ ΦD ΛD
	 
1 =

2
xT (7)

where ΦD is a (2Nx2N) block matrix resulting from the multiplication of each element in the matrix ΦC

by the unit matrix of order N (the expansion order), ΛD is a (2Nx2N) block matrix resulting

from the multiplication of each element in the matrix ΛC by the unit matrix of order N and x ¼
xc ¼ xc

1
; . . . ; xcN

� �
; x’ ¼ x’

1
; . . . ; x’

N

� �n o
is a block vector, which contains two blocks (xc,x’) of N

standard Gaussian independent random variables for each one.
Once the two Gaussian cross-correlated random fields are obtained, they should be transformed to

the non-Gaussian space by applying the following formula:

~Z
NG
i x; yð Þ ¼ G�1

i Φ ~Zi x; yð Þ� �� �
i ¼ c; ’ (8)

where Φ(.) is the standard normal cumulative density function. It should be mentioned here that the series
given by Equations (5) and (6) are truncated for a number of terms N (expansion order) smaller than the
number of grid points q, after sorting the eigenvalues lc

j
and l’

j
(j=1, . . ., N) in a descending order. This

number should assure that the variance of the error is smaller than a prescribed tolerance e. Notice that the
variance of the error for EOLE is given by [20]:
Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2013; 37:2039–2060
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Var Zi x; yð Þ � ~Zi x; yð Þ� � ¼ s2Z �
XN
j¼1

1

li
j

fi
j

� �T
ΣZ x;yð Þ;w

� �2

i ¼ c; ’ð Þ (9)

where Zi(x, y) and ~Zi x; yð Þ are, respectively, the exact and the approximate values of the random fields at a

given point (x, y) and fi
j

� �T
is the transpose of the eigenvector fi

j
where i= c, ’.

2.2. Polynomial chaos expansion—the classical truncation scheme

The polynomial chaos expansion or its extension (sparse polynomial chaos expansion) aims to
replace a complex deterministic model (i.e. finite element/finite difference numerical model) by a
meta-model. This allows one to calculate the system response using an approximate simple
analytical equation [9–13, 17, 18, 22–26]. Thus, the PCE or the SPCE may be used to perform a
probabilistic analysis with a significant reduction in the computation time. This section is devoted
to the PCE methodology.

The PCE makes use of multivariate polynomials, which are orthogonal with respect to the joint
probability density function of the input random vector. The different types of the joint probability density
functions and their corresponding multivariate polynomials are given by [23]. The Gaussian joint
probability density function and its corresponding Hermite multivariate polynomials are used in this
paper. Notice that the coefficients of the PCE may be efficiently computed using a non-intrusive
technique where the deterministic calculations are carried out using, for example, a finite element or finite
difference software treated as a black box. The most used non-intrusive method is the regression approach
[9–13, 17, 18, 24–26]. The PCE methodology can be described as follows: for a mechanical model with
M random variables, the response Γ can be expressed by a PCE of order p fixed by the user as follows:

ΓPCE xð Þ ¼
X1
b¼0

abΨb xð Þ ffi
XP�1

b¼0

abΨb xð Þ (10)

where x is a vector of M independent standard normal random variables representing the M random
variables, P is the number of terms retained in the truncation scheme, ab are the unknown PCE
coefficients to be computed and Ψb are multivariate (or multidimensional) Hermite polynomials, which
are orthogonal with respect to the joint probability density function of the standard normal random vector
x. These multivariate Hermite polynomials can be obtained from the product of one-dimensional Hermite
polynomials of the different random variables as follows:

Ψb ¼
YM
i¼1

Hai xð Þ (11)

where Hai :ð Þ is the ai-th one-dimensional Hermite polynomial and ai is a sequence of M non-negative
integers {a1, . . .,aM}. The expressions of the one-dimensional Hermite polynomials can be found in [14]
among others. In practice, one should truncate the PCE representation by retaining only the multivariate
polynomials of degree less than or equal to the PCE order p. The classical truncation scheme suggests
that the first order norm ‖. ‖1 should be less than or equal to the order p of the PCE as follows [18]:

ak k1 ¼
XM
i¼1

ai⩽p (12)

Using this method of truncation, the number P of unknown PCE coefficients is given by

P ¼ M þ pð Þ!
M!p!

(13)

As may be seen from Equation (13), the number P of the PCE coefficients, which is the number of
terms retained in Equation (10), increases dramatically with the number M of random variables and
Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2013; 37:2039–2060
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the order p of the PCE. This number becomes very high in the case of random fields where the
number of random variables is significant. Hence, the SPCE methodology presented below is
necessary in this case.

2.3. Adaptive sparse polynomial chaos expansion—the hyperbolic (q-norm) truncation scheme

Blatman and Sudret [18, 25, 26] have shown that the number of significant terms in a PCE is relatively
small because the multidimensional polynomials Ψb corresponding to high-order interaction (i.e. those
resulting from the multiplication of the Hai with increasing ai values) are associated with very small
values of coefficients ab. These authors have also stated that the term resulting from the multiplication
of the Haiwith all ai=0 leads to a significant coefficient a0 in the PCE. This coefficient represents the
probabilistic mean value of the system response. Thus, a truncation strategy based on these
observations was developed by Blatman and Sudret [25, 26] in which the multidimensional
polynomials Ψb corresponding to high-order interaction were penalized. This was performed by
considering that the q-norm should be smaller than the PCE order as follows [26]:

ak kq ¼
XM
i¼1

aið Þq
 !1 =

q

⩽p (14)

where q is a coefficient (0< q< 1). In this formula, q can be chosen arbitrarily. Blatman and Sudret [26]
have shown that sufficient accuracy is obtained for q⩾ 0.5. Below this value, we may risk to reject some
significant terms. The proposed SPCE strategy leads to a PCE that contains a small number of unknown
coefficients, which can be calculated from a reduced number of calls of the deterministic model. This is of
particular interest in the present case of random fields, which involves a significant number of random
variables. An iterative procedure was suggested by Blatman and Sudret [18] for building up a SPCE.
This procedure can be briefly described by the flowchart presented in Figure 1. It will be used in this
paper to build up a SPCE of the system response. The method of computation of the coefficient of
determination used in the flowchart can be described as follows: For an experimental design (ED) built
up from a set of K realizations {x(1) = (x1, . . ., xM), . . ., x

(K) = (x1, . . ., xM)}of the standard normal
random vector x, the corresponding values of the system response denoted by Γ= {Γ(x(1)), . . .,Γ(x(K))}
are determined by deterministic calculations. These data are then used to compute the SPCE by
regression. The accuracy of the response can be assessed using the coefficient of determination R2

defined by the following:

R2 ¼ 1� ΔSPCE (15)

where

ΔSPCE ¼
1
K

PK
i¼1

Γ x ið Þ
� �

� ΓSPCE x ið Þ
� �� �2

Var Γð Þ (16)

Var Γ½ � ¼ 1
K � 1

XK
i¼1

Γ x ið Þ
� �

� �Γ
� �2

(17)

�Γ ¼ 1
K

XK
i¼1

Γ x ið Þ
� �

(18)

The value R2 = 1 indicates a perfect fit of the true model response Γ, whereas R2 = 0 indicates a nonlinear
relationship between the true model Γ and the SPCE model ΓSPCE.
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Figure 1. Flowchart used to build up a SPCE.
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2.4. Statistical analysis of the response

Once the unknown coefficients of the SPCE are determined, the PDF of the system response and its
corresponding statistical moments (i.e. mean m, standard deviation s, skewness d, and kurtosis k) can
be estimated. This can be done by simulating a large number of realizations (e.g. six million
simulations) of the independent standard normal random variables. Simulating a large number of
realizations and their corresponding responses using the analytical formula dramatically reduces the
computation time. It should be noticed here that the computation time required for the generation of a
single realization and the computation of the corresponding system response is strongly related to the
number of eigenmodes N used in the discretization scheme. For very small autocorrelation distances (as
will be seen later), the number of eigenmodes significantly increases, leading to a significant
computation time (more than an hour for a single realization).

2.5. Global sensitivity analysis

The global sensitivity analysis (GSA) allows one to compute the weight of the different input random
parameters in the variability of the system response. The GSA is generally based on the decomposition
of the response variance as a sum of contributions of the different random variables or combinations of
random variables. In the present paper where a random field is discretized into a finite number of
random variables, a first-order sensitivity analysis involving the block vector of the standard Gaussian

independent random variables x ¼ xc ¼ xc
1
; . . . ; xcN

� �
; x’ ¼ x’

1
; . . . ; x’

N

� �n o
is used. The sensitivity

index of each random variable is first calculated. Then, the sensitivity index of each field (c or j) is
computed as the sum of all the indices of the variables of this field as follows:

Si ¼
XN
j¼1

Var½E ΓSPCE xij
 �� i

Var ΓSPCEð Þ (19)

where i= c,’ and ΓSPCE is the system response given by the SPCE. Of particular interest in the PCE or
SPCE methodology are the so-called Sobol indices [27] for estimating the sensitivity indices. It was
shown in Sudret [24] that the Sobol sensitivity indices can be computed analytically from the
Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2013; 37:2039–2060
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coefficients of the PCE or SPCE of the model response. In this paper, the analytical formulas given by
Sudret [24] were used to calculate the Sobol indices for the two random fields c and ’.
3. NUMERICAL RESULTS

The aim of this section is to present the probabilistic numerical results. These results are provided in the
case of a weightless soil, although the probabilistic analysis presented before remains valid if the soil
weight was included in the analysis. The main reason for which the soil weight was neglected is the
validation of the present probabilistic approach with the use a non-expensive deterministic model that
has a reasonable computation time. Notice that introducing the soil weight in the deterministic model
increases the computation time from 5 to 10minutes per simulation. Although this difference may not
seem to be significant for a single simulation, it becomes dramatically important during the probabilistic
analyses where a large number of simulations is needed for each probabilistic analysis.

The deterministic model is based on numerical simulations using the finite difference code FLAC3D.
The soil behavior is modeled using a conventional elastic-perfectly plastic model based on
Mohr–Coulomb failure criterion. Because the friction angle ’ is bounded (i.e. 0⩽’⩽ 45�), a beta
distribution was selected for this parameter. This assumption was also adopted by several investigators
(cf. [3, 28–31] among others). As for the cohesion c, non-negative values must be obtained for this
parameter. Several authors (cf. [3, 28–31] among others) have suggested a lognormal distribution for
the cohesion parameter. This assumption was also adopted in our paper. The mean values and
coefficients of variation of the two random fields (referred to in this paper as reference values) are given
as follows:mc=20kPa,Covc=25%; m’=30

0,Cov’=10%. The dilation angle c (associated to the rate
of plastic dilation) is considered to be related to the friction angle j by c ¼ 2

3’. This means that the
dilation angle was implicitly assumed as a random field that is perfectly correlated to the friction angle
field. To incorporate the dependence between the shear strength parameters, the cross-correlation
coefficient r(c, ’) is needed. Yucemen et al. [32] reported values that are in a range of
� 0.49⩽ r⩽� 0.24, whereas Lumb [33] suggested values of � 0.7⩽ r⩽� 0.37. In this study, a value
of �0.5 was taken as the reference value, and the range of � 0.5⩽ r⩽ 0 was considered in the
parametric study. The reference cross-correlation matrix between the two random fields (c, ’) is thus
given by the following:

CNG ¼ 1 �0:5
�0:5 1

� �
(20)

Finally, notice that Youngmodulus E and Poisson ratio υwere assumed to be deterministic because the
ultimate bearing capacity is not sensitive to these variables. Their corresponding values areE=60MPa and
n =0.3, respectively. Finally, concerning the footing, a weightless strip foundation of 2m width and 0.5m
height is used. It is assumed to follow an elastic linear model (E=25GPa, n =0.4). The connection
between the footing and the soil mass is modeled by interface elements having the same mean values of
the soil shear strength parameters to simulate a perfectly rough soil-footing interface. These parameters
have been considered as deterministic in this study. Concerning the elastic properties of the interface,
they also have been considered as deterministic, and their values are as follows: Ks=1GPa, Kn=1GPa
where Ks and Kn are the shear and normal stiffness, respectively.

As for the autocorrelation distances ax and ay of the two random fields c and ’, both cases of
isotropic (i.e. ax = ay) and anisotropic (i.e. ax#ay) autocorrelation distances will be treated, although
the soil is rarely isotropic in reality. For the isotropic case, a range of 1.5–100m was considered.
For the anisotropic case, El-Ramly et al. [34] have shown that ax is within a range of 10–40m,
whereas ay ranges from 1 to 3m. These values are in accordance with those given by Phoon and
Kulhawy [35]. In our study, the reference values adopted for ax and ay were ax= 10m and ay = 1m,
whereas the wide ranges of 2–50m and 0.5–8m were considered respectively for ax and ay when
performing the parametric study to explore the possible existence of a minimum value of the
probabilistic mean.
Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2013; 37:2039–2060
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As shown in Figure 2, the adopted soil domain considered in the analysis is 15m wide by 6m deep. It
should be noted that the size of a given element in the deterministic mesh depends on the autocorrelation
distances of the soil properties. Der Kiureghian and Ke [36] have suggested that the length of the largest
element of the deterministic mesh in a given direction (horizontal or vertical) should not exceed 0.5 times
the autocorrelation distance in that direction. To respect this criterion for the different autocorrelation
distances, two different deterministic meshes were considered in FLAC3D. The first one is devoted to
the case of moderate to great values of the autocorrelation distances (i.e. when ax⩾ 10m and ay⩾ 1m)
[see Figure 2(a)] and the second one for the small values of the autocorrelation distances (i.e. when
1.5m⩽ ax< 10m or 0.5m⩽ ay< 1m) [see Figure 2(b)]. For the boundary conditions, the horizontal
movement on the vertical boundaries of the grid is restrained, whereas the base of the grid is not
allowed to move in both the horizontal and the vertical directions.

The following sections are organized as follows: First, a brief description of a step-by-step
procedure used to obtain the probabilistic results is presented. It is followed by the presentation of
some realizations of the random fields and the PDFs of the system responses. Finally, the effect of
the different probabilistic governing parameters on the PDF of the ultimate bearing capacity is
presented and discussed.

3.1. Step-by-step procedure used for the computation of the probabilistic results

A Matlab 7.0 code was implemented to obtain the probabilistic results. The different steps of this code
in the general case of two anisotropic cross-correlated non-Gaussian random fields are as follows:

(a) Introduce the input statistical parameters given in the preceding section.
(b) Discretize the two random fields c and ’ using EOLE method and its extensions by

Vo�rechovsky [19] as follows:
▪ Define the stochastic grid: Li and Der Kiureghian [20] have shown that the variance of the error
(Equation 9) is large at the boundaries of the stochastic domain. This problem can be solved using
a stochastic domainΩRF that extends beyond the boundaries of the physical domainΩ. In this paper,
a uniform stochastic grid of dimensionsΩRF = [16m, 7m] was used, whereas the size of the physical
domain was Ω= [15m, 6m]. On the other hand, Li and Der Kiureghian [20] have shown that the
number of grid-points in the stochastic grid strongly depends on the autocorrelation distances. These
authors have shown that a ratio of about lRFa ¼ 1

5 provides a sufficient accuracy in terms of the variance
of the error where lRF is the typical element size in the stochastic grid and a is the autocorrelation
distance. In this paper, the number of grid points in the stochastic grid was chosen as follows: six grid
points were considered within each autocorrelation distance (horizontal or vertical) with a minimum
of six grid points in that direction when the autocorrelation distance is larger than the size of the
stochastic domain. Thus, a fine stochastic meshwas used for a highly heterogeneous soil, and a coarse
stochastic mesh was used for a slightly heterogeneous soil.

▪ Calculate the common autocorrelation matrix ΣNG
w;w

using Equation (2) (notice that the dimensions
of this matrix depend on the values of the autocorrelation distances ax and ay). Then, compute the
corresponding autocorrelation matrices Σc

w;w and Σ’
w;w in the Gaussian space using Nataf model

(Equation 3). It should be mentioned here that both matrices Σc
w;w and Σ’

w;w were quasi-similar
Figure 2. Mesh used for the computation of the ultimate bearing capacity: (a) for moderate to great values of
the autocorrelation distances (ax ≧10m and ay≧1m), (b) for small values of the autocorrelation distances

(ax< 10m or ay< 1m).
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Co
toΣNG
w;w
, and thus, the number of eigenmodes (number of random variables), which is necessary to

discretize each one of the two random fields, was similar. Finally, compute for each random field
(c and ’) its N largest eigenmodes lij and ’i

j (where i = c, ’ and j = 1,. . ., N), for which the
variance of the error is smaller than a threshold of say e� 10%. As may be seen from Figure 3,
for smaller values of the autocorrelation distance (ax, ay or ax = ay), the number N of eigenmodes
increases. The total number of random variables retained for different cases (where two random
fields were considered) is presented in Table I. This number is equal to the number of eigen-
modes N of a single random field multiplied by 2 because two random fields were considered
in the analysis. It should be noticed that the cases where a significant number of random
variables (>88) are needed correspond to very small autocorrelation distances (i.e. ay< 1m
and ax< 2m). These autocorrelation distances are not of practical interest [see El-Ramly et al.
[34]] and can thus be neglected in this study.

▪ Calculate the Gaussian cross-correlated matrix C by applying the Nataf model on the original
non-Gaussian cross-correlation matrix CNG given by Equation (20). This was performed using
Equation (4).

▪ Discretize the two anisotropic cross-correlated Gaussian fields c and j using Equations (5) and (6)
where kD was computed using Equation (7), the transformation to the non-Gaussian space being
done by applying Equation (8).

(c) Use the adaptive SPCE methodology to determine the meta-model as follows: First, it should be
noted that for each realization, the values of the two random fields (c and ’) were determined at
the centroid of each element of the deterministic mesh. Once the different elements of the mesh
are filed with values of c and ’, the ultimate bearing capacity qult for this specific realization can
igure 3. Number N of eigenmodes needed in the EOLE method: (a) isotropic case, (b) anisotropic case.

pyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2013; 37:2039–2060
DOI: 10.1002/nag



Table I. Number of random variables used to discretize the two random fields c and ’ for both cases of
isotropic and anisotropic autocorrelation distances.

Total number of random variables used to discretize the
two random fields (c, ’)

Isotropic case ax = ay= 1.5m 70
ax = ay= 1.8m 60
ax = ay= 2m 50
ax = ay= 3m 24
ax = ay= 5m 20
ax = ay= 10m 10

Anisotropic case ax = 10m, ay = 1m 24
ax = 10m, ay = 0.8m 30
ax = 10m, ay = 0.5m 44
ax = 4m, ay = 1m 48
ax = 2m, ay = 1m 88
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be determined. The experimental design (ED) was obtained by first simulating an arbitrary
number of realizations K= 200 of the two random fields (c and ’) using MCS technique. K is
an initial (arbitrary) value because the adaptive algorithm will automatically add other
simulations (an arbitrary number of 100 realizations) each time the regression problem is ill
posed (i.e. when the rank of the matrix used in the regression approach is smaller than the num-
ber of unknown coefficients). The algorithm stops if either the target accuracy R2

TARGET is
achieved or if p reached the order fixed by the user. In this paper, a target accuracy R2

TARGET ¼
0:999, a coefficient q= 0.7, and a maximal order p = 5 were used. Notice that for the reference
case [ax = 10m, ay= 1m, r(c, j) =�0.5], the algorithm have stopped when the target accuracy
was reached. The corresponding order of the SPCE was equal to 3. In this case, where 24
random variables were needed (see Table I), the PCE in its ‘full’ truncation schemes leads to
P= 2925 unknown coefficients. This means that a minimum of 2925 collocation points (i.e. a
minimum of 2925 calls of the deterministic model) were needed to accurately represent the
ultimate bearing capacity by a meta-model. Using the SPCE methodology, only P= 186
unknown coefficients were retained, and only 800 Monte Carlo simulations were found to be
largely sufficient to construct the meta-model. Consequently, a reduction of minimum 50% in
the number of calls of the deterministic model can be obtained using the SPCE. This greatly
facilitates the solution of the problem of random fields.

(d) Use the meta-model to perform the post-treatment. This consists in determining the following:
(i) the PDF of the ultimate bearing capacity and the corresponding statistical moments (mean,
variance, skewness and kurtosis) and (ii) the Sobol indices for each random field (c and ’).

Finally, it should be mentioned that a link between Matlab and FLAC3D was performed to automati-
cally exchange the data in both directions and thus to decrease the computation time.

3.2. Random fields’ realizations and probability density functions of the system responses

Figure 4 presents six realizations for three different configurations. As may be seen from this figure, the
anisotropy and the negative cross-correlation are well reflected by the obtained random realizations.

Figure 5 presents the PDFs of the footing ultimate bearing capacity and the footing rotation for the
reference case where ax = 10m, ay = 1m, and r (c, ’) =�0.5. Figure 6 presents the velocity field for one
single simulation (i.e. a single realization of the two random fields c and ’). As may be seen from this
figure, the spatial variability of soil properties can produce a non-symmetrical mechanism, although the
footing is subjected to a symmetrical vertical load. Although the footing rotation of a single realization
is not null as may be seen from Figure 6, the mean value of the rotation for the whole number of
realizations is null [see Figure 5(b)], and the standard deviation of this rotation was found equal to
1.6� 10-4 radians.
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Figure 4. Typical realizations of the random fields: (a) [ax = 100m, ay = 1m, r (c, ’) =�0.5]; (b) [ax = 10m,
ay = 1m, r (c, ’) =�0.5]; (c) [ax = 10m, ay = 1m, r (c, ’) =�0.9].
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3.3. Probabilistic parametric study

The aim of this section is to study the effect of the different probabilistic governing parameters
(autocorrelation distances, coefficients of variation) of the two random fields and the correlation
between both fields on the PDF of the ultimate bearing capacity of the foundation.

3.3.1. Effect of the autocorrelation distance: the isotropic case. Figure 7 provides the PDFs of the
ultimate bearing capacity for different values of the isotropic autocorrelation distance ax = ay (1.5,
1.8, 2, 3, 5, 10m) when r (c, ’) =�0.5. Table II presents the four statistical moments for the cases
presented in Figure 7 together with those corresponding to great values of the autocorrelation
distance including the case of random variables. Figure 7 shows that the PDF is less spread out
when the autocorrelation distance decreases. On the other hand, for large values of the
autocorrelation distance (see Table II), the standard deviation tends to the value obtained in the case
of a homogeneous soil (case of random variables). The variability of the ultimate bearing capacity
decreases with the increase in the soil heterogeneity because the zone involved by the possible
failure mechanism will have average values of the shear strength parameters close to the mean
values of the two fields because of the large number of high and small values of the shear strength
parameters. This leads to close values of the ultimate bearing capacity and thus to a smaller
variability in this bearing capacity.

Figure 8 and Table II show that the probabilistic mean value of the ultimate bearing capacity
presents a minimum when the autocorrelation distance ax = ay is nearly equal to the footing breadth
B (i.e. in our case, when ax = ay = 2m). Notice that the minimal probabilistic mean was also
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Figure 5. Bearing capacity and footing rotation of the reference case where ax = 10m, ay = 1m, and
r(c, ’) =� 0.5: (a) PDF of the ultimate bearing capacity; and (b) PDF of the footing rotation.

Figure 6. Velocity field for a typical realization of the two random fields for the reference case where
ax = 10m, ay = 1m, r (c, ’) =�0.5.
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observed by Fenton and Griffiths [3] and Soubra et al. [6] when isotropic random fields were studied.
For very large autocorrelation distances (ax = ay= 100m), the probabilistic mean tends to the one of the
homogenous soil (case of random variables) as may be seen from Table II. On the other hand, for very
small autocorrelation distances the probabilistic mean becomes greater than the minimal value because
the weakest path becomes increasingly tortuous and its length is also longer. As a result, the
failure mechanisms will start to look for shorter path cutting through higher values of the shear
strength parameters.

Table II also shows the impact of the autocorrelation distance ax = ay on both the skewness and the
kurtosis of the PDF. For small values of ax = ay, the skewness and kurtosis of the response are small,
which means that the PDF of the response is not far from a Gaussian one in these cases. Notice
however that these moments increase when ax = ay increases which means that for great values of
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Figure 7. Influence of the isotropic autocorrelation distance ax = ay on the PDF of the ultimate bearing
capacity in the case where r (c, ’) =�0.5.

Table II. Effect of the isotropic autocorrelation distance ax = ay on the statistical moments of the ultimate
bearing capacity.

mqult ðkPaÞ sqult ðkPaÞ COV% du (-) ku (-)

ax= ay = 1.5m 642.6 88.85 13.83 0.063 0.083
ax= ay =1.8m 639.83 101.36 15.84 0.186 0.132
ax= ay =2m 638.74 108.86 17.04 0.197 0.128
ax= ay =3m 639.58 138.80 21.70 0.398 0.302
ax= ay =5m 646.45 175.85 27.20 0.671 0.656
ax= ay =10m 670.01 217.70 32.50 0.924 1.476
ax= ay =50m 676.54 227.39 33.61 1.072 1.926
ax= ay =100m 680.75 229.91 33.77 1.083 2.026
Random variables 682.67 232.8 32.14 1.093 2.475

Figure 8. Influence of the isotropic autocorrelation distance ax = ay on the probabilistic mean value of the
ultimate bearing capacity in the case where r (c, ’) =�0.5.
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ax = ay, the shape of the PDF of the output becomes far from a Gaussian one (the point of maximum
density of probability, i.e. the mode moves to smaller values).

Finally, Table III shows the effect of the autocorrelation distance ax = ay on the Sobol indices S(c)
and S(j) of the two random fields c and ’. This table shows that both indices are quasi-constant
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Table III. Effect of the isotropic autocorrelation distance ax = ay on the Sobol indices of the two random
fields c and ’.

ax = ay (m) S(c) S(’)

ax = ay= 1.5m 0.702 0.298
ax = ay =1.8m 0.710 0.290
ax = ay =2m 0.721 0.279
ax = ay =3m 0.728 0.272
ax = ay =5m 0.714 0.286
ax = ay =10m 0.726 0.274
ax = ay =50m 0.705 0.295
ax = ay =100m 0.706 0.294
Random variables 0.692 0.308
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regardless of the autocorrelation distance values. The increase in ax = ay has no significant impact on
the Sobol indices because we increase ax = ay in both fields by the same amount. Table III also
shows that the variability of the ultimate bearing capacity is mainly due to the cohesion random
field, which has a Sobol index of about 71%. This result is logical in our case where a weightless
soil was considered, the Ng term, which is very sensitive to ’ being absent in this paper.

3.3.2. Effect of the autocorrelation distances: the anisotropic case. Figure 9 presents the PDFs of
the ultimate bearing capacity for different values of ay (ay= 0.5, 0.8, 1, 2, 5, and 8m) when
ax= 10m and r(c, ’) =�0.5, and Table IV presents the corresponding four statistical moments.
Figure 9 and Table IV show that the variability of the ultimate bearing capacity decreases when the
vertical autocorrelation distance ay decreases. The same explanation given in the isotropic case can
be done here. Similarly, Figure 10 presents the PDFs of the ultimate bearing capacity for different
values of ax (ax= 2, 4, 10, 20, 30 and 50m) when ay= 1m and r(c, ’) =�0.5, and Table V presents
Figure 9. Influence of the vertical autocorrelation distance ay on the PDF of the ultimate bearing capacity in
the case where r (c, ’) =�0.5 and ax = 10m.

Table IV. Effect of the vertical autocorrelation distance ay on the statistical moments of the ultimate
bearing capacity.

ay(m) mqult ðkPaÞ sqult ðkPaÞ COV% du (-) ku (-)

0.5 665.50 67.65 10.16 0.198 0.089
0.8 662.12 83.73 12.65 0.271 0.136
1 658.20 93.57 14.22 0.287 0.163
2 660.60 120.71 18.30 0.423 0.263
5 661.00 147.33 22.30 0.546 0.446
8 662.20 148.66 26.78 0.615 0.545
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Figure 10. Influence of the horizontal autocorrelation distance ax on the PDF of the ultimate bearing capacity
in the case where r (c, ’) =�0.5 and ay = 1m.

Table V. Effect of the horizontal autocorrelation distance ax on the statistical moments of the ultimate
bearing capacity.

ax(m) mqult ðkPaÞ sqult ðkPaÞ COV% du (-) ku (-)

2 662.73 55.68 8.40 0.023 0.054
4 660.22 72.14 10.92 0.025 0.112
10 658.18 93.56 14.21 0.287 0.163
20 669.81 100.21 14.96 0.379 0.231
30 673.30 102.65 15.24 0.391 0.265
50 675.24 103.70 15.36 0.395 0.238
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the corresponding four statistical moments. The same observations concerning the variability of the
ultimate bearing capacity made before (when varying ay) remain valid in the present case. Notice,
however, that beyond a value of ax= 20m, the horizontal autocorrelation distance has a small effect
on the variability of the ultimate bearing capacity.

Figures 11 and 12 and Tables IV and V show that the probabilistic mean value of the ultimate
bearing capacity presents a minimum at a certain value of the ratio ax/ay (in our paper, this value is
equal to 10 for the prescribed values of the soil and footing characteristics). The presence of a
minimum value can be explained as follows:

For a prescribed value of the horizontal autocorrelation distance ax, the very small value of the
vertical autocorrelation distance ay (i.e. corresponding to ax /ay>> 1) creates a horizontal multilayer
composed of very thin sublayers for which each sublayer may have a large or a small value of the
shear strength parameters [see Figure 13(a)]. On the other hand, the very large value of the vertical
autocorrelation distance ay (i.e. corresponding to ax /ay<<1) leads to a vertical multilayer (case of a
one-dimensional horizontal random field) composed of a finite number of sublayers for which each
sublayer may have a large or a small value of the shear strength parameters [see Figure 13(b)]. For
both cases of very small and very large values of ay, the variety of sublayers with large and small
values of the shear strength parameters leads to a greater value of the ultimate bearing capacity. This
large value occurs because the sublayers having large values of the shear strength parameters play
the role of an obstacle. In fact, the failure mechanisms will cut sublayers having large values of the
soil shear strength parameters. Finally, for medium autocorrelation distances [see Figure 13(e)], the
soil contains a number of stiff zones adjacent to a number of soft zones whose areas are less
extended in both the vertical and the horizontal directions compared to the two previous cases. This
allows the development of the failure mechanism through the soft soil zones and thus, this leads to
smaller values of the ultimate bearing capacity.
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Figure 11. Influence of the vertical autocorrelation distance ay on the probabilistic mean value of the ultimate
bearing capacity in the case where r(c, ’) =�0.5 and ax = 10m.

Figure 12. Influence of the horizontal autocorrelation distance ax on the probabilistic mean value of the ultimate
bearing capacity in the case where r (c, ’) =�0.5 and ay = 1m.
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Similar to Figure 11, Figure 12 shows that for a prescribed value of the vertical autocorrelation
distance ay, the very small value of the horizontal autocorrelation distance ax leads to a vertical
multilayer composed of a large number of thin sublayers for which each sublayer may have a
large or a small value of the shear strength parameters [see Figure 13(c)]. Also, a horizontal
multilayer is obtained in the case of a very large value of ax [see Figure 13(d)]. Finally, a soil
composed of several soft and stiff zones of finite dimensions is obtained for intermediate values
of the autocorrelation distances [see Figure 13(e)]. For all the three cases corresponding to small,
intermediate and high values of the horizontal autocorrelation distance, the explanation given for
Figure 11 remains valid herein.

As a conclusion, one may observe that the increase in the autocorrelation distance in Figure 11 leads
to a soil configuration that varies from a horizontal to a vertical multilayer. This situation is reversed in
Figure 12 where the soil configuration varies from a vertical to a horizontal multilayer. The ultimate
bearing capacity was found to be the smallest for an intermediate value of the autocorrelation
distance (ax or ay) where the failure mechanism can easily develop in the soil mass.

Tables IV and V also show the impact of the increase in ay or ax on both the skewness and the
kurtosis of the PDF. As in the case of the isotropic autocorrelation distance, the PDF of the response
is not far from a Gaussian one for small values of ay or ax. Finally, Tables VI and VII show the
effect of the increase in ay or ax on the Sobol indices S(c) and S(’) of the two random fields. These
tables show, as in the isotropic case, that the variability of the ultimate bearing capacity is mainly
due to the cohesion random field, which has a Sobol index of about 71%.
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Figure 13. Cohesion random field for different values of the autocorrelation distance.

Table VI. Effect of the vertical autocorrelation distance ay on the Sobol indices of the two random fields c
and ’.

ay (m) S(c) S(’)

0.5 0.711 0.289
0.8 0.712 0.287
1 0.715 0.285
2 0.713 0.287
5 0.716 0.284
8 0.739 0.260

Table VII. Effect of the horizontal autocorrelation distance ax on the Sobol indices of the two random fields c
and ’.

ax (m) S(c) S(’)

2 0.675 0.325
4 0.706 0.294
10 0.715 0.285
20 0.723 0.276
30 0.731 0.269
50 0.730 0.270
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3.3.3. Effect of the cross-correlation coefficient. Figure 14 presents the PDFs of the ultimate bearing
capacity for negatively cross-correlated r(c, ’) =�0.5 and non-correlated r(c, ’) = 0 random fields
when ax= 10m and ay= 1m, and Table VIII presents the corresponding four statistical moments.
Figure 14 and Table VIII show that the variability of the ultimate bearing capacity decreases when
considering a negative correlation between the two random fields. This is because the increase of
one parameter value implies a decrease in the other parameter. Thus, the total shear strength slightly
varies. This leads to a reduced variation in the ultimate bearing capacity. It should be mentioned that
the probabilistic mean value of the ultimate bearing capacity slightly increases when a negative
correlation between the two random fields exists. Finally, the Sobol indices presented in Table IX
show the same behavior detected in the previous sections.

3.3.4. Effect of the coefficients of variation of the random fields. Figure 15 presents the PDFs of the
ultimate bearing capacity for three different configurations of the coefficients of variation of the
random fields. Notice that for the three configurations r(c, ’) =�0.5, ax= 10m, and ay = 1m.
Tables X and XI present (for the three configurations) the four statistical moments of the ultimate
bearing capacity and the Sobol indices of the two fields (c, ’). Figure 15 and Table X show that the
variability of the ultimate bearing capacity increases when the coefficients of variation of the
random fields increase; the increase being more significant for the cohesion parameter. From
Table XI, one can see that an increase in the coefficient of variation of a soil parameter increases its
Sobol index and, thus, its weight in the variability of the ultimate bearing capacity. This
automatically reduces the contribution of the other uncertain parameter. This increase is more
significant for the soil friction angle. This is because an increase by 100% in the coefficient of
variation of the cohesion parameter increases its Sobol index by about 35%, whereas increasing the
coefficient of variation of the friction angle by only 50% increases its Sobol index by about 50%.
Figure 14. Influence of the cross-correlation coefficient on the PDF of the ultimate bearing capacity in the
case where ax = 10m and ay = 1m.

Table VIII. Effect of the cross-correlation coefficient between the random fields of c and ’ on the statistical
moments of the ultimate bearing capacity.

r(c,’) mqult ðkPaÞ sqult ðkPaÞ COV% du (-) ku (-)

�0.5 658.2 93.6 14.22 0.345 0.201
0 648.3 133.4 20.60 0.418 0.344

Table IX. Effect of the coefficient of correlation on the Sobol indices of the two random fields c and ’.

r(c,’) S(c) S(’)

�0.5 0.715 0.285
0 0.721 0.279
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Figure 15. Effect of the coefficients of variation of the random fields on the PDF of the ultimate bearing
capacity in the case where ax = 10m and ay = 1m.

Table X. Effect of the coefficients of variation of the random fields c and ’ on the statistical moments of the
ultimate bearing capacity.

mqult ðkPaÞ sqult ðkPaÞ COV% du (-) ku (-)

COVc ¼ 25% COV’ ¼ 10% 658.2 93.6 14.22 0.345 0.201
COVc ¼ 50% COV’ ¼ 10% 595.7 140.97 23.66 0.574 0.573
COVc ¼ 25% COV’ ¼ 15% 664.2 108.35 16.31 0.327 0.185

Table XI. Effect of the coefficients of variation of the random fields c and ’ on the Sobol indices of the two
random fields c and ’.

S(c) S(’)

COVc ¼ 25% COV’ ¼ 10% 0.675 0.325
COVc ¼ 50% COV’ ¼ 10% 0.915 0.085
COVc ¼ 25% COV’ ¼ 15% 0.511 0.489

2058 T. AL-BITTAR AND A.-H. SOUBRA
4. CONCLUSIONS

A probabilistic model that considers the spatial variability of the soil properties was presented
to compute the PDF of the ultimate bearing capacity of a strip footing resting on a spatially varying
(c, ’) weightless soil. The soil cohesion and friction angle were considered as two anisotropic non-
Gaussian cross-correlated random fields. The methodology proposed by Vo�rechovsky [19] was used
to generate the two random fields. The SPCE methodology was employed for the probabilistic
analysis. The adaptive algorithm suggested by Blatman and Sudret [18] to build up a SPCE was
adopted to obtain a meta-model (i.e. an approximate analytical expression) of the ultimate bearing
capacity. Finally, this meta-model was employed to perform the probabilistic analysis using Monte
Carlo simulation technique.

The probabilistic numerical results were presented in the case of a weightless soil mass. This means
that the present results only provide the component of the ultimate bearing capacity related to the soil
cohesion. The main reason for which the soil weight was neglected is the validation of the probabilistic
approach with the use of a non-expensive deterministic model that has a reasonable computation time.
The numerical results have shown the interest of the SPCE methodology with respect to the classical
PCE method in the case of random fields where a significant number of random variables (up to 88)
were used in the analysis. The numerical results have also shown that the variability of the ultimate
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bearing capacity increases with the increase in the coefficients of variation of the random fields; the
increase is more significant for the cohesion parameter. The variability of the ultimate bearing
capacity is mainly due to the cohesion random field, which has a Sobol index of about 71%
compared with the friction angle random field whose Sobol index is about 29%. This result is
logical in our case where a weightless soil was considered; the Ng term, which is very sensitive to ’
being absent in this paper. It was also shown that an increase in the coefficient of variation of a soil
parameter (c or ’) increases its Sobol index and, thus, its weight in the variability of the system
response and decreases the weight of the other parameter; the increase is more significant for the
friction angle. The negative correlation between the soil shear strength parameters decreases the
response variability.

With a decrease in the autocorrelation distances (ax or ay or ax = ay), a less spread out (PDF) of the
ultimate bearing capacity was obtained. The probabilistic mean value of the ultimate bearing capacity
presents a minimum. This minimum was obtained in the isotropic case when the autocorrelation
distance is nearly equal to the footing breadth B; whereas for the anisotropic case, this minimum
was obtained (for prescribed footing and soil characteristics) at a given value of the ratio between
the horizontal and the vertical autocorrelation distances. Small values of the autocorrelation
distances lead to small values of the skewness and kurtosis of the system response. Thus, a PDF of
the system response that is not far from a Gaussian one was obtained in these cases. Finally, the
obtained results show the importance of considering the spatial variability of soil properties in the
probabilistic studies because some observed phenomena (such as the non-symmetrical soil failure)
can not be seen when homogenous soils are considered.
REFERENCES

1. Griffiths DV, Fenton GA. Bearing capacity of spatially random soil: the undrained clay Prandtl problem revisited.
Geotechnique 2001; 51:351–359.

2. Griffiths DV, Fenton GA, Manoharan N. Bearing capacity of rough rigid strip footing on cohesive soil: Probabilistic
study. Journal of Geotechnical and Geoenvironmental Engineering (ASCE) 2002; 128:743–755.

3. Fenton GA, Griffiths DV. Bearing capacity prediction of spatially random c-j soils. Canadian Geotechnical Journal
2003; 40:54–65.

4. Popescu R, Deodatis G, Nobahar A. Effects of random heterogeneity of soil properties on bearing capacity. Proba-
bilistic Engineering Mechanics 2005; 20:324–341.

5. Youssef Abdel Massih D. Analyse du comportement des fondations superficielles filantes par des approches
fiabilistes. Ph.D. Thesis, University of Nantes, 2007; p. 267.

6. Soubra AH, Youssef Abdel Massih D, Kalfa M. Bearing capacity of foundations resting on a spatially random soil.
Geocongress, ASCE, GSP N� 178, New Orleans, Louisiana, USA, 9–12 March 2008; 66–73.

7. Soubra AH, Youssef Abdel Massih D. Probabilistic analysis and design at the ultimate limit state of obliquely loaded
strip footings. Geotechnique 2010; 60:275–285.

8. Cho SE, Park HC. Effect of spatial variability of cross-correlated soil properties on bearing capacity of strip footing.
International Journal for Numerical and Analytical Methods in Geomechanics 2010; 34:1–26.

9. Isukapalli SS, Roy A, Georgopoulos PG. Stochastic response surface methods (SRSMs) for uncertainty propagation:
Application to environmental and biological systems. Risk Analysis 1998; 18:357–363.

10. Huang SP, Liang B, Phoon KK. Geotechnical probabilistic analysis by collocation-based stochastic response surface
method: An Excel Add-in implementation. Georisk 2009; 3:75–86.

11. Li D, Chen Y, Lu W, Zhou C. Stochastic response surface method for reliability analysis of rock slopes involving
correlated non-normal variables. Computers and Geotechnics 2011; 38:58–68.

12. Mollon G, Dias D, Soubra AH. Probabilistic analysis of pressurized tunnels against face stability using collocation-
based stochastic response surface method. Journal of Geotechnical and Geoenvironmental Engineering ASCE 2011;
137:385–397.

13. Houmadi Y, Ahmed A, Soubra AH. Probabilistic analysis of a one-dimensional soil consolidation problem. Georisk
2012; 6(1):36–49.

14. Ghanem R, Spanos P. Stochastic finite elements: A spectral approach. Courier Dover Publications, 2003; 224.
15. Matthies HG, Keese A. Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations.

Computer Methods in Applied Mechanics and Engineering 2003; 194:4521–4537.
16. Le Maître OP, Reagan M, Najm HN, Ghanem RG. A stochastic projection method for fluid flow-II. Random process.

Journal of Computational Physics 2002; 181:9–44.
17. Berveiller M, Sudret B, Lemaire M. Stochastic finite elements: a non intrusive approach by regression. European

Journal of Computational Mechanics 2006; 15(1–3):81–92.
18. Blatman G, Sudret B. An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite

element analysis. Probabilistic Engineering Mechanics 2010; 25:183–197.
Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2013; 37:2039–2060
DOI: 10.1002/nag



2060 T. AL-BITTAR AND A.-H. SOUBRA
19. Vo�rechovský M. Simulation of simply cross-correlated random fields by series expansion methods. Structural Safety
2008; 30:337–363.

20. Li CC, Der Kiureghian A. Optimal discretization of random fields. Journal of Engineering Mechanics 1993;
119:1136–1154.

21. Nataf A. Détermination des distributions de probabilités dont les marges sont données. Comptes Rendus de l’Académie
des Sciences 1962; 225:42–43 (in French).

22. Spanos PD, Ghanem R. Stochastic finite element expansion for random media. Journal of Engineering Mechanics
1989; 115:1035–1053.

23. Xiu D, Karniadakis GE. The Wiener-Askey polynomial chaos for stochastic differential equations. Journal of
Scientific Computing 2002; 24:619–644.

24. Sudret B. Global sensitivity analysis using polynomial chaos expansion. Reliability Engineering and System Safety
2008; 93:964–979.

25. Blatman G, Sudret B. Sparse polynomial chaos expansions and adaptive stochastic finite element using a regression
approach. Comptes Rendus Mécanique 2008; 336:518–523.

26. Blatman G, Sudret B. Adaptive sparse polynomial chaos expansions based on least angle regression. Journal of
Computational Physics 2011; 230:2345–2367.

27. Sobol IM. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mechanics
and Computation in Simulation 2001; 55:271–280.

28. Youssef Abdel Massih D, Soubra AH, Low BK. Reliability-based analysis and design of strip foundations against
bearing capacity failure. Journal of Geotechnical and Geoenvironmental Engineering ASCE 2008; 134:917–928.

29. Youssef Abdel Massih D, Soubra AH. Reliability-based analysis of strip footings using response surface methodology.
Internatinal Journal of Geomechanics ASCE 2008; 8:134–143.

30. Mollon G, Dias D, Soubra AH. Probabilistic analysis of circular tunnels in homogeneous soil using response surface
methodology. Journal of Geotechnical and Geoenvironmental Engineering ASCE 2009; 135:1314–1325.

31. Mollon G, Dias D, Soubra AH. Probabilistic analysis and design of circular tunnels against face stability. Internatinal
Journal of Geomechanics ASCE 2009; 9:237–249.

32. Yucemen MS, Tang WH, Ang AHS. A Probabilistic Study of Safety and Design of Earth Slope. Civil Engineering
Studies, Structural Research Series, Vol. 402. University of Illinois: Urbana, IL, 1973.

33. Lumb P. Safety factors and the probability distribution of soil strength. Canadian Geotechnical Journal 1970; 7:225–242.
34. El-Ramly H, Morgenstern NR, Cruden DM. Probabilistic stability analysis of a tailing dyke on presheared clay-shale.

Canadian Geotechnical Journal 2003; 40:192–208.
35. Phoon KK, Kulhawy FH. Characterization of geotechnical variability. Canadian Geotechnical Journal 1999;

36:612–624.
36. Der Kiureghian A, Ke JB. The stochastic finite element method in structural reliability. Probabilistic Engineering

Mechanics 1988; 3:83–91.
Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2013; 37:2039–2060
DOI: 10.1002/nag


