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A B S T R A C T

Numerical 3D deterministic models of offshore monopile foundations are computationally-expensive and thus
they present a great obstacle to the use of the conventional Monte Carlo Simulation (MCS) methodology for the
probabilistic analysis. In this paper, a reliable and efficient Kriging-based probabilistic model called Global
Sensitivity Analysis enhanced Surrogate (GSAS) modeling is used. The objective is to perform a probabilistic
analysis of a monopile foundation subjected to a combined loading. An undrained normally consolidated clayey
soil with spatially varying soil properties was considered. Some probabilistic numerical results are presented and
discussed.

1. Introduction

The probabilistic approaches allow one to rigorously take into ac-
count the uncertainties of the soil properties and the spatial variability
of these properties. The outcomes of these approaches may be the
statistical moments of the system response or the probability of failure
against an acceptable threshold of this system response. For the prob-
abilistic analyses of offshore geotechnical structures, one may cite
among others [1,2] for the bearing capacity of spudcan foundations [3],
for the bearing capacity of skirted foundations [4], for the bearing ca-
pacity of a gravity-based foundation and [5], for the problem of a
monopile foundation. In this paper, a probabilistic analysis of an off-
shore monopile foundation subjected to a combined loading was in-
vestigated. The objective is the computation of the failure probability
against exceeding a prescribed threshold of the system response. An
undrained normally consolidated clayey soil with spatially varying soil
properties was considered in the analysis.

As is well known, the numerical 3D deterministic models of offshore
monopile foundations are very time consuming because they are based
on finite element/finite difference methods. For this reason, the com-
putation of the failure probability Pf of these structures by the con-
ventional Monte Carlo Simulation (MCS) methodology is unaffordable
especially when computing the small practical values of the failure
probability in the order of 10−3–10−4. Indeed, one million of calls to
the mechanical model are required for the computation of Pf value in
the order of 10−4 for a coefficient of variation on Pf of 10%.

In order to overcome the shortcoming of the large number of calls to
the mechanical model required by MCS methodology, some authors
have resorted to more advanced simulation methods called ‘variance
reduction techniques’ such as subset simulation (SS) or asymptotic
sampling (AS) [5–12]. Although the variance reduction techniques are
powerful probabilistic approaches, they remain insufficient when
dealing with a small value of the failure probability and a small desired
value of the coefficient of variation on this failure probability. Conse-
quently, more advanced probabilistic approaches requiring a smaller
number of calls to the mechanical model are needed.

In the past few years, some probabilistic approaches based on me-
tamodeling techniques have gained a lot of interest. These approaches
consist in replacing the time consuming mechanical model by a meta-
model (i.e. an analytical equation) making use of a much smaller
number of calls to the computationally expensive mechanical model as
compared to the crude MCS methodology. The computation of the
failure probability by these methods is thus performed by applying MCS
methodology on the obtained metamodel with a quasi-negligible com-
putation time. It should be emphasized here that when computing the
failure probability by the metamodeling approaches, a small value of
the coefficient of variation on the failure probability can be obtained
since the huge number of calls of the mechanical model required by
MCS is not an issue in this case; the computation time of the system
response via the metamodel being negligible.

Recently, two kriging-based metamodeling approaches called Active
learning methods combining Kriging and MCS [or IS (Importance
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Sampling)] have been developed [13,14]. These methods are named
AK-MCS and AK-IS respectively. They were shown to be efficient with
respect to the classical crude MCS methodology as one can obtain an
accurate probability of failure needing a smaller number of calls to the
mechanical model. Notice however that the essential issues in these
approaches are (i) the choice of a best new training sample for the
construction of the metamodel and (ii) the stopping criterion related to
the addition of a new training sample. Indeed, these issues are defined
from the perspective of individual responses. This may lead to some
extra evaluations of unnecessary added training samples. In order to
overcome these shortcomings, a Global Sensitivity Analysis enhanced
Surrogate (GSAS) modeling was recently developed by Hu and Maha-
devan [15]. Within GSAS, a powerful stopping criterion was suggested
and a new way of selecting a next training sample was proposed. The
new training samples are identified according to their contribution to
the uncertainty in the reliability estimate and the addition of training
samples stops when the accuracy of the reliability estimate reaches a
specific target.

It should be mentioned that Hu and Mahadevan [15] have validated
their method based on several academic examples where the perfor-
mance function was given by an analytical equation. The aim of this
paper is to extend the GSAS approach proposed by Hu and Mahadevan
[15] to the case of random field problems in order to study geotechnical
structures involving spatial variability of the soil properties. More
specifically, this paper presents a probabilistic analysis at the Service-
ability Limit State SLS of a large diameter monopile foundation em-
bedded in a spatially varying clay and subjected to a prescribed com-
bined loading. The objective is the computation of the failure
probability against exceeding a threshold value on the monopile head
rotation. Notice that the soil undrained cohesion and the soil undrained
Young modulus were considered as random fields. The Expansion Op-
timal Linear Estimation (EOLE) method proposed by [16] was used to
generate the random fields. The mechanical model employed to cal-
culate the system response (i.e. the monopile head rotation) was based
on numerical simulations using Abaqus finite-element software.

This paper is organized as follows: The next section presents the
mechanical model. This is followed by an overview on the modeling of
the soil spatial variability. Then, the coupled mechanical probabilistic
model based on GSAS approach (as applied to the case of a large dia-
meter monopile embedded in a spatially varying clayey soil) is de-
scribed. Finally, some numerical probabilistic results are presented and
discussed. The paper ends by a conclusion of the main findings.

2. Mechanical model for the soil-monopile system

A 3D finite element model of the soil-monopile system has been
carried out using the commercial software Abaqus/Standard [17].

Table 1 provides the geometrical and material properties of the
monopile. An open-ended steel monopile of 3m diameter was con-
sidered in this study. The wall thickness of the monopile was taken
equal to 5 cm, thus respecting the following minimum wall thickness
provided by API (2000) [18]:

t 6.35 D
100

= + (1)

where t[mm] is the wall thickness of the monopile and D[mm] its outer
diameter. The embedded length of the monopile, L, was taken equal to
18m. The monopile was extended of 1.0m above the seabed to prevent
the soil from going over the monopile [19]. The slenderness ratio L/D is

equal to 6 in this paper thus respecting the slenderness ratio corre-
sponding to large diameter offshore monopiles with rigid behavior (L/
D < 10 according to [20] and 5 < L/D < 6 according to [21,22]).
The steel monopile material with a density of 7840 kg m3 was assumed
to be linear elastic with Young’s modulus Ep of 210 GPa and Poisson’s
ratio vp of 0.3. Concerning the type of soil used in the numerical si-
mulations, an undrained normally consolidated clay with a mean un-
drained cohesion value of 50 kPa and a mean undrained Young mod-
ulus value of 10MPa was considered in the analysis. The soil was
assumed to follow the elastic-perfectly plastic Tresca constitutive model
which is defined by the undrained cohesion cu, the undrained Young’s
modulus Eu and the Poisson’s ratio vu. In this paper, the soil was as-
sumed to have a saturated unit weight of 18 kN m3 and a Poisson ratio
of 0.495. The soil undrained cohesion was considered as a random field.
Only the vertical soil variability was considered in the analysis. The soil
undrained Young modulus was assumed to be linearly related to the soil
undrained cohesion such that E K cu c u= × where Kc was taken equal to
200 in this work (see [23]). Thus, the soil Young modulus was im-
plicitly considered as a random field having the same distribution as the
soil undrained cohesion. Notice that Kc is a correlation factor that is
dependent on the clay plasticity index and the over-consolidation ratio
OCR [24]. The statistical input data of the soil undrained cohesion will
be given later in this paper when dealing with the numerical results.

An offshore monopile that is subjected to a vertical load V (re-
presenting the structure weight) together with a horizontal force H
acting at a height h (supposed equal to 38.6 m above the sea bed level)
is considered in the analysis. The moment at mudline level is thus
M H h= × . In this paper, the vertical and horizontal loads are supposed
to be equal to 2MN and 0.55MN respectively.

Although an entire soil domain is required while considering the
spatial variability in three-dimensions, only one-half of this soil domain
is adopted in this paper (see Fig. 1). This is because only the vertical soil
variability was taken into account in the analysis. As may be seen from
Fig. 1, the numerical model has a diameter of 20D and a height equal to
1.6 L. It was verified that with these model dimensions, the behavior of
the soil-monopile system was not influenced by the artificial boundary
effects. Concerning the model boundary conditions, the bottom of the
soil model was fixed against translation in all directions whereas the
lateral cylindrical boundary was fixed against lateral translation. Due to
symmetry, the symmetrical vertical plane (i.e. the loading plane) was
fixed against translation in its normal direction. The soil mesh was
constructed using C3D8 and C3D6 linear brick elements (cf. [25]). In-
compatible mode linear brick elements (C3D8I) were used for the
monopile in order to accurately simulate its flexural behavior (cf. [25]).
An illustration of the adopted mesh is shown in Fig. 1.

Surface-to-surface master/slave contact formulation was used to
model the interaction between the monopile and the soil. Since the
monopile is much stiffer than the soil, it was selected as the master
surface while the soil in contact with the monopile was selected as the
slave surface. In order to model the normal behavior, a hard contact
relationship (called hard pressure-overclosure relationship) is used with
a constraint enforcement method of the linear penalty type. In this
method, the normal stiffness is set by default to 10 times the re-
presentative underlying element stiffness (cf. [25]). Notice that the
“hard” contact relationship minimizes the penetration of the slave
surface into the master surface at the constraint locations and it does
not allow the transfer of tensile stress across the interface. The surfaces
separate if the contact pressure reduces to zero. Concerning the fric-
tional behavior, it was modeled using Coulomb friction law: the

Table 1
Geometrical and material properties of the monopile.

Outer diameter D (m) Thickness t (m) Embedded length L (m) Density (kg m3) Young modulus Ep (GPa) Poisson ratio vp

3.00 0.05 18.00 7840 210 0.3
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maximum shear stress at contact was equal to the contact stress mul-
tiplied by the friction coefficient µ where µ was taken equal to 0.24 in
this paper. According to [26], this coefficient was found to lie within
the range [0.2–0.4]. This range is in a quite agreement with the values
provided by [27,28]. When the shear stress reaches the maximum
value, the surfaces slide relative to one another in the tangential di-
rection.

The finite element calculation was executed step-wised. A geostatic
step was first performed for the generation of the initial stress state of
the soil in the whole model consisting of soil elements only. This is done
by defining an isotropic stress field using a coefficient of earth pressure
at rest K 10 = , and then running the geostatic step in the presence of the
gravity forces. This leads to a first equilibrium state of the soil mass
with negligible deformations. In a second step, the monopile was si-
mulated by (i) removing the soil elements located at the monopile
position and generating the steel elements representing the monopile,
(ii) activating the contact conditions between the monopile and the soil
and (iii) applying the weight of the generated monopile. Finally, in a
third step, the horizontal and vertical forces and the corresponding
moment are applied in increments at a reference point (taken here at
the top of the monopile) where the applied moment was equal to
M H (h 1) 20.68 MN·m= × = .

For an undrained cohesion cu of 50 kPa and an undrained Young’s
modulus Eu of 10,000 kPa ( c200 u= × ), the obtained value of the
monopile rotation at mud-line is equal to 0.23°. This value is slightly
lower than the limit rotation value 0.25SLS = ° imposed in this paper at
the Serviceability Limit State.

3. Modeling of the soil spatial variability

The spatial variability of the soil properties is an aleatory source of
uncertainty resulting from depositional and post-depositional pro-
cesses. It has significant effects on the reliability of geotechnical
structures [29–32]. In order to completely consider its effects, a prob-
abilistic characterization is essential, for which the spatial variability is
often identified by the random field theory [33] where it can be de-
scribed by a probability density function PDF (i.e. mean and standard
deviation) and an autocorrelation function with a corresponding value
of the autocorrelation distance or the scale of fluctuation. The scale of
fluctuation defines the distance beyond which there is not a significant
correlation of material property values [34].

Based on some investigations on the variability of seabed soils,
Lacasse and Nadim [35] found that the undrained cohesion of clay
followed a normal or lognormal distribution with a coefficient of var-
iation ranging between 5% and 35%. According to [1], the scale of
fluctuation of offshore soils ranges between 7m and 9000m in hor-
izontal direction. In vertical direction, the scale of fluctuation is much
smaller, ranging between 0.4 m and 7.14m. Because of its smaller effect

on the computed response, the horizontal variability of the soil was not
taken into account in this work.

In this paper, the undrained soil cohesion cu of the clay was modeled
by a lognormal random field ZLN with a square exponential auto-
correlation function X X( , )Z

LN ' . This function provides the values of the
correlation between two arbitrary points X x y z( , , ) and X x y z( , , )' ' ' ' as
follows:

X X z z
a

( , ) exp | |
Z
LN

z

2

=
(2)

where az is the vertical autocorrelation distance. As may be seen from
Eq. (2), only the vertical correlation structure of the soil cohesion was
considered in this work. Note that for a square exponential auto-
correlation function, the autocorrelation distance a in a given direction
is related to the scale of fluctuation in that direction by a= .

The EOLE method proposed by Li and Der Kiureghian [16] to dis-
cretize a random field was used herein. This method has the advantage
that it allows one to determine the variance of the error of the corre-
sponding discretization scheme and thus, it allows one to determine the
minimal (optimal) number of eigenmodes for a prescribed value of the
variance of the error. EOLE was employed for the generation of the
realizations of the cohesion random field, the realizations of the Young
modulus random field being obtained by multiplying the cohesion va-
lues by 200.

It should be noted that the discretisation of a random field by EOLE
leads to an expression that provides the value of this random field at
each point of the soil mass as a function of M standard Gaussian
random variables (this number M is equal to the number of eigen-
modes). For a prescribed value of the variance of the error on EOLE, the
number M is small for the high values of the autocorrelation distances
(i.e. case of a homogeneous soil) and it becomes significant for the very
small values of the autocorrelation distances. For more details on the
discretisation of a log-normal random field by EOLE, the reader may
refer to Al-Bittar and Soubra [36].

4. Coupled mechanical probabilistic model

The coupled mechanical probabilistic model used to perform the
probabilistic analysis may be described by the following steps:

1. After the generation of the random field cu (and the computation of
the random field E K cu c u= × ), material random properties values
were saved as solution-dependent state variables (SDV) and trans-
mitted to the soil elements by a User defined material subroutine
UMAT written in Fortran (see [37] for more details). The objective is
to perform an Abaqus numerical simulation (based on the obtained
realizations of cu and Eu) for the computation of the monopile head
rotation under the applied combined loading. It should be noted that
the UMAT subroutine was used herein to define an elastic-perfectly
plastic Mohr-Coulomb constitutive model for the soil behavior that
can consider different values of the soil shear strength parameters
from element to another one. Indeed, it was not possible to spatially
vary the soil shear strength parameters using the Abaqus built-in
Mohr-Coulomb constitutive model. A typical realization of the soil
cohesion random field is shown in Fig. 2 (notice that SDV4 in Fig. 2
represents the soil undrained cohesion).

2. After each numerical simulation (mechanical calculation) using
Abaqus, the post-processing of the mechanical model response was
performed using the Abaqus2Matlab toolbox [38]. This toolbox is a
suitable piece of software which is able to connect Abaqus with
Matlab. Using this toolbox, the monopile nodes displacement values
at the mud-line level were read in Matlab and then used to compute
the monopile rotation value of the corresponding simulation. Fi-
nally, the response is stored in Matlab and used by the probabilistic
GSAS method presented in the following sub-section.

Fig. 1. Soil domain and mesh used in the numerical simulations of the soil-
monopile system.
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4.1. GSAS methodology for spatially varying soil problems

GSAS approach is based on the kriging metamodeling theory. The
kriging consists in constructing a meta-model (i.e. an analytical model)
based on a few number of samples computed using the mechanical
model. The predicted response at an unknown sample (based on the
constructed kriging meta-model) is a Gaussian random variate char-
acterized by a mean prediction value and a corresponding prediction
variance. Details on kriging metamodeling were not provided herein
and the reader may refer to [39] or to different recently published
papers using kriging metamodeling as in [13,14,40]. It should be em-
phasized here that contrary to other types of meta-models, the kriging
meta-model provides not only a predicted value at an unknown sample
but also an estimate of the prediction variance which gives an un-
certainty indication on the kriging meta-model at this sample. The
variances of the samples used for the construction of the meta-model
are zero (i.e. the corresponding predictions are exact), but the variances
of the other samples are always different from zero. The construction of
a kriging metamodel can be easily performed using DACE (Design and
Analysis of Computer Experiments) toolbox in Matlab. For more details,
the reader may refer to [41].

The general procedure of the GSAS method (which may be con-
sidered as an improvement of AK-MCS by [13]) as adapted to the case
of random fields problems can be described by the two following stages
(see also the flowchart presented in Fig. 4).

Stage 1: Construction of an approximate kriging meta-model: This
stage may be summarized by the following steps:

• Generation by Monte Carlo simulation of x i N( 1, 2, ..., )i
MCS

( ) =
samples. In this work, NMCS was taken equal to 500,000. Each
sample x i( ) consists of M standard Gaussian random variables where
M is the number of random variables needed by EOLE methodology
to accurately discretize the cohesion random field. This number will
be given later in this paper [see Table 3].
• Random selection of a small design of experiments DoE from the
generated population (a DoE of 15 samples was used in this work).
Then, use EOLE methodology to transform each sample into a rea-
lization of cu and a corresponding realization of Eu that provide the
spatial distribution of the soil undrained cohesion and Young
modulus. For each selected sample, the performance function G is
evaluated using the following equation:

G 1SLS= (3)

where 0.25SLS = ° is the limit rotation value considered in this paper
and is the monopile rotation at mudline computed based on the
Abaqus mechanical model making use of the obtained realizations of cu
and Eu.

• Based on the DoE and the corresponding performance function va-
lues, construct an approximate kriging meta-model in the standard
space of random variables using the DACE toolbox [41]. Remember
here that for each Monte Carlo sample x i( ), the random response
predicted by the approximate kriging surrogate model is a Gaussian
variate as follows:

G x N g x x( ) ( ( ), ( ))p
i i

G
i( ) ( ) 2 ( )

p (4)

where Gp is the random response predicted by the kriging metamodel,
N stands for the normal distribution and finally g x( )i( ) and x( )G

i2 ( )
p are

the mean prediction and the corresponding mean square error (kriging
prediction variance) respectively.

• Determine (for the whole MCS samples) the kriging predictions
values g x( )i( ) (i.e. mean values) and their corresponding kriging
prediction variance values x( )G

i2 ( )
p using the DACE toolbox. Then,

compute the failure probability Pf using the following equation:

P I G x N( ( ))f
i

N

p
i

MCS
1

( )
MCS

=
= (5)

where the meta-model random responses G x( )p
i( ) in this equation are

replaced by the mean prediction values g x( )i( ) . Notice that in Eq. (5),
I G x( ( )) 1p

i( ) = if G x( ) 0p
i( ) ; otherwise, I G x( ( )) 0p

i( ) = . Thus, Pf is es-
timated by counting the number of negative mean predictors and di-
viding it by the total number of MCS samples. The corresponding
coefficient of variation COV P( )f is given by the following equation:

COV P
P

P N
( )

1
·f

f

f MCS
=

(6)

It should be emphasized here that the value of the failure prob-
ability computed at this stage is far from being accurate because of the
small DoE used so far. An enrichment process is thus needed.

Stage 2: Enrichment process:
Within AK-MCS approach, the best next candidate sample adopted

during the enrichment process is selected as the one that is the most
close to the limit state surface. This sample could be considered as the
one that mostly reduces the uncertainty in Pf if the sample responses

Fig. 2. Typical realization of the soil undrained cohesion.
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G x( )p
i( ) predicted from the surrogate model were completely in-

dependent. Notice however that these sample responses are correlated
normal variables according to the property of the kriging model. The
GSAS approach allows one to overcome this shortcoming as follows.

The basic idea of GSAS is to treat the probability of failure estimate
Pf as a random variate representing the output of the system presented
in Fig. 3 where the system inputs are the random responses G x( )p

i( )

predicted by the kriging meta-model. In other words, the uncertainty in
the input random variates G x( )p

i( ) is propagated through the system
given by Eq. (5) and thus, the uncertainty in the failure probability
estimate can be quantified. Notice that the uncertainty in the failure
probability is an epistemic uncertainty since it comes from the un-
certainty related to the kriging metamodel predictions. Indeed, this
failure probability is calculated based on the responses that are pre-
dicted by the constructed kriging metamodel. It should be emphasized
that this uncertainty is successively reduced when improving the con-
structed kriging metamodel during the enrichment procedure.

Finally notice that both the convergence criterion and the strategy
of selecting new training samples are defined within GSAS from the
perspective of reliability estimate instead of individual responses of
MCS samples as will be described in some details in the following
subsection.

4.1.1. Choice of the new sample and stopping condition
For an efficient enrichment of the kriging meta-model, the new

training sample is selected within GSAS based on its contribution to the
uncertainty of the quantity of interest (i.e. Pf ). It should reduce the
uncertainty in Pf in the most significant way. This is done via a global
sensitivity analysis method extended to the case of models with de-
pendent inputs. The extended FAST method developed by [42] was
used in this paper. The enrichment process within GSAS approach can
be briefly described as follows:

The MCS samples were firstly classified into two sets according to
their U values where U is a learning function usually employed in the
kriging-based approaches (cf. [13,14]). It is given by the following
equation:

U x g x
x

( ) | ( )|
( )

i
i

G
i

( )
( )

( )
p

=
(7)

Notice that a large value of U indicates a low probability of making
an error on the sign of g x( ). For U x( ) 2> , the probability of making a
mistake on the sign of the performance function value is< 0.023 (cf.
[13]). Based on that, the MCS samples x i N( 1, 2, ..., )i

MCS
( ) = are divided

into two sets: The first set is composed of the samples with U values that
are larger than 2. This set is denoted xg

MCS
1 . The second set includes the

remaining samples in x i N( 1, 2, ..., )i
MCS

( ) = and it is denoted xg
MCS
2 .

Notice that the number of samples in set xg
MCS
1 is denoted in this paper

by N1 and that of the set xg
MCS
2 is denoted by N2.

The global sensitivity analysis was performed on the samples of the
set xg

MCS
2 . The objective is to determine the contribution of each sample

of this set to the uncertainty of Pf . The reason why the global sensitivity

analysis was performed on the set xg
MCS
2 is attributed to the fact that the

elements of the set xg
MCS
1 have U values that are larger than 2 and thus,

they are likely not contributing to the uncertainty of Pf . In order to
reduce the dimensionality of the problem, only a reduced number ncan
of samples (taken equal to 20 in this work) of the set xg

MCS
2 with the

lowestU values were selected to perform the global sensitivity analysis.
This is because these samples are more likely to have wrong perfor-
mance function signs (i.e. high probability of being the new selected
training sample). Notice that the number ncan =20 samples was chosen
in this paper for the global sensitivity analysis GSA because a higher
number of samples was checked and shown to significantly increase the
computation time of the analysis. Indeed, the GSA computation time
increases with the increase of ncan and it becomes very significant be-
yond 20 samples in the present problem of monopile foundation. This
number of samples was thus adopted for all configurations treated in
this paper.

Concerning the stopping condition, a powerful stopping criterion
was suggested within GSAS approach. This criterion is based on the
quantification of the uncertainty in the failure probability coming from
the uncertainty in the responses of the Monte Carlo samples that are
predicted by the kriging metamodel. Although a prescribed maximal
value of the uncertainty on the failure probability would be a quite
relevant stopping condition (because it makes sure that the uncertainty
in Pf is sufficiently small), Hu and Mahadevan [15] suggest stopping the
addition of new samples based on the uncertainty of the error on the
failure probability r . The error on the failure probability is a measure of
the gap between the ‘theoretical’ value and the predicted value of the
failure probability. It is defined by the following equation:

P P
Pr

f f

f
=

(8)

where Pf is the ‘theoretical’ failure probability given by Eq. (5) that
takes into account the uncertainty in the responses of the set xg

MCS
2 and

P f is the estimate value of the failure probability computed based on
Eq. (5) making use of the kriging meta-model mean prediction values
g x( )i( ) .

It should be noted here that Pf in Eq. (8) is a random variate for
which one can quantify the corresponding uncertainty. This is because
G x( )p

i( ) in Eq. (5) is a Gaussian variate. The uncertainty in r as given by
Eq. (8) was thus quantified herein based on the uncertainty quantifi-
cation of Pf . The sampling-based method was used as follows.

The random responses G x i i N( ( )), 1, 2, ...,p g
MCS
2 2= corresponding to

the set xg
MCS
2 are correlated normal variables. They are used to generate

nr samples (n 600r = in this work) of size N2. From these samples, one
can compute nr samples of the failure probability Pf [using Eq. (5)] and
other nr corresponding samples of the error r [using Eq. (8)]. From the
different samples i i n( ), 1, 2, ...,r r= , the Kernel Smoothing function is
employed to fit the distribution of the error r . Based on the fitted
distribution, Hu and Mahadevan [15] have suggested stopping the ad-
dition of new samples when the quantity r

max becomes smaller than a
prescribed threshold t (t is taken equal to 0.1% in this paper) where r

max

is defined as follows:

F Fmax{| (0.99)|, | (0.01)|}r
max 1 1

r r= (9)

In this equation, F 1
r is the inverse CDF of r . The proposed stopping

condition corresponds to a probability of 2% that the estimation error
on Pf would be larger than 0.1%. For more information on this cri-
terion, the reader may refer to [15].

Notice finally that the value of r
max was checked every time the

surrogate model was updated except for the case where the number N2
was too large (> 8000). The reason is related to the fact that the error
computation cost is very expensive in this case. Furthermore, this cost
would be with no interest since the uncertainty on the failure prob-
ability estimate is obviously significant in that case.

Fig. 3. Probability of failure estimate as a system response (after Hu and
Mahadevan [15]).
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5. Numerical results

In this paper, the soil undrained cohesion was assumed to have a
mean value that is constant with depth. A reference configuration
where the soil undrained cohesion has a mean value of 50 kPa, a
coefficient of variation of 10% and a vertical autocorrelation distance of
2m was considered in the analysis. Notice however that several other
values of the vertical autocorrelation distance of the soil undrained
cohesion were also investigated in order to examine the effect of the
vertical autocorrelation distance on the value of the failure probability.

5.1. Comparison with AK-MCS results

The implementation of AK-MCS approach for geotechnical struc-
tures involving spatially varying soil properties was recently developed
by Al-Bittar et al. [40] in the case of a strip footing. Its extension to the
present case of a 3D monopile foundation was performed in this paper
for comparison purposes.

Fig. 5 presents the evolution of the failure probability (as given by

GSAS) with the number of added samples (i.e. the samples added during
the enrichment process), until reaching the stopping criterion

0.1%r
max < . The reference configuration (az =2m) was considered in
the analysis. As may be seen from this figure, the stopping condition
was reached for only 44 added samples. This means that only 59 calls to
the mechanical model (15 calls for the initial metamodel construc-
tion+ 44 calls for the enrichment) were necessary to obtain the con-
vergence of Pf . For this number of calls, a failure probability of
3.41 10 3× was obtained. The corresponding value of the error r

max was
equal to 0.08% (<0.1%). This error was not computed before reaching
41 added samples (thus reducing the computation time) because of the
high values of the uncertainty in Pf for these cases where N 80002 > .
Notice that a small value of the coefficient of variation on the failure
probability was obtained [COV(Pf )= 2.42%], thus indicating that the
number of the generated MCS realizations (i.e. 500,000) is quite suffi-
cient for the estimation of the failure probability using Eq. (5).

In order to check the efficiency of GSAS with respect to AK-MCS
approach, a probabilistic computation has been performed on the same
monopile problem but using AK-MCS approach. The failure probability

Fig. 4. Flowchart of the GSAS approach.
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obtained by AK-MCS was also plotted in Fig. 5 versus the number of
added samples. Notice that AK-MCS computation makes use of the
classical stopping criterion (i.e. Min(U) > 2).

As may be seen from Fig. 5 and Table 2, GSAS is a powerful ap-
proach since it provides a quasi-similar value of the failure probability
as AK-MCS making use of a much reduced number of calls to the me-
chanical model (59 calls in GSAS instead of 455 calls in AK-MCS).
Furthermore, the obtained values of the failure probability provided by
both GSAS and AK-MCS are very accurate since they correspond to a
very small value of the coefficient of variation on Pf of 2.42% [see
Table 2].

5.1.1. Effect of the number of added samples on the uncertainties of r and
Pf

This section aims at presenting the effect of the number of added
samples during the enrichment process on the probability distribution
of both the error r and the computed failure probability.

Fig. 6 presents the distribution of r for three different numbers of
added samples (30 samples, 40 samples and 44 samples). The same
reference configuration (az =2m) presented above was considered in
the analysis. This figure shows that (i) the uncertainty of r decreases
with the number of added samples, the corresponding standard devia-
tion becomes very small with a value of 2.03 10 4× when reaching the
optimal number of added samples (i.e. 44 samples) and (ii) the final
mean value of the error converges to zero. These two observations
provide a quite good indication on the convergence of the estimated
value of the failure probability.

Fig. 7 presents the distribution of the failure probability for three
different numbers of added samples (30 samples, 40 samples and 44
samples). As in Fig. 6, one can observe a decrease in the uncertainty of
this distribution with the increase in the number of added samples. A
very small standard deviation value of 6.94 10 7× was obtained when

Fig. 5. Failure probability versus the number of added samples.

Table 2
Comparison of GSAS and AK-MCS results.

Method Pf ×10−3 COV(Pf ) (%) Number of added realizations Ncalls

GSAS 3.41 2.42 44 59
AK-MCS 3.41 2.42 440 455

Fig. 6. Fitted distribution of r for different numbers of added samples.
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reaching the optimal number of added samples.
The obtained results confirm that the stopping criterion on the error

not only makes sure that a small uncertainty on the error was reached
but it also leads to a small uncertainty on the computed failure prob-
ability.

5.2. Critical and non-critical realizations

The kriging meta-model of the performance function was expressed
in this paper in the standard Gaussian space of random variables. The
computation of the Hasofer-Lind reliability index [43] and the corre-
sponding design point is thus quite straightforward. A minimization of
the reliability index subjected to the constraint that the performance
function is equal to zero was performed. Again, the reference config-
uration (az =2m) presented above was considered in the analysis.

Fig. 8 shows the monopile lateral displacement versus the monopile
embedded depth as obtained for the realization corresponding to the
design point. A quasi-rigid behavior of the monopile can be detected
with a rotation about a pivot point (indicated by a red circle in the
figure) situated at a depth of about 11m below the mudline.

Fig. 9 presents the critical realization of the soil undrained cohesion
corresponding to the obtained design point. Notice that the design point
corresponds to the most likely configuration to failure since it has the
highest probability density among all the other points situated on the
limit state surface G=0.

Fig. 9 exhibits some symmetry in the soil cohesion about the pivot
point level of the monopile. A weaker soil is observed for the depths
corresponding to higher horizontal monopile displacements. It should
be noted however that an increase in the value of the soil undrained
cohesion was observed below the base of the monopile. This is not
surprising since the soil mass under the base of the monopile has a
negligible influence on the monopile horizontal displacements.

A close examination of the distribution of the undrained soil cohe-
sion was investigated in Fig. 10. Fig. 10 (left) and (right) present re-
spectively the distribution of the soil undrained cohesion and that of the
soil displacement, along a vertical profile close to the monopile and
situated in the symmetrical vertical plane at a distance of about 0.9m in
the horizontal direction.

Although a decrease in the soil cohesion was mostly observed for
depths corresponding to higher horizontal displacements of the

Fig. 7. Fitted distribution of the failure probability for different numbers of added samples.

Fig. 8. Distribution of the monopile lateral displacement along the monopile embedded depth for the critical realization.
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monopile, an exception was observed in the upper zone of the monopile
[see Fig. 10 (left)]. This was explained by the fact that smaller values of
the soil cohesion do not correspond to higher values of the monopile
horizontal displacements (as was stated above) but to higher values of
the soil displacements [see Fig. 10 (right)]. Indeed, the distribution of
the soil displacement (not monopile displacement) has a quasi-opposite

trend to the distribution of the soil cohesion [see Fig. 10 (left) and
(right)].

As a conclusion, the critical realization was found to respect not
only the correlation structure of the random field (as is the case of the
typical realizations) but also the mechanics of the treated problem (a
smaller value of the soil cohesion was needed to induce the larger value

Fig. 9. Critical realization of the soil undrained cohesion.

Fig. 10. Distributions of the undrained cohesion (left) and the soil displacement (right) for the critical realization.

Table 3
Adopted number of random variables and the corresponding value of the variance of error of EOLE together with the values of Pf , COV P( )f , reliability index HL and
number of added realizations for various soil variabilities.

az (m) Adopted number of random variables Variance of the error % Pf ×10−3 COV(Pf )% HL Number of added realizations

2 16 3.77 3.41 2.42 2.65 44
3 11 3.22 10.4 1.37 2.27 32
5 7 3.22 26.9 0.84 1.91 34
12 3 4.57 69.9 0.51 1.47 3
18 3 0.84 91.8 0.44 1.32 1
30 2 1.27 107.5 0.40 1.23 1
50 2 0.19 114.6 0.39 1.19 1
100 1 1.79 117.5 0.38 1.18 1
10,000 1 1.65 10 3× 120.6 0.38 1.17 1
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of the soil displacement).
It should be noted that the realization of a random field is a sum-

mation of M eigenmodes. The number M of eigenmodes which was
considered in the computation to arrive to a small value of the variance
of error (of 3.77%) was equal to 16 [see Table 3]. Note however that
only the first eight eigenmodes were influential when considering the
critical realization. This number of eigenmodes is the one that is needed
to globally capture the distribution of the soil cohesion (which is quasi-
opposite to the soil displacement distribution) corresponding to the
design point, the other eigenmodes (beyond the 8th one) being with a
negligible effect on the distribution of the soil cohesion as may be seen

from Fig. 11. Notice that in Fig. 11, the distribution of the cohesion was
presented for only some first eigenmodes (i.e. the first single eigen-
mode, the first three eigenmodes and the first eight eigenmodes).

In order to visualize the distribution of the soil cohesion for the non-
critical realizations and to compare them to the one corresponding to
the most probable point (design point), Fig. 12 (left) shows two typical
distributions of the soil cohesion corresponding to safe (G > 0) and
unsafe (G < 0) zones. This figure also shows the critical distribution of
the soil cohesion corresponding to the design point. As may be seen
from this figure, the non-critical realizations show more fluctuations
(corresponding to a higher number of influential eigenmodes) than the
one corresponding to the design point. Also, they are shown not to be
correlated to the soil displacements as was the case of the critical rea-
lization. Indeed, Fig. 12 (right) shows the distribution of the soil dis-
placement for the three realizations (the one in the safe zone, the other
one in the unsafe zone and that of the design point). Notice finally that
all the three realizations share the following property: they respect the
correlation structure of the cohesion random field.

As a conclusion, the soil displacement distribution along a vertical
profile follows a quasi-similar trend for all the three realizations [cf.
Fig. 12 (right)]. However, only for the critical realization case, the
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Fig. 11. Comparison between the distribution of the undrained cohesion cor-
responding to the critical realization and the ones corresponding to the sum-
mation of the first eigenmodes.

0

5

10

15

20

25

30

70

D
ep

th
 (m

)

Undrained cohesion (kPa)

Safe

Failure

Critical

Pile base level

Pivot point level

0

5

10

15

20

25

30

30 40 50 60 0 0.02 0.04 0.06

D
ep

th
 (m

)

Displacement (m)

Safe

Failure

Critical

Pile base level

Pivot point level

Fig. 12. Distributions of the undrained cohesion (left) and the soil displacement (right) for different realizations.

0

0.5

1

1.5

2

2.5

3

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120

β H
L

Pf
 (×

10
-3

)

Vertical autocorrelation distance (m)

Pf
βHL

Fig. 13. Failure probability and reliability index versus the vertical auto-
correlation distance.

A.-K. El Haj et al. Computers and Geotechnics 106 (2019) 205–216

214



cohesion distribution exhibits a quasi-opposite trend to the soil dis-
placement distribution.

5.3. Effect of the vertical autocorrelation distance on the probabilistic
outputs

The aim of this section is to investigate the effect of the vertical
autocorrelation distance on the failure probability Pf and the Hasofer-
Lind reliability index HL.

Table 3 provides the number M of random variables adopted within
EOLE methodology and the corresponding value of the variance of the
error for different values of the vertical autocorrelation distance. As
may be seen from this table, a small value of the variance of the error
(smaller than 5%) was adopted for all the configurations treated in this
paper. This means that a sufficiently accurate random field discretiza-
tion was considered in the analysis.

As may be seen from Table 3 and Fig. 13, the failure probability
increases and the Hasofer-Lind reliability index decreases with the in-
crease in the vertical autocorrelation distance. Fig. 13 shows that the
increase in the failure probability is significant for the small values of
the vertical autocorrelation length (as compared to the embedded
length of the monopile). Beyond the value of 18m (length of the
monopile), the increase in the failure probability becomes less sig-
nificant. For the large values of the vertical autocorrelation length, the
failure probability attains an asymptote corresponding to the case of a
homogeneous soil.

It should be noted that the value of the coefficient of variation on
the failure probability was smaller than 3% for all the configurations
treated in this table. This implies that the obtained values of the failure
probability are computed with accuracy. Note that the number of added
realizations is small for the very large values of the vertical auto-
correlation distance (case of a homogeneous soil) and it becomes larger
for the small values of the vertical autocorrelation distance (i.e. for the
very heterogeneous soil medium). This may be explained by the in-
crease in the non-linearity of the meta-model for the highly hetero-
geneous soil. It should be emphasized that there is no regular increase
in the number of added samples with the decrease in the vertical au-
tocorrelation distance. This is because the number of added realizations
depends on the evolution of the metamodel during the enrichment
process.

Fig. 14 (left) shows the distributions of the undrained cohesion and
Fig. 14 (right) shows the distributions of the soil displacement for dif-
ferent values of the vertical autocorrelation distance. These figures are
provided for the critical realizations. It can be seen that the distribu-
tions of the undrained cohesion continue to follow here (for the dif-
ferent autocorrelation distances that are smaller than the monopile

embedded depth) a quasi-opposite trend to the soil displacement. Fur-
thermore, one can notice that the fluctuations of the soil undrained
cohesion decrease with the increase of the vertical autocorrelation
distance (i.e. the decrease of the soil variability) and the distribution of
the soil cohesion tends to become uniform for the high values of the
vertical autocorrelation distance.

6. Conclusion

A probabilistic analysis was performed at the Serviceability Limit
State SLS for a large diameter monopile foundation embedded in a
spatially varying clay. The soil undrained cohesion was considered as a
random field following a lognormal distribution and the soil undrained
Young’s modulus was assumed to be linearly related to the soil un-
drained cohesion. EOLE method was used for the generation of reali-
zations of the cohesion random field. The Global Sensitivity Analysis
enhanced Surrogate (GSAS) modeling proposed by Hu and Mahadevan
[15] was extended in this work to the case of random field and was used
to perform the reliability analysis. The method has shown high effi-
ciency as compared to AK-MCS approach since it has led to quasi si-
milar values of the failure probability and coefficient of variation
making use of a much reduced number of calls to the mechanical
model.

The distribution of the soil undrained cohesion corresponding to the
design point was found to follow a quasi-opposite trend to the soil
displacement distribution. Smaller values of the soil cohesion were
obtained for the higher values of the soil displacement. Furthermore,
the critical realization depends mainly on the first few eigenmodes.
These eigenmodes are those that are necessary to arrive to a cohesion
distribution which has an opposite trend to the soil displacement dis-
tribution.

The failure probability was found to increase and the Hasofer-Lind
reliability index was found to decrease with the increase in the vertical
autocorrelation distance. The increase in the failure probability was
shown significant for a ratio of monopile embedded length to the ver-
tical autocorrelation distance bigger than 1 (L/az > 1) and tends to be
negligible for the large values of the vertical autocorrelation length (as
compared to the embedded length of the monopile).
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